Report No.: CTA24062101515 Page 97 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.468 ± 0.15% (k=2) | 404.804 ± 0.15% (k=2) | 404.579 ± 0.15% (k=2) | | Low Range | 3.95934 ± 0.7% (k=2) | 3.95437 ± 0.7% (k=2) | 3.91875 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 258.5° ± 1 ° | |---|--------------| Certificate No: J23Z60391 Page 3 of 3 Page 98 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ATC Client Certificate No: Z23-60083 ### **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1194 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: February 17, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|---| | 106276 | | May-23 | | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | SN 7464 | 19-Jan-23 (CTTL-SPEAG, No. Z22-60565) | Jan-24 | | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49070393 | 17-May-23 (CTTL, No.J22X03157) | May-24 | | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | 106276
101369
SN 7464
SN 1556
ID#
MY49070393 | 106276 10-May-22 (CTTL, No.J22X03103)
101369 10-May-22 (CTTL, No.J22X03103)
SN 7464 19-Jan-23 (CTTL-SPEAG,No.Z22-60565)
SN 1556 11-Jan-23(CTTL-SPEAG,No.Z23-60034)
ID# Cal Date (Calibrated by, Certificate No.)
MY49070393 17-May-23 (CTTL, No.J22X03157) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 3 | | Reviewed by: | Lin Hao | SAR Test Engineer | 种物 | | Approved by: | Qi Dianyuan | SAR Project Leader | - Jaka | Issued: February 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z23-60083 Page 1 of 6 Report No.: CTA24062101515 Page 99 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,v,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z23-60083 Page 2 of 6 Page 100 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | 200349 | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.57 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.61 W/kg ± 18.7 % (k=2) | Certificate No: Z23-60083 Page 3 of 6 Page 101 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8Ω- 3.54jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.9dB | | ### General Antenna Parameters and Design | F | | |----------------------------------|----------| | Electrical Delay (one direction) | 0.979 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | SPEAG | Certificate No: Z23-60083 Page 4 of 6 Report No.: CTA24062101515 Page 102 of 141 Date: 2023-02-17 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1194 Communication System: UID 0, CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.885$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2023-01-19 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.59 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.42 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below = 20 mm Ratio of SAR at M2 to SAR at M1 = 62.9% Maximum value of SAR (measured) = 2.93 W/kg Certificate No: Z23-60083 Page 5 of 6 ESTING Page 103 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Impedance Measurement Plot for Head TSL Certificate No: Z23-60083 Page 6 of 6 Page 104 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn CTA Client J23Z60387 Certificate No: ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 484 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 25, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 老老 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林岩 | | Approved by: | Qi Dianyuan | SAR Project Leader | 203 | Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: J23Z60387 Page 1 of 6 Report No.: CTA24062101515 Page 105 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60387 Page 2 of 6 Report No.: CTA24062101515 Page 106 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | | | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | TV TE WINC | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.68 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.24 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60387 Page 3 of 6 Report No.: CTA24062101515 Page 107 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8Ω- 2.74jΩ | |--------------------------------------|---------------| | Return Loss | - 31.2dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.299 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: J23Z60387 Page 4 of 6 Report No.: CTA24062101515 Page 108 of 141 Date: 2023-08-25 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 484 Communication System: UID 0, CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.904 S/m; ϵ_r = 42.11; ρ = 1000 kg/m 3 Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(10.1, 10.1, 10.1) @ 835 MHz; Calibrated: 2023-03-31 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.92 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg Smallest distance from peaks to all points 3 dB below = 16.3 mm Ratio of SAR at M2 to SAR at M1 = 62.1% Maximum value of SAR (measured) = 3.36 W/kg Certificate No: J23Z60387 Page 5 of 6 ESTING Report No.: CTA24062101515 Page 109 of 141 CTAT CTA TESTING STI CTATES Report No.: CTA24062101515 Page 110 of 141 Client Morlab Certificate No: Z21-60475 ### **CALIBRATION CERTIFICATE** Object D1800V2 - SN: 2d158 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date December 17, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | ReferenceProbe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60475 Page 1 of 6 Report No.: CTA24062101515 