

Report On

FCC and IC Testing of the CBRSYS6500 in accordance with FCC CFR 47 Part 2 and FCC CFR 47 Part 90

COMMERCIAL-IN-CONFIDENCE

FCC ID: 2AQSOCBRSYS6500

PREPARED BY

Nikolai Viktorov Test Personnel

October 2018

APPROVED BY

Scott Drysdale Authorised Signatory

natory

Report File #: 7169004718

Report 02 Issue 2

Testing Laboratory
Certificate #2955.02

DATED

December 18, 2018

Page 1 of 38

Report Issued: 1/29/2019

CONTENTS

Section		Page No
1	REPORT INFORMATION	3
1.1 1.2 1.3 1.4	Report Details Brief Summary of Results Configuration Description Declaration of Build Status	5
2	MAIN EUT	7
1.5 1.6 1.7 1.8 1.9 1.10	Product Information Test Setup Test Conditions Deviation From The Standard Modification Record Alternative Test Site. Additional Information	
3	TEST DETAILS	12
2.1 2.2 2.3 2.4 2.5	Maximum Peak Output Power and Peak to Average Ratio - Conducted	17 20 22
4	TEST EQUIPMENT USED	34
3.1 3.2	Test Equipment Used Measurement Uncertainty	
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	37
4 1	Accreditation Disclaimers and Convright	38

SECTION 1

REPORT INFORMATION

1.1 **REPORT DETAILS**

Manufacturer	Octasic inc.
Address	300-401 Molson St, Montreal, QC, H1Y 3L1
Product Name	CBRSYS6500 (CBRRFE6400+CBRSYS6000)
Product Number	CBRSYS6000 - CBRSYS6008-RE-3E CBRRFE6400 - CBRRFE6407-NC100-EE1
Serial Number(s)	CBRSYS6000 - F-00190 CBRRFE6400 - K-15468
Hardware Version	CBRSYS6000 - 3.0 CBRRFE6400 - 3.1
Test Specification/Issue/Date	FCC CFR 47 Part 2: 2016 FCC CFR 47 Part 90: 2016
Start of Test	October 4, 2018
Finish of Test	December 17, 2018
Name of Test Personnel(s)	Scott Drysdale and Nikolai Viktorov
Related Document(s)	KDB 971168 D01 v02r02 KDB 662911 D01 v02r01

BRIEF SUMMARY OF RESULTS 1.2

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 2 and FCC CFR 47 Part 90 is shown below.

		Specification Clause		
Section	FCC CFR 47 Part 2	FCC CFR 47 Part 90	Test Description R	
2.1	2.1046	90.635	Maximum Peak Output Power, ERP, and Peak to Average Ratio - Conducted	
2.2	2.1049	•	Occupied Bandwidth	Pass
2.3	2.1051	90.213	Band Edge	Pass
2.4	2.1051	90.691	Transmitter Spurious Emissions	Pass
2.5	2.1055	90.213	Frequency Stability	Pass
2.6	-	90.210(g)	Radiated Emissions	Pass
-	-	15.111	Receiver Spurious Emissions	N/A ¹

N/A¹ – Not Applicable, as this is a transceiver.

1.3 CONFIGURATION DESCRIPTION

The CBRSYS6500 supports Single Mode operation from a single port configuration.

The CBRSYS6500 supports LTE in Band 14 (758 MHz - 768 MHz).

TX test cases: Maximum Conducted Output Power, Spurious Emissions at Antenna Terminals (±1MHz) and Conducted Spurious Emissions, measurements were performed on the RF Port. The test limits shown are representative of the worst case. All testing was performed with the EUT transmitting at maximum RF power unless as designated setting by client, otherwise stated.

The EUT was powered via a 120V 60Hz power supply.

