

TEST REPORT					
FCC ID::	2AQRM-S67				
Test Report No::	TCT240910E041				
Date of issue::	Oct. 09, 2024				
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB	~p.		
Testing location/ address:	2101 & 2201, Zhenchang Facto Subdistrict, Bao'an District, She People's Republic of China				
Applicant's name::	FOXX Development Inc.				
Address::	3480 Preston Ridge Road, Suite	e500, Alpharetta, G	A 30005, USA		
Manufacturer's name:	FOXX Development Inc.		Z.		
Address::	3480 Preston Ridge Road, Suite	e500, Alpharetta, G	A 30005, USA		
Standard(s):	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 FCC CFR Title 47 Part24 FCC CFR Title 47 Part27				
Product Name::	Smart Phone				
Trade Mark:	MIRO, FOXXD, AIRVOICE, FOXXD HTH				
Model/Type reference:	S67				
Rating(s):	Power supply: DC 5V from adaptor or DC 3.87V from battery Adapter Information: Model: HJ-0502000W2-US Input: 100-240V 50/60Hz 0.3A Output: 5.0V 2.0A 10W				
Date of receipt of test item:	Aug. 26, 2024	(S			
Date (s) of performance of test:	Aug. 27, 2024 ~ Sep. 30, 2024				
Tested by (+signature):	Rleo LIU	Reo Che 201	GCETA		
Check by (+signature):	Beryl ZHAO Boy(16 TCT)				
Approved by (+signature):	Tomsin	Tomsm 45	84		

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	4
2. Test Result Summary	5
3. General Information	6
3.1. Test environment and mode	6
3.2. Description of Support Units	
3.3. Configuration of Tested System	7
3.4. Measurement Results Explanation Example	7
4. Facilities and Accreditations	8
4.1. Facilities	8
4.2. Location	8
4.3. Measurement Uncertainty	8
5. Test Results and Measurement Data	9
5.1. Effective Radiated Power and Effective Isotropic Radiated Po Measurement	
5.2. Peak to Average Ratio	11
5.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement	12
5.4. Band Edge and Conducted Spurious Emission Measurement	13
5.5. Field Strength of Spurious Radiation Measurement	15
5.6. Frequency Stability Measurement	28
Appendix A: Test Result of Conducted Test	30
Appendix B: Photographs of Test Setup	30
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Smart Phone		
Model/Type reference:	S67		
Sample Number:	TCT240910E034-0102		
Tx Frequency:	5G NR n 2: 1850 MHz ~ 1910 MHz 5G NR n 5: 824 MHz ~ 849 MHz 5G NR n 25: 1850 MHz ~ 1915 MHz 5G NR n 41: 2496 MHz ~ 2690 MHz 5G NR n 66: 1710 MHz ~ 1780 MHz 5G NR n 71: 663 MHz ~ 698 MHz 5G NR n 77: 3700 MHz ~ 3980 MHz 5G NR n 78a: 3700 MHz ~ 3800 MH 5G NR n 78e: 3450 MHz ~ 3550 MH	z	
Rx Frequency:	5G NR n 2: 1930 MHz ~ 1990 MHz 5G NR n 5: 869 MHz ~ 894 MHz 5G NR n 25: 1930 MHz ~ 1995 MHz 5G NR n 41: 2496 MHz ~ 2690 MHz 5G NR n 66: 2110 MHz ~ 2180 MHz 5G NR n 71: 617 MHz ~ 652 MHz 5G NR n 77a: 3700 MHz ~ 3980 MH 5G NR n 78a: 3700 MHz ~ 3800 MH 5G NR n 78e: 3450 MHz ~ 3550 MH	z z	
Maximum Output Power to Antenna:	5G NR n 2: 25.08dBm 5G NR n 5: 19.89dBm 5G NR n 25: 25.65dBm 5G NR n 41: 22.84dBm 5G NR n 66: 25.25dBm 5G NR n 71: 18.73dBm 5G NR n 77a: 21.47dBm 5G NR n 78a: 25.79dBm 5G NR n 78e: 26.09dBm		
Type of Modulation:	QPSK, PI/2 BPSK, 64QAM, 256QAN	Л, 16QAM	
SCS Suport::	15kHz, 30kHz		
Antenna Type:	Internal Antenna		
Antenna Gain:	5G NR n 2: 0.91dBi 5G NR n 5: -1.15dBi 5G NR n 25: 0.82dBi 5G NR n 41: 1.75dBi 5G NR n 66: 0.64dBi 5G NR n 71: -2.12dBi 5G NR n 77a: 0.35dBi		

