

Global United Technology Services Co., Ltd.

Report No.: GTSL2023030488F01

TEST REPORT

Applicant: DALS Lighting, Inc.

Address of Applicant: 80 De La Seigneurie East, Blainville, Quebec, J7C 4N1,

Canada

Manufacturer/Factory: Meko Lighting Company Limited

Address of No.2, Songlin East Road, Zeng Tian Village, Xin An District,

Chang An Town Dongguan Guangdong 523883 China Manufacturer/Factory:

(Peoples Republic Of)

Equipment Under Test (EUT)

Product Name: Axis Digital Stick

Model No.: SM-STTL20-XX, SM-STFL50-XX

(XX stands for color finishes)

Trade Mark: DALS

FCC ID: 2AQSN-SMSTKD

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

ANSI C63.10:2013

Date of sample receipt: March 6, 2023

Date of Test: March 21~29, 2023

Date of report issued: March 29, 2023

PASS * **Test Result:**

Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	2023-3-29	Original

Prepared By:	Project Engineer	Date:	2023-3-29
Check By:	Reviewer	Date:	2023-3-29

Report No.: GTSL2023030488F01

3 Contents

			Page
1	COV	/ER PAGE	1
2	VFR	SION	2
3			
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
J			
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	DESCRIPTION OF SUPPORT UNITS	
	5.3 5.4	DEVIATION FROM STANDARDS	
	5.5	TEST FACILITY	
	5.6	TEST FACILITY	
6		T INSTRUMENTS LIST	
U	ILO	TINSTRUMENTS LIST	О
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED PEAK OUTPUT POWER	16
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	Spurious Emission in Non-restricted & restricted Bands	
	7.6.		
	7.6.2		
8	TES	T SETUP PHOTO	36
9	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (b)(4)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.s

Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	1 x 10 ⁻⁷
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	3dB
6	Conducted Spurious emissions	2.58dB
7	AC Power Line Conducted Emission	3.44dB (0.15MHz ~ 30MHz)
		3.1dB (9kHz-30MHz)
	Radiated Spurious emission test	3.8039dB (30MHz-200MHz)
8		3.9679dB (200MHz-1GHz)
		4.29dB (1GHz-18GHz)
		3.30dB (18GHz-40GHz)
Note (1): The measurement uncertainty is for cover	age factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Axis Digital Stick
Model No.:	SM-STTL20-XX, SM-STFL50-XX (XX stands for color finishes)
Test Model No.:	SM-STTL20-BK, SM-STFL50-BK
Test sample(s) ID:	GTSL2023030488-1(SM-STTL20-BK),
	GTSL2023030488-2(SM-STFL50-BK)
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	V1.0
Software Version:	1.0.18
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Internal antenna
Antenna Gain:	0dBi
Power Supply:	DC 12V (Powered by adapter)
Adapter Information:	Manufacturer: XING YUAN ELECTRONICS CO., LTD
	MODEL NO.: XY24SE-120150VQ-UW
	INPUT: 100-240V~ 50/60Hz 0.5A Max
	OUTPUT: 12.0V 1.5A

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Test Item	Software	Description
Conducted RF Testing and Radiated testing	Beken Wi-Fi Test Tool V1.6.0	Set the EUT to different modulation and channel

Output power setting table:

Test Mode	Set Tx Output Power	Data Rate
BLE	4	1Mbps

Test mode

Report No.: GTSL2023030488F01

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.2 Description of Support Units

None.

5.3 Deviation from Standards

None.

5.4 Abnormalities from Standard Conditions

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC—Registration No.: 381383
 Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 20, 2023	March 19, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023	
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023	

	Gen	eral used equipment:					
Item		Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
	1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
	2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 36

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b)(4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this sec-tion is based on the use of antennas with directional gains that do not ex-ceed 6 dBi. Except as shown in para-graph (c) of this section, if transmit-ting antennas of directional gain great-er than 6 dBi are used, the conducted output power from the intentional ra-diator shall be reduced below the stat-ed values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appro-priate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