LTE B14 (758 MHz - 768 MHz) Channel Configurations

All tests

RAT	No. of	Carrier Bandwidth	Carrier Fre	equency Configuration	(MHz)
KAI	Carriers	(MHz)	Bottom (BRFBW)	Middle (MRFBW)	Top (TRFBW)
L	1	5.00	760.5	763	765.5

DECLARATION OF BUILD STATUS 1.4

	MAIN EUT		
MANUFACTURING DESCRIPTION	CBRSYS6500		
MANUFACTURER	Octasic inc.		
TYPE	Portable Base Station Unit with Transportable Amplification Unit		
PART NUMBER	CBRSYS6000 - CBRSYS6008-RE-3E CBRRFE6400 - CBRRFE6407-NC100-EE1		
SERIAL NUMBER CBRSYS6000 - F-00190 CBRRFE6400 - K-15468			
HARDWARE VERSION	CBRSYS6000 - 3.0 CBRRFE6400 - 3.1		
TRANSMITTER OPERATING RANGE	B14 758 – 768 MHz		
RECEIVER OPERATING RANGE	B14 788 – 798 MHz		
COUNTRY OF ORIGIN	CBRSYS6000 - India CBRRFE6400 - Canada		
EMISSION DESIGNATOR(S): (i.e. G1D, GXW)	LTE: W7D		
MODULATION TYPES: (i.e. GMSK, QPSK)	LTE: QPSK		
HIGHEST INTERNALLY GENERATED FREQUENCY	798 MHz		
OUTPUT POWER (W or dBm)	20W		
FCC ID	2AQSOCBRSYS65000		
TECHNICAL DESCRIPTION (a brief description of the intended use and operation)	The Transportable Amplification Unit (TAU) is a powerful multiband RF front-end (RFE) designed for use as a Transportable Amplification Unit (TAU) in conjunction with a Portable Base station Unit (PBU). The EUT fits in a standard 19" 6U rack.		

1.5 PRODUCT INFORMATION

1.5.1 Technical Description

The Equipment Under Test (EUT) operates from a 120V 60Hz supply.

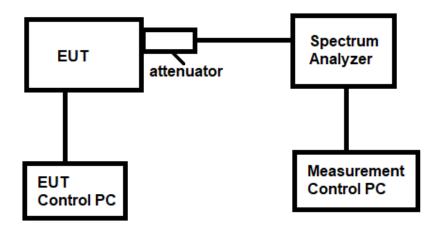
The CBRRFE6400 Transportable Amplification Unit (TAU) is a powerful multiband RF front-end (RFE) designed for use as a Transportable Amplification Unit (TAU) in conjunction with a Portable Base station Unit (PBU) such as the CBRSYS6000. The TAU ships in a ruggedized case and fits in a standard 19" 6U rack.

Depending on band configuration it can support up to 8 bands. It has a high sensitivity multiband receiver and an interference mitigation and suppression mechanism to maintain sensitivity in the presence of interference. The transmitter can transmit up to 100W peak per band. The TAU has automatic RF power control per band for coverage optimization and a standby mode to optimize power consumption.

The CBRSYS6000 Portable Base station Unit (PBU) is multi-channel, software-defined radio (SDR) based base station system for wireless applications like Network in a Box (NIB). It is designed to fit in a standard 19" 3U rack—two PBUs can be fit in a standard 3U rack and ships in a ruggedized 3U rackmount case.

The PBU has a basic RF front end that internally combines the TX signals and splits the RX signals of each SDR. It can be coupled with a high-power RF front end Transportable Amplification Unit (TAU) such as the CBRRFE6400 for a complete system. The PBU is controlled over wired Ethernet and has a USB service port for maintenance access to the serial ports of each SDR. The PBU has built-in fans for thermal management.

The Equipment Under Test (EUT) is shown in the photograph below. A full technical description can be found in the Manufacturer's documentation.



Equipment Under Test

TEST SETUP 1.6

1.7 TEST CONDITIONS

For all tests, the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure, test laboratories or a chamber as appropriate.

The EUT was powered from a 120V 60Hz supply.

FCC Measurement Facility Accreditation Designation Number: CA6845 - TUV SUD Canada (Laval)

1.8 DEVIATION FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.9 MODIFICATION RECORD

No modifications were made to the EUT during testing.