	5G NR n 78a: 0.35dBi 5G NR n 78e: 0.35dBi
Rating(s)::	Power supply: DC 5V from adaptor or DC 3.87V from battery Adapter Information: Model: HJ-0502000W2-US Input: 100-240V 50/60Hz 0.3A Output: 5.0V 2.0A 10W

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

Hotline: 400-6611-140

None.

Fax: 86-755-27673332

Tel: 86-755-27673339

http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result	
Conducted Output Power	827 50(d): 827 50(h): 827 50(i):		
Peak-to-Average Ratio	827 50(d): 827 50(h): 827 50(i):		
Effective Radiated Power	§2.1046; §22.913	PASS	
\$2.1046; \$22.913; Equivalent Isotropic Radiated Power \$24.232(c); \$27.50(d); \$27.50(h); \$27.50(j); \$27.50(k)		PASS	
Occupied Bandwidth	§2.1049; §24.238(b); §27.53	PASS	
Band Edge	§2.1051; §22.917(a); §24.238(a) Band Edge §27.53(h); §27.53(i); §27.53(m); §27.53(n)		
Section Spurious Section Secti		PASS	
Field Strength of Spurious Radiation	§2.1051; §22.917(a); §24.238(a) §27.53(h); §27.53(i); §27.53(m); §27.53(n)	PASS	
Frequency Stability for Temperature & Voltage	§2.1055; §22.355; perature & §24.235; §27.54		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 5 of 30

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

3. General Information

3.1. Test environment and mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH		
Atmospheric Pressure:	1010 mbar		

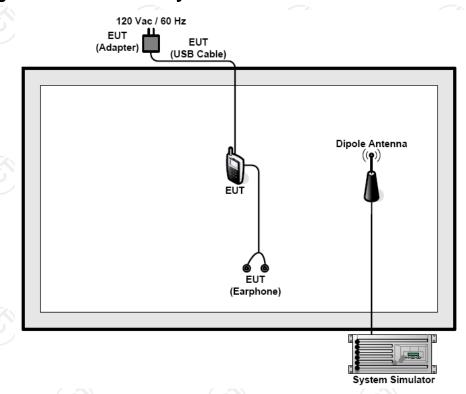
Remark: This product has a built-in rechargeable battery, so in an independent test, the EUT battery was fully-charged.

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas License Digital Systems v03r01 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission. The sample was placed 0.8m/1.5m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarization. The emissions worst-case are shown in Test Results of the following pages.

Page 6 of 30

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

3.2. Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1(0)	1 (6)) / /	<u>(c')</u> /	(C)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3.3. Configuration of Tested System

3.4. Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor.

Page 7 of 30

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: 86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±3.32 dB
2	RF power, conducted	±1.08 dB
3	Spurious emissions, conducted	±2.94 dB
4	All emissions, radiated(<1 GHz)	±4.86 dB
5	All emissions, radiated(1 GHz - 18 GHz)	±4.91 dB
6	All emissions, radiated(18 GHz- 40 GHz)	±4.36 dB

5. Test Results and Measurement Data

5.1. Effective Radiated Power and Effective Isotropic Radiated Power

Measurement

5.1.1. Test Specification

Test Requirement:	FCC part 22.913, FCC part 24.232(c), FCC part 27.50(d), FCC part 27.50(h), FCC part 27.50(j), FCC part 27.50(k)	
Test Method:	FCC part 2.1046	
Limit:	5G NR n 2/n41: 2W 5G NR n 5/n25: 7W 5G NR n 7/n41: 2W 5G NR n 66/n77a/n78a/n78e: 1W 5G NR n 71: 3W	
Test Setup:	System Simulator	
Test Procedure:	 The transmitter output port was connected to the system simulator. Set EUT at maximum power through system simulator. Select lowest, middle, highest channels for each band and different modulation. Measure and record the power level from the system simulator. Calculate the ERP and EIRP The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:	