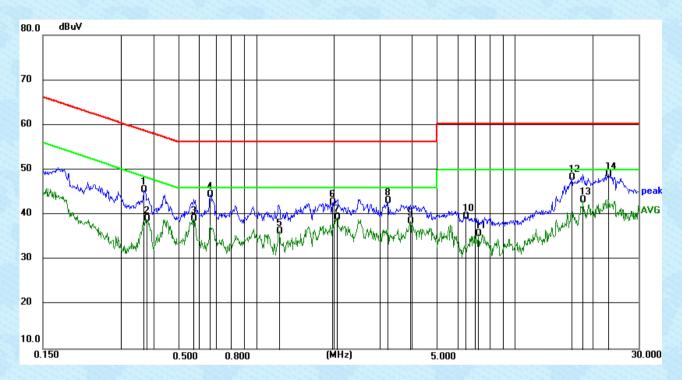
The antenna is Internal antenna, the best case gain of the is 0dBi, reference to the appendix II for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

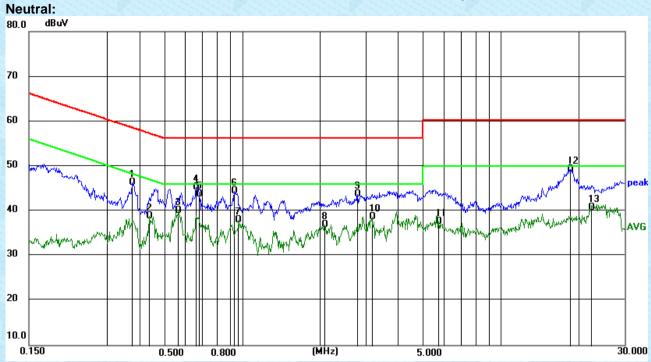
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz,	, Sweep time=auto				
Limit:	Fraguerov ranga (MIII-		Limit (d	lBuV)		
	Frequency range (MHz	Quasi-pe		Aver		
	0.15-0.5	66 to 56	6*	56 to		
	0.5-5	56		46		
	5-30 * Decreases with the logar	ithm of the freque	ncv	50		
Test setup:		nce Plane	ncy.			
Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.1m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for de	tails				
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					
	CONTRACTOR OF THE CONTRACTOR O	The state of the s				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



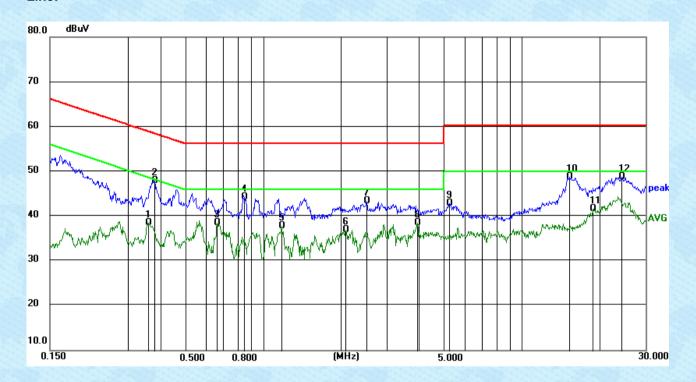
Measurement data

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz

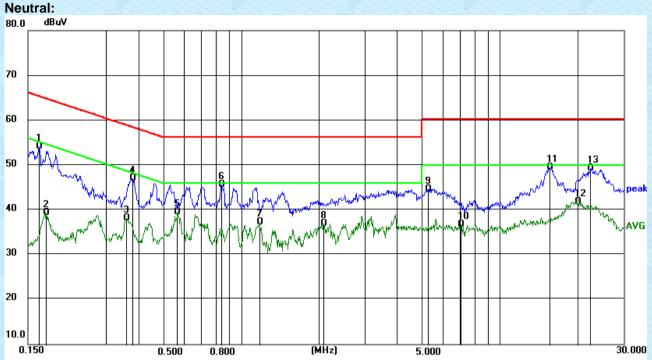

SM-STTL20-BK

Line:

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.3689	35.42	10.01	45.43	58.53	13.1	QP
0.379	28.97	10.01	38.98	48.3	9.32	AVG
0.5731	29.04	10.02	39.06	46	6.94	AVG
0.6643	34.31	10.02	44.33	56	11.67	QP
1.2291	26.23	10.04	36.27	46	9.73	AVG
1.9696	32.51	10.06	42.57	56	13.43	QP
2.0548	29.34	10.06	39.4	46	6.6	AVG
3.2238	32.83	10.1	42.93	56	13.07	QP
3.9428	28.3	10.12	38.42	46	7.58	AVG
6.4537	29.37	10.19	39.56	60	20.44	QP
7.2134	25.5	10.22	35.72	50	14.28	AVG
16.5731	37.81	10.41	48.22	60	11.78	QP
18.3277	32.68	10.45	43.13	50	6.87	AVG
23.0181	37.45	11.53	48.98	60	11.02	QP


Report No.: GTSL2023030488F01

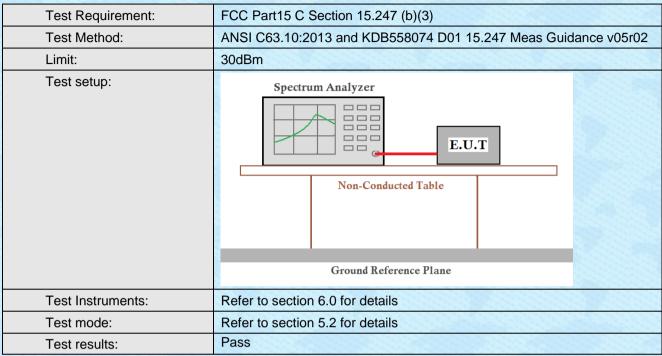
Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.375	36.24	10.01	46.25	58.39	12.14	QP
0.4374	28.74	10.01	38.75	47.11	8.36	AVG
0.5664	29.95	10.02	39.97	46	6.03	AVG
0.6643	35.31	10.02	45.33	56	10.67	QP
0.6824	33.76	10.02	43.78	56	12.22	QP
0.9331	34.41	10.03	44.44	56	11.56	QP
0.9683	27.87	10.03	37.9	46	8.1	AVG
2.0878	26.86	10.06	36.92	46	9.08	AVG
2.7942	33.55	10.08	43.63	56	12.37	QP
3.173	28.54	10.09	38.63	46	7.37	AVG
5.7437	27.4	10.17	37.57	50	12.43	AVG
18.5228	38.75	10.45	49.2	60	10.8	QP
22.2972	30.28	10.52	40.8	50	9.2	AVG



SM-STFL50-BK Line:

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.3613	28.54	10.01	38.55	48.7	10.15	AVG
0.381	37.92	10.01	47.93	58.26	10.33	QP
0.6643	28.52	10.02	38.54	46	7.46	AVG
0.8437	34.17	10.03	44.2	56	11.8	QP
1.1774	27.69	10.04	37.73	46	8.27	AVG
2.0878	26.86	10.06	36.92	46	9.08	AVG
2.5131	33.21	10.08	43.29	56	12.71	QP
3.9428	28.3	10.12	38.42	46	7.58	AVG
5.2488	32.66	10.16	42.82	60	17.18	QP
15.2261	38.39	10.39	48.78	60	11.22	QP
18.8201	31.17	10.45	41.62	50	8.38	AVG
24.27	38.19	10.55	48.74	60	11.26	QP

Report No.: GTSL2023030488F01

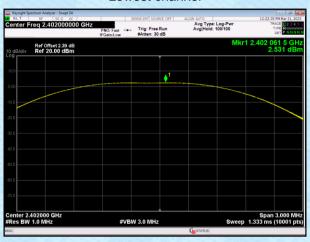

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.1658	44.2	10	54.2	65.17	10.97	QP
0.1766	29.37	10.01	39.38	54.64	15.26	AVG
0.3613	28.04	10.01	38.05	48.7	10.65	AVG
0.381	36.92	10.01	46.93	58.26	11.33	QP
0.5664	29.45	10.02	39.47	46	6.53	AVG
0.8393	35.61	10.02	45.63	56	10.37	QP
1.1774	27.19	10.04	37.23	46	8.77	AVG
2.0878	26.86	10.06	36.92	46	9.08	AVG
5.2769	34.44	10.16	44.6	60	15.4	QP
7.0621	26.53	10.21	36.74	50	13.26	AVG
15.5518	39.12	10.4	49.52	60	10.48	QP
19.95	31.34	10.47	41.81	50	8.19	AVG
22.4161	38.76	10.52	49.28	60	10.72	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
 If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