1.10 ALTERNATIVE TEST SITE

Under our Accreditation, TÜV SÜD Canada, Laval conducted the following tests at the TÜV SÜD Canada, Ottawa location.

1.11 ADDITIONAL INFORMATION

The CBRSYS6000 Portable Base station Unit (PBU) is multi-channel, software-defined radio (SDR) based base station system for wireless applications like Network in a Box (NIB). It is designed to fit in a standard 19" 3U rack—two PBUs can be fit in a standard 3U rack and ships in a ruggedized 3U rackmount case.

Depending on band configuration it can support up to 8 bands. It has a high sensitivity multiband receiver and an interference mitigation and suppression mechanism to maintain sensitivity in the presence of interference. The transmitter can transmit up to 100W peak per band.

SECTION 2 TEST DETAILS

1.12 MAXIMUM PEAK OUTPUT POWER AND PEAK TO AVERAGE RATIO - CONDUCTED

1.12.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1046 FCC CFR 47 Part 90, Clause 90.635

1.12.2 Date of Test and Modification State

October 4, 2018 - Modification State 0

1.12.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

1.12.4 Environmental Conditions

Ambient Temperature 21°C Relative Humidity 35%

1.12.5 Test Method

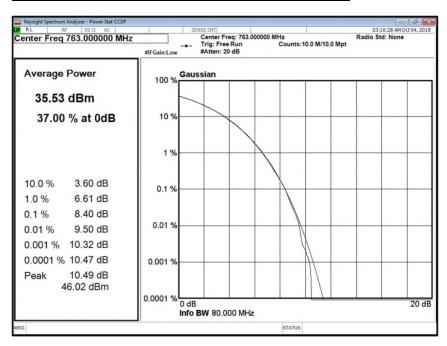
All measurements were made in accordance with FCC KDB 971168 D01, clause 5.2.1 and summed in accordance with FCC KDB 662911 D01.

1.12.6 Test Results

Maximum Target Output Power 43 dBm

					erage Ratio (PAR) /	Output Power	
	Antenna	Marshulastan	Carrier Bandwidth		Channel Position B		
		Modulation		5.45 (15)	Average Power		
				PAR (dB)	dBm	dBm/MHz	
	Α	QPSK	5.00 MHz	8.23	40.98	34.8	

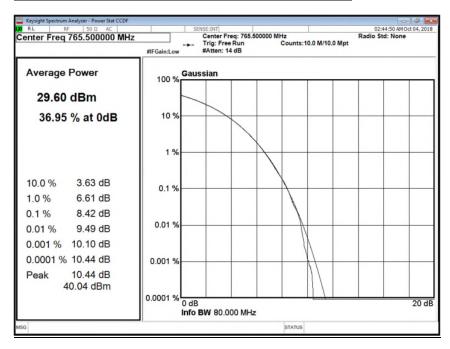
Modulation QPSK - Carrier Bandwidth 5.00 MHz - Antenna A



Maximum Target Output Power 43 dBm

					erage Ratio (PAR) /	Output Power	
	Antenna	Marshulastan	Carrier Bandwidth		Channel Position M		
		Modulation		DAD (ID)	Average Power		
				PAR (dB)	dBm	dBm/MHz	
	А	QPSK	5.00 MHz	8.4	35.58	29.56	

Modulation QPSK - Carrier Bandwidth 5.00 MHz - Antenna A



Maximum Target Output Power 43 dBm

			Peak to Ave	erage Ratio (PAR) /	Output Power	
Antenna	Marakala di am	Carrier Bandwidth		Channel Position T		
	Modulation		DAD (ID)	Average Power		
			PAR (dB)	dBm	dBm/MHz	
Α	QPSK	5.00 MHz	8.42	40.98	23.81	

Modulation QPSK - Carrier Bandwidth 5.00 MHz - Antenna A

Limit	
Peak to Average Ratio	13 dB

1.13 OCCUPIED BANDWIDTH

1.13.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1049 FCC CFR 47 Part 22, Clause 22.917(b)