Page 10 of 30

	between the transmitter and antenna, in dB. Note: For personal/portable radios utilizing an integral antenna, the factor L C is typically negligible. However, in a fixed station transmit system that utilizes a long cable run between the transmitter and the transmitting antenna, this factor can be significant.
Test Result:	PASS

5.1.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wireless communication test platform	Anritsu	MT8000A	6262208369	Jan. 31, 2025
Radio communication analyzer	Anritsu	MT8821C	6262192286	Jan. 31, 2025
Spectrum Analyzer	R&S	FSV40-N	102188	Jan. 31, 2025

5.2. Peak to Average Ratio

5.2.1. Test Specification

Test Requirement:	FCC part 22.913, FCC part 24.232(d), FCC part 27.50(d), FCC part 27.50(h), FCC part 27.50(j), FCC part 27.50(k)		
Test Method:	FCC KDB 971168 D01v03r01		
Limit:	The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.		
Test Setup:	System Simulator Spectrum Analyzer		
Test Procedure:	 The testing follows FCC KDB 971168 D01v03r01 Section 5.7.1. The EUT was connected to spectrum analyzer and system simulator via a power divider. Set EUT to transmit at maximum output power. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a probability of 0.1%. 		
Test Result:	PASS		
/ //			

5.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wireless communication test platform	Anritsu	MT8000A	6262208369	Jan. 31, 2025
Radio communication analyzer	Anritsu	MT8821C	6262192286	Jan. 31, 2025
Spectrum Analyzer	R&S	FSV40-N	102188	Jan. 31, 2025
Test software	MW	MTS 8200 NR	1	1

5.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement

5.3.1. Test Specification

Power Divider Spectrum Analyzer 1. The testing follows FCC KDB 971168 D01v03r01 Section 4.2. 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 4. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.	Test Requirement:	FCC part 27.53 and FCC part 24.238(b)
Spectrum Analyzer 1. The testing follows FCC KDB 971168 D01v03r01 Section 4.2. 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 4. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.	Test Method:	FCC part 2.1049
Test Setup: Spectrum Analyzer 1. The testing follows FCC KDB 971168 D01v03r01 Section 4.2. 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 4. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.	Limit:	N/A
Section 4.2. 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 4. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.	Test Setup:	System Simulator EUT
	Test Procedure:	Section 4.2. 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 4. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace
Test Result: PASS	Test Result:	PASS

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wireless communication test platform	Anritsu	MT8000A	6262208369	Jan. 31, 2025
Radio communication analyzer	Anritsu	MT8821C	6262192286	Jan. 31, 2025
Spectrum Analyzer	R&S	FSV40-N	102188	Jan. 31, 2025
Test software	MW	MTS 8200 NR	1 (6)	1 6

5.4. Band Edge and Conducted Spurious Emission Measurement

5.4.1. Test Specification

	500 (600) (7)		
	FCC part 22.917(a), F	(,0)	
Test Requirement:	FCC part 27.53(h), FC	CC part 27.53(i),	
	FCC part 27.53(m), FC	CC part 27.53(n)	
Test Method:	FCC part2.1051	(5)	(C)
Limit:	For 5G NR n 2, 5, 26, For 5G NR n 7, 41: the power of any ur above shall be attenupower, P (dBW), by at (i) 40 + 10 log10 p for away (ii) 43 + 10 log10 p be channel edges, and (iii) 55 + 10 log10 p channel edges. In addless than 43 + 10 log2490.5 MHz and 2490 below 2490.5 MHz.	nwanted emissions lated (in dB) below the least: rom the channel extween 5 MHz and at X MHz and bedition, the attenuating 10 p on all frequentiated.	s measured as the transmitter dges to 5 MHz X MHz from the eyond from the ion shall not be encies between
Test Setup:	System Simulator Spectrum Analyzer	Power Divider	ЕИТ
Test Procedure:	 The testing follows Section 6.0. The EUT was connected system simulator via the RF output of Elemanalyzer by an RF analyzer by a	ected to the spectruria a power divider. UT was connected cable and attenuat compensated to the compensated to the compensated compensated compensated compensated compensated compensated compensated compensated compensated.	im analyzer and to the spectrum or. e results for the he whole be excluded
Test Result:	PASS	o in the operating i	requeries baria.