Page 111 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn lossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60475 Page 2 of 6 ESTING Report No.: CTA24062101515 Page 112 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | 1 | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.1 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60475 4 2 584 Page 3 of 6 Ale: ESTING Report No.: CTA24062101515 Page 113 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7Ω- 3.22jΩ | |--------------------------------------|---------------| | Return Loss | - 29.8dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | Electrical Delay (one direction) | 1.121 ns | |----------------------------------|----------------------------------|----------| |----------------------------------|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | (1) (1) (1) (1) | SPEAG | | |--------------------------|--------------------------------|---------------------------------------|--| | | | | | | Ha | land the | 44.7 | | | 161 | tion Sign to know the | The state of | | | 368 | 11月1日 35年 11月 | and in the second | | | See : | is local, some distribution | 1 1 2 | | | 1月(1) | The first tendence is a | 1 1 1 2 1 | | | 257 1 | and a vice age 14 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 50 | | | | | EE 1 17. | to the 1st locally but | 4 (4.00) | | | SQE I RI | reside the place w | A R. (mats 1) | | | 301 | 1 3010 | | | | KD I EI | The state of the state of the | 141 | | | icha) | | | | | DA I | | | | | Triple 1 | | | | | ertificate No: Z21-60475 | Page 4 of 6 | | | | the way | The true of the second of the | to the state of | | | 9 17 | The second rate to the cell to | AT ETICL I | | | | 191 181 111 1991 1 | A POLICE | | | El I | The right of the first of the | DI DI SES | | STING Report No.: CTA24062101515 Page 114 of 141 DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d158 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.378 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: Probe: EX3DV4 - SN7307; ConvF(8.34, 8.34, 8.34) @ 1800 MHz; Calibrated: 2021-05-26 Date: 2021-11-17 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.67 W/kg; SAR(10 g) = 4.98 W/kg Smallest distance from peaks to all points 3 dB below = 10.2 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: Z21-60475 Page 5 of 6 Report No.: CTA24062101515 Page 115 of 141 ### Impedance Measurement Plot for Head TSL CTA TESTING STING Page 116 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client Certificate No: J23Z60388 ### CTA **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d002 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 25, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | I. | | | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: J23Z60388 Page 1 of 6 Report No.: CTA24062101515 Page 117 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60388 Page 2 of 6 CTATES Report No.: CTA24062101515 Page 118 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | _ | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60388 Page 3 of 6 Report No.: CTA24062101515 Page 119 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6Ω+ 1.54jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 35.7dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.084 ns | |----------------------------------|----------| | * * * | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: J23Z60388 Page 4 of 6 Report No.: CTA24062101515 Page 120 of 141 Date: 2023-08-25 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d002 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.378 S/m; ϵ_r = 38.95; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.11 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 53.4% Maximum value of SAR (measured) = 15.8 W/kg Certificate No: J23Z60388 Page 5 of 6 ESTING MG Report No.: CTA24062101515 Page 121 of 141 ESTING CTA TESTING GTA TESTING CTATESTING ESTING CTATES Page 122 of 141 Report No.: CTA24062101515 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Certificate No: J23Z60389 ### CTA **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 745 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | I | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60389 Page 1 of 6 Report No.: CTA24062101515 Page 123 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60389 Page 2 of 6 Report No.: CTA24062101515 Page 124 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com # Measurement Conditions DASY system configuration. as | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | _ | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60389 Page 3 of 6 Report No.: CTA24062101515 Page 125 of 141 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.2Ω+ 5.40jΩ | |--------------------------------------|---------------| | Return Loss | - 23.7dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.077 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manadada by | | Certificate No: J23Z60389 Page 4 of 6 Report No.: CTA24062101515 Page 126 of 141 Date: 2023-08-28 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 745 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.835$ S/m; $\varepsilon_r = 39.03$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 48.5% Maximum value of SAR (measured) = 22.4 W/kg Certificate No: J23Z60389 Page 5 of 6