1.13.2 Date of Test and Modification State

October 4, 2018 - Modification State 0

1.13.3 Test Equipment Used

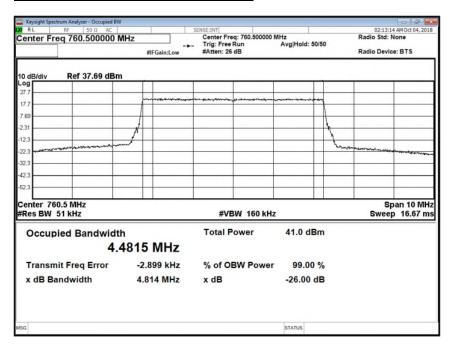
The major items of test equipment used for the above tests are identified in Section 3.1.

1.13.4 Environmental Conditions

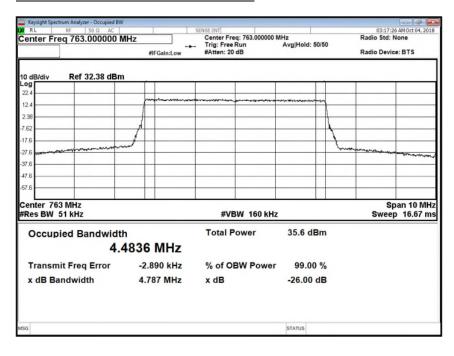
Ambient Temperature 21°C Relative Humidity 35%

1.13.5 Test Method

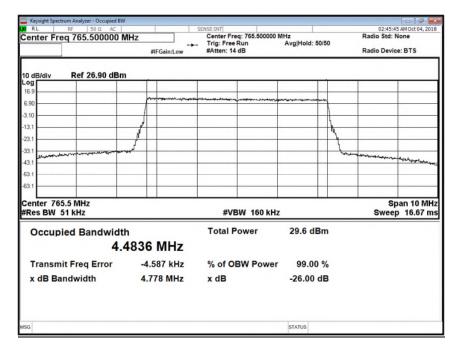
All measurements were made in accordance with FCC KDB 971168 D01.


1.13.6 Test Results

Maximum Target Output Power B:43dBm M:43dBm T:43dBm


					Result	(KHz)		
Antenna	Modulation	Carrier	Channel F	Position B	Channel F	Position M	Channel I	Position T
		Bandwidth	Occupied	-26 dB	Occupied	-26 dB	Occupied	-26 dB
			Bandwidth	Bandwidth	Bandwidth	Bandwidth	Bandwidth	Bandwidth
Α	QPSK	5.00 MHz	4481.5	4813.62	4483.61	4787.17	4483.62	4778.33

Antenna A - Bandwidth QPSK - Channel B



Antenna A - Bandwidth QPSK - Channel M

Antenna A - Bandwidth QPSK - Channel T

1.14 BAND EDGE

1.14.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 90, Clause 90.213

1.14.2 Date of Test and Modification State

October 4, 2018- Modification State 0

1.14.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

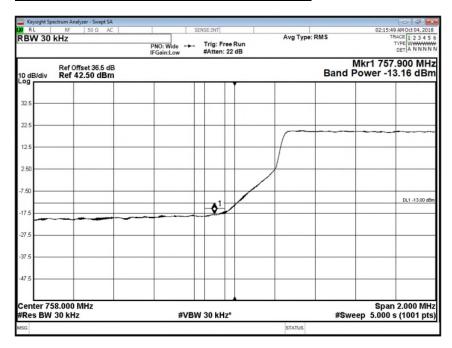
1.14.4 Environmental Conditions

Ambient Temperature 21°C Relative Humidity 35%

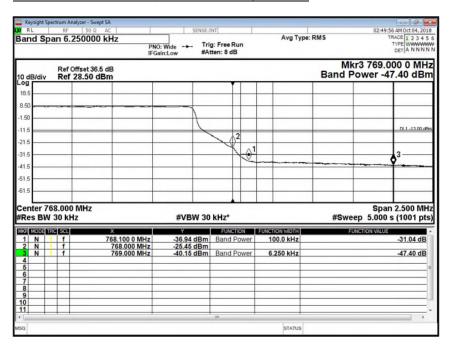
1.14.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01 Clause 6. The EUT was connected to a Spectrum Analyser via an attenuator and switching box. The path loss between the EUT and the Spectrum Analyser was measured using a Network Analyser. The measured path loss was entered as a Reference Level Offset in the Spectrum Analyser. The Spectrum Analyser RBW was adjusted to be at least 1% of the measured 26dB Bandwidth. Using an RMS detector, the frequency spectrum up to 1MHz away from the Band Edge was Investigated.