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wireless communication test platform	Anritsu	MT8000A	6262208369	Jan. 31, 2025
Radio communication analyzer	Anritsu	MT8821C	6262192286	Jan. 31, 2025
Spectrum Analyzer	R&S	FSV40-N	102188	Jan. 31, 2025
Test software	MW	MTS 8200 NR	1 (3)	1 6

5.5. Field Strength of Spurious Radiation Measurement

5.5.1. Test Specification

	ECC part 27 52(a) ECC part 27 52(b)
Test Requirement:	FCC part 27.53(g), FCC part 27.53(h),
	FCC part 27.53(m)(4), FCC part 22.917(a), 24.238(b)
Test Method:	FCC part 2.1053
Limit:	For 5G NR n 2, 5, 25,41 66, 71,77a, 78a,78e: -13dBm; For 5G NR n41: -25dBm
Test setup:	Ant. feed point Metal Full Soldered Ground Plane Spectrum Analyzer / Receiver System Simulator RX Antenna Ant. feed point Ant. feed point RX Antenna Ant. feed point Spectrum Analyzer / Receiver System Simulator
Test Procedure:	 The testing follows FCC KDB 971168 D01v03r01 Section 5.8 and ANSI / TIA-603-D-2010Section 2.2.12. The EUT was placed on a rotatable wooden table 0.8 meters above the ground. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower. The table was rotated 360 degrees to determine the position of the highest spurious emission. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.

Test	TESTING	CENTRE TECHNOLOG	and same same emis 9. Takin 10. Re 11. EIR Ant 12. ER 13. The	rn antenna was driven e the outpure e emission sion. ng the reco peat step 7 RP (dBm) = enna Gain P (dBm) = e RF funda hinst the lim	by a signal to power of level with level win	ituted in plant generator signal generator signal generator structure at for another er – Tx Cab quency sho	r. erator to the num spurior antenna polarization polariz	e us ort. n. Tx
Rema	ark:			dulations ha			only the wo	rst

5.5.2. Test Instruments

	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	137557	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Signal Generator	Agilent	N5173B	MY58108823	Jan. 31, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Broadband Antenna	Schwarzbeck	VULB9163	412	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	1201	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D		Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L) /	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	(6)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L		Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	/	/
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	(0)