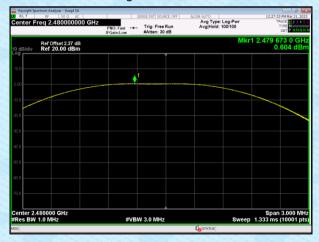
7.3 Conducted Peak Output Power

Measurement Data


Test channel	Peak Output Power (dBm)	EIRP (dBm)	Output Power Limit(dBm)	EIRP Limit(dBm)	Result
Lowest	2.531	2.531	30.00	36.00	Pass
Middle	2.833	2.833	30.00	36.00	Pass
Highest	0.604	0.604	30.00	36.00	Pass


Test plot as follows:

Report No.: GTSL2023030488F01


Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

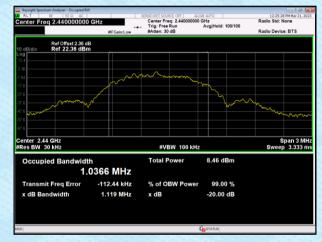
Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.677		
Middle	0.673	>500	Pass
Highest	0.700		

Test channel	99% Bandwidth (MHz)	Result
Lowest	1.033	
Middle	1.037	Pass
Highest	1.033	

Test plot as follows:

Report No.: GTSL2023030488F01

Channel Bandwidth



99% Bandwidth

Lowest channel

Middle channel

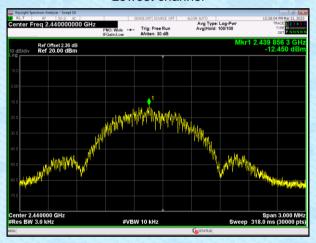
Highest channel

7.5 Power Spectral Density

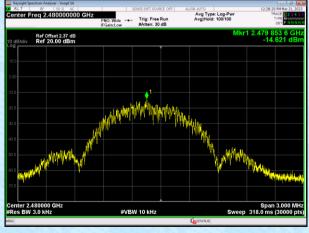
Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	8dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-12.696		
Middle	-12.45	8.00	Pass
Highest	-14.621		



Test plot as follows:

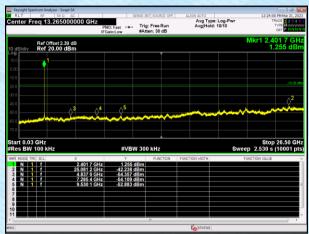

Report No.: GTSL2023030488F01

Lowest channel

Middle channel

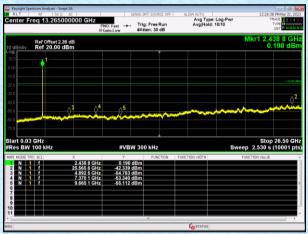
Highest channel

7.6 Spurious Emission in Non-restricted & restricted Bands

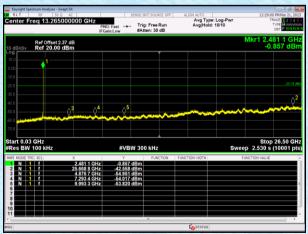

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Test plot as follows:

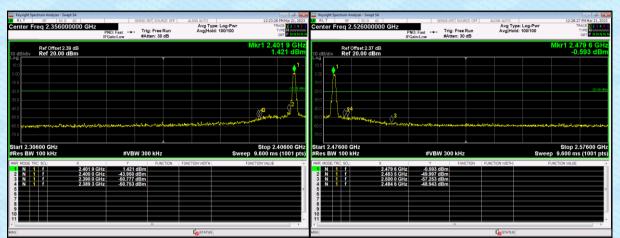

Lowest channel

Report No.: GTSL2023030488F01


30MHz~26.5GHz

Middle channel

30MHz~26.5GHz


Highest channel

30MHz~26.5GHz

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

FCC Part15 C Section 15.209 and 15.205								
ANSI C63.10:2013 8	RSS-Gen							
9kHz to 26.5GHz								
Measurement Distar	ice: 3m							
Frequency	Detector	RBW	VBW	Value				
9KHz-150KHz	Quasi-peak	200Hz	600Hz	z Quasi-peak				
150KHz-30MHz	Quasi-peak	9KHz	30KH:	z Quasi-peak				
30MHz-1GHz	Quasi-peak	120KHz	300KH	Iz Quasi-peak				
Above 1CHz	Peak	1MHz	3MHz	Peak				
Above IGHZ	Peak	1MHz	10Hz	Average				
Frequency	Limit (u\	//m) \	/alue	Measurement Distance				
0.009MHz-0.490M	0.009MHz-0.490MHz 2400/F(KHz) (
0.490MHz-1.705M	Hz 24000/F(KHz)	QP	30m				
1.705MHz-30MH	z 30		QP	30m				
30MHz-88MHz	100		QP					
88MHz-216MHz	150		QP					
216MHz-960MH	z 200		QP	3m				
960MHz-1GHz	500		QP	OIII				
Above 1GHz	500		4					
	5000		Peak					
For radiated emiss	ions from 9kH	z to 30MH	Z	_				
Turn Table EUT-	T	ì						
	ANSI C63.10:2013 8 9kHz to 26.5GHz Measurement Distant Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emiss	ANSI C63.10:2013 & RSS-Gen 9kHz to 26.5GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Peak Peak Peak Frequency Limit (u\ 0.009MHz-0.490MHz 2400/F(R) 0.490MHz-1.705MHz 24000/F(R) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 For radiated emissions from 9kH.	ANSI C63.10:2013 & RSS-Gen 9kHz to 26.5GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Limit (uV/m) N 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 5000 For radiated emissions from 9kHz to 30MH	ANSI C63.10:2013 & RSS-Gen 9kHz to 26.5GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 500 Average For radiated emissions from 9kHz to 30MHz				

Report No.: GTSL2023030488F01 For radiated emissions from 30MHz to1GHz < 3m > Test Antenna Turn Table < 10cm Receiver-Preamplifier-For radiated emissions above 1GHz < 1m 4m EUT. Turn Table-<10cm Receiver Preamplifier-Test Procedure: The EUT was placed on the top of a rotating table (0.1m) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details

	Report No.: GTSL2023030488F01							
Test mode:	Refer to se	ction 5.2 for	details					
Test environment:	Temp.:	26 °C	Humid.:	54%	Press.:	1012mbar		
Test voltage:	AC 120V/6	AC 120V/60Hz						
Test results:	Pass	Pass						

Measurement data:

Remark:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Both high and low voltages have been tested to show only the worst low voltage test data.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

SM-STTL20-BK

Report No.: GTSL2023030488F01

1000.0

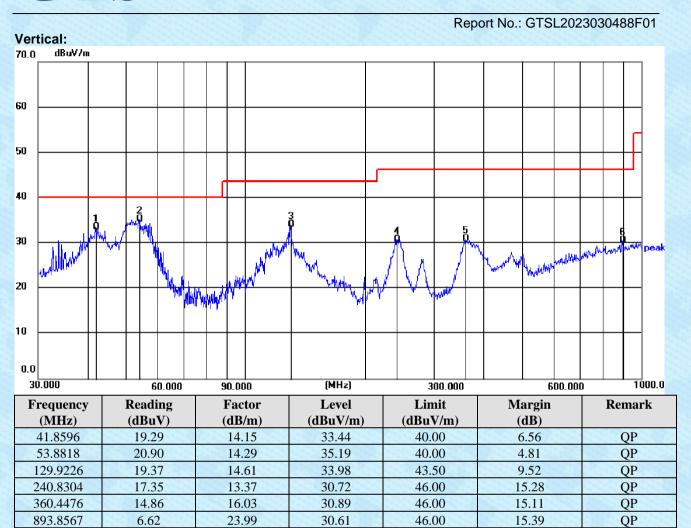
600.000

Below 1GHz

30.000

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz

Horizontal: 70.0 dBuV/m 60 40 20 10


	Frequency	Reading	Factor	Level	Limit	Margin	Remark
3	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	52.3912	11.23	14.39	25.62	40.00	14.38	QP
	116.5401	9.70	13.67	23.37	43.50	20.13	QP
	243.3772	25.81	13.41	39.22	46.00	6.78	QP
Ž,	365.5391	16.80	16.14	32.94	46.00	13.06	QP
3	965.5421	5.52	24.64	30.16	54.00	23.84	QP