The EUT has one transmit port, testing was performed on this port with a test limit of $43+10\log(P) = -13$ dBm.


1.14.6 Test Results

Maximum Target Output Power B:43dBm T:43dBm


Antonno	Madulation	Corrier Denducidab	Band Ed	ge (MHz)
Antenna	Modulation	Carrier Bandwidth	Channel Position B	Channel Position T
A	QPSK	5.00 MHz	760.5	765.5



Antenna A - Modulation QPSK - Channel B, 5.00MHz

Antenna A - Modulation QPSK - Channel T, 5.00MHz

1.15 TRANSMITTER SPURIOUS EMISSIONS

1.15.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 90, Clause 90.691

1.15.2 Date of Test and Modification State

October 4, 2018 - Modification State 0

1.15.3 Test Equipment Used

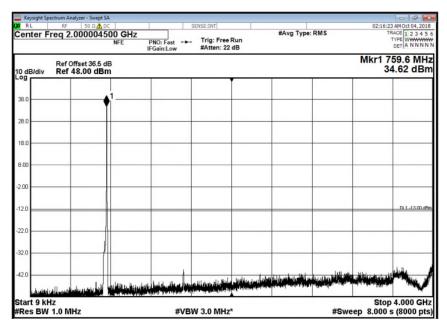
The major items of test equipment used for the above tests are identified in Section 3.1.

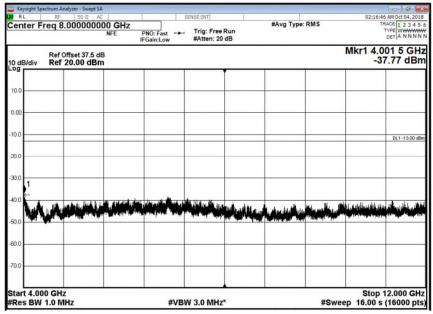
1.15.4 Environmental Conditions

Ambient Temperature 21°C Relative Humidity 35%

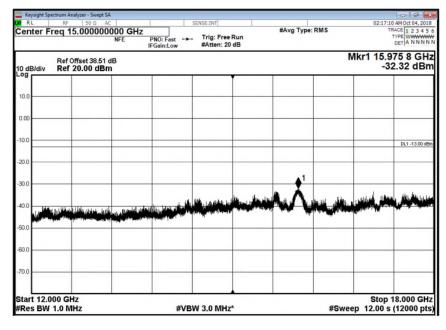
1.15.5 Test Method

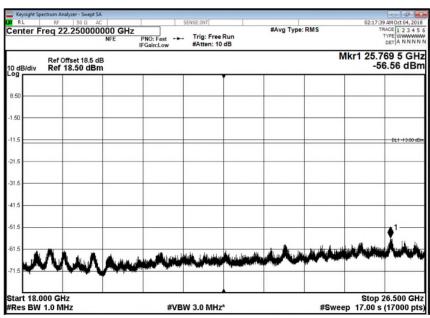
All measurements were made in accordance with FCC KDB 971168 D01 Clause 6. The EUT was connected to a Spectrum Analyser via an attenuator and switching box. Prior to testing, a Network Analyser was used to calibrate the path loss between the EUT and the Spectrum Analyser. The worst-case path loss in the measured ranges was entered as a reference level offset. Over the measured ranges, the RBW was set to 1MHz with a VBW of 3MHz. All measurement results are specified as average with an RMS detector being used in conjunction with a trace setting of Max Hold. Measurements were performed in configurations of the EUT as reported below.