5.5.3. Test Data

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
		(6) (6)
	C	

Note: 1. Emission Level=Reading+ Cable loss + Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Band				Test chan	nel:	Lowest	
Test	n 2(l	BPSK, 2	OMHz)	Temperat	ure:	25°C	
mode:	`	ŕ	•	Relative Hur		56%	
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more th	an 20dB	below	
limit line.							
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious		Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	11000	
		` ′	` ′	(dBm)	(3.2.1.)		
3705	Vertical	-42.49	1.05	-41.44	4		
5557.5	V	-47.37	6.98	-40.39			
7410	V	-62.63	10.40	-52.23	-13	PASS	
3705	Horizontal	-42.10	2.08	-40.02			
5557.5	Н	-49.00	7.46	-41.54			
7410	K H	-61.05	10.00	-51.05			
Band				Test chan		Middle	
Test	n 2(l	3PSK, 2	0MHz)	Temperat		25°C	
mode:				Relative Hur	nidity:	56%	
limit line.		Spur	ious Emission		Limit		
Frequency (MHz)	Polarization	Level	Correction	Spurious emissions		Result	
,		(dBm)	Factor(dB)	(dBm)	(dBm)		
				\ \ \ = \ \ \ \			
3760	Vertical	-44.40	1.32	-43.08			
3760 5640	Vertical V	-44.40 -56.34	1.32 7.21				
				-43.08	12	DACC	
5640	V	-56.34	7.21	-43.08 -49.13	-13	PASS	
5640 7520	V	-56.34 -64.56	7.21 10.43	-43.08 -49.13 -54.13	-13	PASS	
5640 7520 3760	V V Horizontal	-56.34 -64.56 -42.55 -48.27	7.21 10.43 2.48 7.63	-43.08 -49.13 -54.13 -40.07	-13	PASS	
5640 7520 3760 5640	V V Horizontal H	-56.34 -64.56 -42.55	7.21 10.43 2.48 7.63	-43.08 -49.13 -54.13 -40.07 -40.64			
5640 7520 3760 5640 7520	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27	7.21 10.43 2.48 7.63 10.03	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38	nel:		
5640 7520 3760 5640 7520 Band	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27 -63.41	7.21 10.43 2.48 7.63 10.03	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan	nel: ure:	Highest	
5640 7520 3760 5640 7520 Band Test mode:	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27 -63.41	7.21 10.43 2.48 7.63 10.03	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperat	nel: ure: nidity:	Highest 25°C 56%	
5640 7520 3760 5640 7520 Band Test mode:	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20	7.21 10.43 2.48 7.63 10.03	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the	nel: ure: nidity: an 20dB	Highest 25°C 56%	
5640 7520 3760 5640 7520 Band Test mode:	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30	7.21 10.43 2.48 7.63 10.03 0MHz) 0-1000MHz we	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the	nel: ure: nidity:	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurio	V V Horizontal H H	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30 Spur	7.21 10.43 2.48 7.63 10.03 0MHz) 0-1000MHz we	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the	nel: ure: nidity: an 20dB	Highest 25°C 56%	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurio	V V Horizontal H H ous emissions	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30	7.21 10.43 2.48 7.63 10.03 0MHz) 0-1000MHz we	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperati Relative Hur ere found more th	nel: ure: nidity: an 20dB	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurio	V V Horizontal H H ous emissions	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30 Spur	7.21 10.43 2.48 7.63 10.03 0MHz) 0-1000MHz we	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hur ere found more the	nel: ure: nidity: an 20dB	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurio	V V Horizontal H H Ous emissions Polarization	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 26 within 30 Spur Level (dBm)	7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Correction Factor(dB)	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the Spurious emissions (dBm)	nel: ure: nidity: an 20dB	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3815	V V Horizontal H H Ous emissions Polarization Vertical	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30 Spur Level (dBm) -45.39	7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Correction Factor(dB) 1.59	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the series on series (dBm) -43.80	nel: ure: nidity: an 20dB Limit (dBm)	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3815 5723	V V Horizontal H H Ous emissions Polarization Vertical V	-56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30 Spur Level (dBm) -45.39 -54.30	7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Correction Factor(dB) 1.59 7.43	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the Spurious emissions (dBm) -43.80 -46.87	nel: ure: nidity: an 20dB	Highest 25°C 56% below	
5640 7520 3760 5640 7520 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3815 5723 7630	V V Horizontal H H Ous emissions Polarization Vertical V V	-56.34 -64.56 -42.55 -48.27 -63.41 3PSK, 2 within 30 Spur Level (dBm) -45.39 -54.30 -62.63	7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Factor(dB) 1.59 7.43 10.53	-43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test chan Temperate Relative Hurere found more the Spurious emissions (dBm) -43.80 -46.87 -52.10	nel: ure: nidity: an 20dB Limit (dBm)	Highest 25°C 56% below	