(MHz)

300.000

60.000

90.000

Remark:

- 1. An initial pre-scan was performed on the Horizontal and Vertical with peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Level =Reading + Factor
- 4. Factor= Antenna Gain + Cable Loss Amplifier Gain

Unwanted Emissions in non-restricted Frequency Bands

Above 1GHz

	Test mode:		BLE		Tes	Test channel:			Lowest		
Peak value:											
	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit I (dBu\		Over Limit (dB)	polarization	
	4804	35.74	31.62	8.58	32.11	43.83	74		-30.17	Vertical	
	4804	37.76	31.62	8.58	32.11	45.85	74		-28.15	Horizontal	

Test mode: BLE	Test channel:	Middle
----------------	---------------	--------

Peak value:

Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit		
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)		
4880	36.06	31.92	8.71	32.11	44.58	74	-29.42	Vertical	
4880	36.81	31.92	8.71	32.11	45.33	74	-28.67	Horizontal	

Test mode:		BLE		Tes	Test channel:			Highest		
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBu\	The state of the s	Over Limit (dB)	polarization	
4960	35.83	31.96	8.75	32.3	44.24	74	1	-29.76	Vertical	
4960	37.72	31.96	8.75	32.3	46.13	74	1	-27.87	Horizontal	

2483.5

2500

57.96

53.77

27.66

27.7

6.45

6.47

Report No.: GTSL2023030488F01

Test mode:		BLE		-	Test	channel:		Lowe	est	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Loss Factor		Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
2310	48.51	27.14	6.19 42.04)4	39.8	7.	4	-34.2	Horizontal
2390	53.05	27.37	6.31 42.1		1	44.62	74		-29.38	Horizontal
2310	48.26	27.14	6.19	9 42.04		39.55	7	4	-34.45	Vertical
2390	57.12	27.37	6.31	42.1	11	48.69	74		-25.31	Vertical
					200					
Test mode:		BLE		-	Test	channel:		High	est	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit (dBu)		Over Limit (dB)	polarization
2483.5	59.81	27.66	6.45	42.0)1	51.91	7.	4	-22.09	Horizontal
2500	51.49	27.7	6.47	42		43.66	7.	4	-30.34	Horizontal

42.01

42

50.06

45.94

74

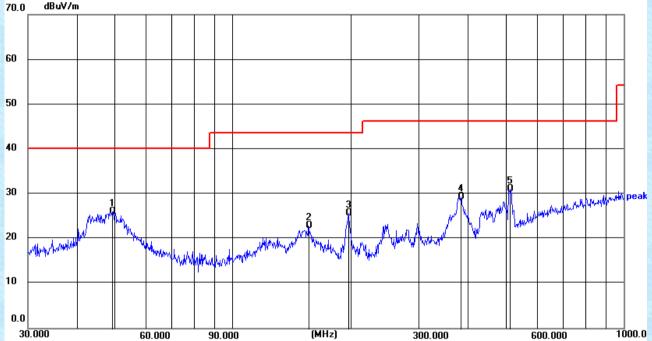
74

-23.94

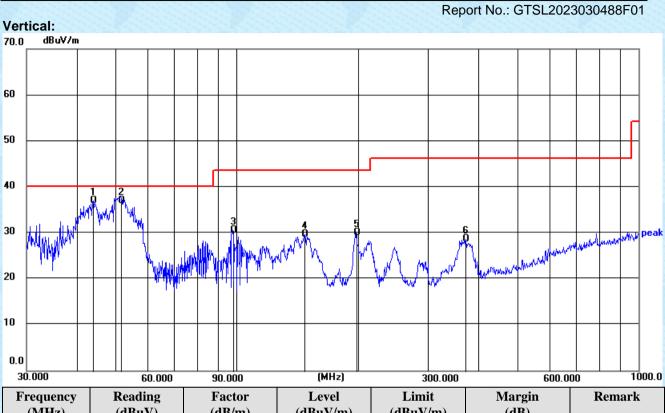
-28.06

Vertical

Vertical


SM-STFL50-BK

Report No.: GTSL2023030488F01


Below 1GHz

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz

Horizontal: dBuV/m 70.0

Frequency	Reading	Factor	Level	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
49.3594	11.41	14.54	25.95	40.00	14.05	QP
156.4578	6.90	15.99	22.89	43.50	20.61	QP
197.8928	13.86	11.90	25.76	43.50	17.74	QP
383.9318	12.78	16.49	29.27	46.00	16.73	QP
511.8352	12.16	18.84	31.00	46.00	15.00	QP