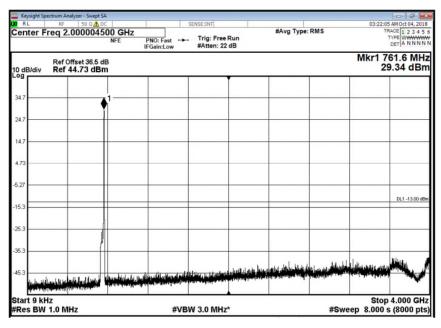

Testing was performed on this port with a test limit of $43+10\log(P) = -13$ dBm.

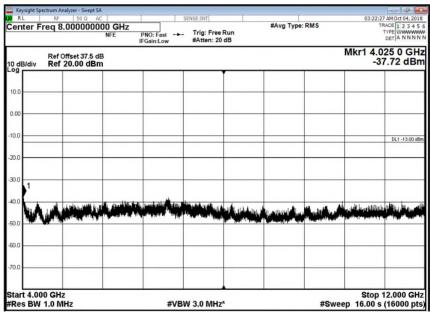

1.15.6 Test Results

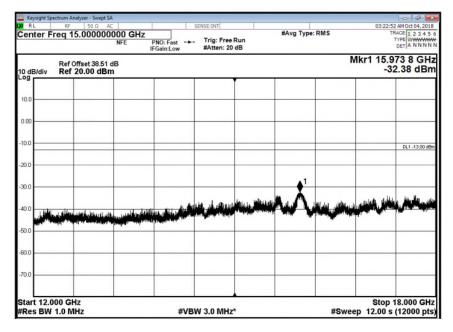
Maximum Target Output Power B:43dBm, M:43dBm, T:43dBm LTE 5.00 MHz Bandwidth setting

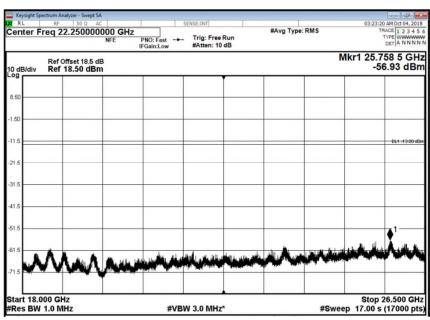

Antenna A - Modulation QPSK - Channel B

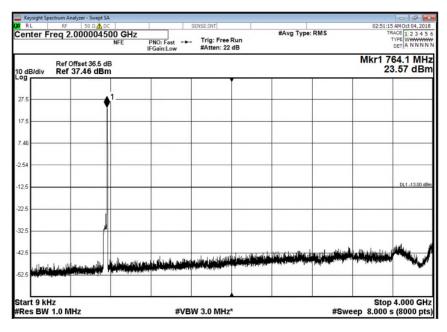


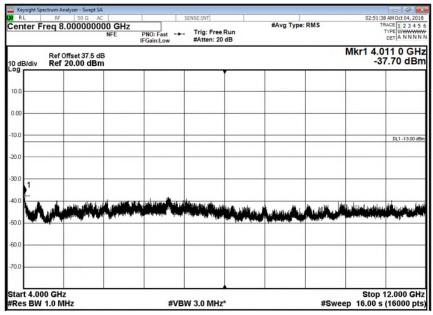


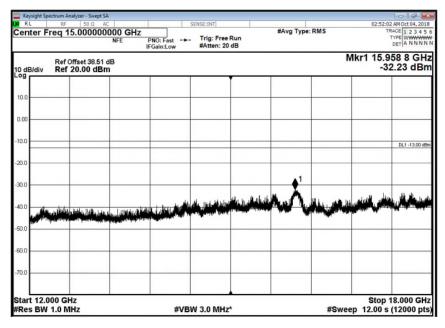


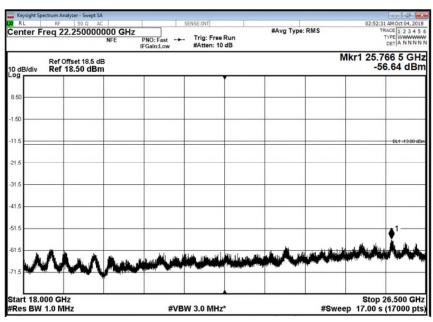

Antenna A - Modulation QPSK - Channel M










Antenna A - Modulation QPSK - Channel T

Limit	-13dBm
 =	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1.16 FREQUENCY STABILITY

1.16.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1055 FCC CFR 47 Part 90, Clause 90.213

1.16.2 Date of Test and Modification State

October 12 and 15th, 2018 - Modification State 0

1.16.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

1.16.4 Environmental Conditions

Ambient Temperature 23°C Relative Humidity 36%

1.16.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01.

1.16.6 Test Results

Maximum Target Output Power 43 dBm

Temperature	Voltage	Frequency Error (Hz)
	Voltage	Channel Position M
-30°C	120V AC	EUT non-operational
-20°C	120V AC	EUT non-operational
-10°C	120V AC	5
0°C	120V AC	0
+10°C	120V AC	0
+20°C	99V AC	0
+20°C	120V AC	0
+20°C	135V AC	0
+30°C	120V AC	5
+40°C	120V AC	5
+50°C	120V AC	10

I I
1
+/- 1 ppm
[+/- ppiii
···

1.17 RADIATED EMISSION

1.17.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 90, Clause 90.210(g)

1.17.2 Date of Test and Modification State

December 5th, 2018 - Modification State 0

1.17.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

1.17.4 Environmental Conditions

Ambient Temperature 23°C Relative Humidity 36%

1.17.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01.

Test Results The test was applied in accordance with test method requirements of ANSI/TIA-603-C-2004.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within the chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarizations.

The Applicant declared that the highest internally generated frequency would be 798MHz and the upper limit for measurement was calculated at 10 times this, which is 7.98GHz, the testing was performed up to 10GHz.

Emissions identified within the range 30MHz – 10GHz were then formally measured using a Peak detector as the worst case.

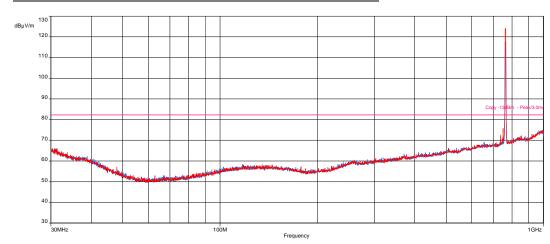
In the frequency Range 30MHz – 1GHz, the measurement was performed with a resolution bandwidth of 100kHz.

In the frequency Range 1GHz – 10GHz, the measurement was performed with a resolution bandwidth of 1MHz.

The measurements were performed at a 3m distance unless otherwise stated.

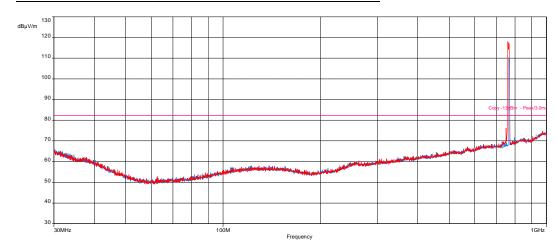
1.17.6 Test Results

Maximum Target Output Power 43 dBm

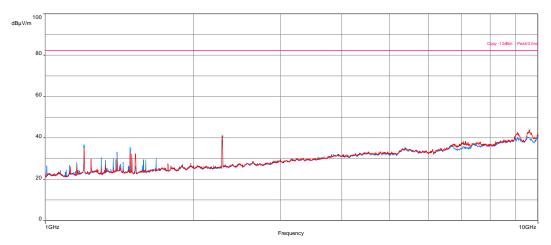


Antenna A - Modulation QPSK - Channel B - 30MHz to 1000MHz

Frequency (MHz)	Level (dBµV/m)	Margin (dB)	Limit (dBµV/m)	Result (Pass/Fail)
30.03233333	65.69	16.54	82.23	Pass
131.6236667	58.33	23.90	82.23	Pass
30.22633333	65.99	16.24	82.23	Pass
964.2716667	74.95	7.28	82.23	Pass
971.87	74.50	7.73	82.23	Pass
863.9413333	71.87	10.36	82.23	Pass