Frequency	Reading	Factor	Level	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
43.9658	22.55	14.42	36.97	40.00	3.03	QP
51.4807	22.51	14.44	36.95	40.00	3.05	QP
97.7983	18.84	11.75	30.59	43.50	12.91	QP
147.9214	14.12	15.55	29.67	43.50	13.83	QP
198.5880	18.21	11.86	30.07	43.50	13.43	QP
372.0045	12.31	16.27	28.58	46.00	17.42	OP

Remark

- 1. An initial pre-scan was performed on the Horizontal and Vertical with peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Level =Reading + Factor
- 5. Factor= Antenna Gain + Cable Loss Amplifier Gain

Unwanted Emissions in non-restricted Frequency Bands

Above 1GHz

Test mode:			BLE		Test	channel:	Lo	Lowest		
Peak value:										
	Frequency	Read	Antenna	Cable	Preamp	Level	Limit Lin	e Over	polarization	
	(MHz)	Level	Factor	ctor Loss Fa		(dBuV/m)	(dBuV/m	n) Limit		
		(dBuV)	(dB/m)	(dB)	(dB)			(dB)		
	4804	35.14	31.62	8.58	32.11	43.23	74	-30.77	Vertical	
	4804	37.37	31.62	8.58	32.11	45.46	74	-28.54	Horizontal	

Test mode: BLE	Test channel:	Middle
----------------	---------------	--------

Peak value:

Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4880	36.96	31.92	8.71	32.11	45.48	74	-28.52	Vertical
4880	37.51	31.92	8.71	32.11	46.03	74	-27.97	Horizontal

	Test mode:		BLE			Test channel:			Highest		
'n	Peak value:										
	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dE	tor	Level (dBuV/m)	Limit (dBu)		Over Limit (dB)	polarization
	4960	35.54	31.96	8.75	32.	.3	43.95	74	1	-30.05	Vertical
	4960	37.46	31.96	8.75	32.	.3	45.87	74	1	-28.13	Horizontal

Report No.: GTSL2023030488F01

-30.68

-24.46

-28.98

Horizontal

Vertical

Vertical

Test mode:		BLE			Test channel:			Lowest		
Peak value:										
Frequency	Read	Antenna	Cable	Pre	amp	Level	Limit Line		Over	polarization
(MHz)	Level	Factor	Loss	Fa	ctor	(dBuV/m) (dBu\		V/m)	Limit	
	(dBuV)	(dB/m)	(dB)	(d	IB)				(dB)	
2310	48.01	27.14	6.19	42	.04	39.3	74		-34.7	Horizontal
2390	52.3	27.37	6.31	42.11		43.87	74		-30.13	Horizontal
2310	47.93	27.14	6.19	42	.04	39.22	74		-34.78	Vertical
2390	56.29	27.37	6.31	42.11		47.86	74		-26.14	Vertical
Test mode: BLE						Test channel: Highest				
Peak value:										
Frequency	Read	Antenna	Cable	Preamp		Level	Limit Line		Over	polarization
(MHz)	Level	Factor	Loss	Fac	ctor (dBuV/m)		(dBuV/m)		Limit	
	(dBuV)	(dB/m)	(dB)	(d	B)				(dB)	
2483.5	59.37	27.66	6.45	42	.01	51.47	74		-22.53	Horizontal

42

42.01

42

43.32

49.54

45.02

74

74

74

Remark.

2500

2483.5

2500

51.15

57.44

52.85

1. Level =Reading Level+ Antenna factor + Cable Loss - Amplifier factor

27.7

27.66

27.7

other emissions are attenuated 20dB below the limits, so it does not reported.

6.47

6.45

6.47

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----