Antenna A - Modulation QPSK - Channel M - 30MHz to 1000MHz

Frequency (MHz)	Level (dBµV/m)	Margin (dB)	Limit (dBµV/m)	Result (Pass/Fail)
31.358	66.04	16.19	82.23	Pass
30.74366667	66.10	16.13	82.23	Pass
134.9863333	58.29	23.94	82.23	Pass
992.5633333	74.95	7.28	82.23	Pass
117.3	58.40	23.83	82.23	Pass
963.8513333	74.70	7.53	82.23	Pass


Antenna A - Modulation QPSK - Channel B - 30MHz to 1000MHz

	Frequency (MHz)	Level (dBµV/m)	Margin (dB)	Limit (dBµV/m)	Result (Pass/Fail)
	30.194	65.77	16.46	82.23	Pass
I	129.1986667	58.02	24.21	82.23	Pass
I	972.937	74.85	7.38	82.23	Pass
	30.22633333	65.81	16.42	82.23	Pass
\mathbb{I}	122.4086667	58.09	24.14	82.23	Pass
I	991.9813333	74.07	8.16	82.23	Pass

Antenna A - Modulation QPSK - Channel M - 1GHz to 10GHz

Note: Mid channel results are used as a representative worst case.

Frequency (MHz)	Level (dBµV/m)	Margin (dB)	Limit (dBµV/m)	Result (Pass/Fail)
1199.8	35.79	-46.44	82.23	Pass
2289.1	40.99	-41.24	82.23	Pass
9612.4	43.85	-38.38	82.23	Pass
1199.8	36.32	-45.91	82.23	Pass
1488.1	35.17	-47.06	82.23	Pass
2287.6	38.41	-43.82	82.23	Pass
9989.8	40.74	-41.49	82.23	Pass

SECTION 3 TEST EQUIPMENT USED

1.18 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	Serial No	Calibration Period (months)	Calibration Due
PXA Signal Analyzer	Keysight	N9030A	MY53310519	12	2019-07-17

N/A – Not Applicable O/P Mon – Output Monitored with Calibrated Equipment

List of equipment used for Radiated Emissions.

Instrument	Manufacturer	Type No.	Asset No	Calibration Period (months)	Calibration Due
EMI Receiver	Rohde & Schwarz	ESU40	SSG013672	12	2018-11-28
EMI Receiver	Rohde & Schwarz	ESU26	SSG013729	12	2019-02-13
Coaxial Cable	Huber & Suhner	106A	SSG012455	12	2019-01-06
Coaxial Cable	Huber & Suhner	106A	SSG013841	12	2019-01-06
Coaxial Cable	Huber & Suhner	104PEA	SSG012041	12	2019-01-06
Bilog Antenna	Chase	CBL6111	SSG012564	12	2019-02-01
Double Ridged Horn Antenna	Emco	3115	SSG012508	12	2018-12-21
Pre-Amplifier	BNR	LNA	SSG012594	12	2019-04-04
Coaxial Cable	Huber & Suhner	ST18/Nm/Nm/36	SSG012786	12	2019-01-06
Coaxial Cable	Huber & Suhner	101 PEA	SSG013785	12	2019-10-03
EMC Automation Software	Nexio V3.18	BAT-EMC	F0163649	N/A	Not required

1.19 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	Frequency / Parameter	MU
Conducted Maximum Peak Output Power	30 MHz to 20 GHz Amplitude	± 0.1 dB
Conducted Emissions	30 MHz to 20 GHz Amplitude	± 2.3 dB
Frequency Stability	30 MHz to 2 GHz	± 5.0 Hz
Occupied Bandwidth	Up to 20 MHz Bandwidth	± 1.1 Hz
Band Edge	30 MHz to 20 GHz Amplitude	± 2.3 dB

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

2.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

© 2019 TÜV SÜD Product Service