Band				Test chan	nel:	Lowest
Test	n 5(l	BPSK, 2	0MHz)	Temperatu	ıre:	25°C
mode:				Relative Hun	nidity: 56%	
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more tha	an 20dB	below
limit line.						
		Spur	ious Emission	1	Limit	
Frequency		Level	Correction	Spurious	Liiiit	Result
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	rtosuit
		` ′	` ′	(dBm)	(aBiii)	
1653	Vertical	-42.49	1.05	-41.44		
2479.5	V	-47.37	6.98	-40.39	(
3306	V(_C)	-62.63	10.40	-52.23	-13	PASS
1653	Horizontal	-42.10	2.08	-40.02	10	17.00
2479.5	Н	-49.00	7.46	-41.54		
3306	K H	-61.05	10.00	-51.05		
Band				Test chan	nel:	Middle
Test	n 5(l	3PSK, 2	0MHz)	Temperatu	ıre:	25°C
mode:				Relative Hun	nidity:	56%
limit line.		Spur	ious Emission	1		
Frequency				Spurious	Limit	
		Level	Correction	Ораново		Result
(MHz)	I Polarization			emissions		IXESUIL
(MHz)	Polarization	(dBm)	Factor(dB)	emissions (dBm)	(dBm)	ixesuit
, ,		(dBm)	Factor(dB)	(dBm)	(dBm)	Nesuit
1673	Polarization Vertical V	(dBm) -44.40	Factor(dB)	(dBm) -43.08	(dBm)	Result
1673 2509.5	Vertical	(dBm)	1.32 7.21	(dBm) -43.08 -49.13		
1673 2509.5 3346	Vertical V	-44.40 -56.34 -64.56	1.32 7.21 10.43	(dBm) -43.08 -49.13 -54.13	(dBm) -13	PASS
1673 2509.5 3346 1673	Vertical V	(dBm) -44.40 -56.34	1.32 7.21 10.43 2.48	(dBm) -43.08 -49.13 -54.13 -40.07		
1673 2509.5 3346	Vertical V V Horizontal	-44.40 -56.34 -64.56 -42.55 -48.27	1.32 7.21 10.43 2.48 7.63	(dBm) -43.08 -49.13 -54.13		
1673 2509.5 3346 1673 2509.5	Vertical V V Horizontal	-44.40 -56.34 -64.56 -42.55	1.32 7.21 10.43 2.48 7.63	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64	-13	PASS
1673 2509.5 3346 1673 2509.5 3346	Vertical V V Horizontal H	-44.40 -56.34 -64.56 -42.55 -48.27	1.32 7.21 10.43 2.48 7.63 10.03	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38	-13	PASS
1673 2509.5 3346 1673 2509.5 3346 Band	Vertical V V Horizontal H	-44.40 -56.34 -64.56 -42.55 -48.27 -63.41	1.32 7.21 10.43 2.48 7.63 10.03	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change	-13	PASS Highest
1673 2509.5 3346 1673 2509.5 3346 Band Test mode:	Vertical V V Horizontal H H	-44.40 -56.34 -64.56 -42.55 -48.27 -63.41	1.32 7.21 10.43 2.48 7.63 10.03	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperate	-13 nel: ure: nidity:	PASS Highest 25°C 56%
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 3PSK, 20 within 30	1.32 7.21 10.43 2.48 7.63 10.03	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that	nel: ure: nidity: an 20dB	PASS Highest 25°C 56%
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that	-13 nel: ure: nidity:	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30 Spur Level	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) O-1000MHz we ious Emission Correction	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Humbere found more thanks	nel: ure: nidity: an 20dB	PASS Highest 25°C 56%
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line.	Vertical V V Horizontal H H ous emissions	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that	nel: ure: nidity: an 20dB	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line.	Vertical V V Horizontal H H ous emissions	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30 Spur Level	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) O-1000MHz we ious Emission Correction	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that series founds emissions	nel: ure: nidity: an 20dB	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H Ous emissions Polarization	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30 Spur Level (dBm)	Factor(dB) 1.32 7.21 10.43 2.48 7.63 10.03 OMHz) O-1000MHz we ious Emission Correction Factor(dB)	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperate Relative Hundere found more that the series found more that the series found more (dBm)	nel: ure: nidity: an 20dB	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H ous emissions Polarization Vertical	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30 Spur Level (dBm) -45.39	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Correction Factor(dB) 1.59	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that the series found more than the series found more t	nel: ure: nidity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H Ous emissions Polarization Vertical V	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 20 within 30 Spur Level (dBm) -45.39 -54.30	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) O-1000MHz we ious Emission Correction Factor(dB) 1.59 7.43	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Humbers found more that the series found more than the series found more t	nel: ure: nidity: an 20dB	PASS Highest 25°C 56% below
1673 2509.5 3346 1673 2509.5 3346 Band Test mode: Note: Spurious limit line. Frequency (MHz) 1693 2539.5 3386	Vertical V V Horizontal H H Ous emissions Polarization Vertical V V	(dBm) -44.40 -56.34 -64.56 -42.55 -48.27 -63.41 BPSK, 2 within 30 Spur Level (dBm) -45.39 -54.30 -62.63	1.32 7.21 10.43 2.48 7.63 10.03 OMHz) 0-1000MHz we ious Emission Correction Factor(dB) 1.59 7.43 10.53	(dBm) -43.08 -49.13 -54.13 -40.07 -40.64 -53.38 Test change Temperature Relative Hundere found more that the series of the seri	nel: ure: nidity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below

Band				Test chan	nel:	Lowest		
Test	n 25(BPSK, 2	20MHz)	Temperati		25°C		
mode:			•	Relative Hun		ty: 56%		
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more that		below		
limit line.								
		Spur	ious Emission	1	Limit			
Frequency		Level	Correction	Spurious	LIIIII	Result		
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	INCOUNT		
		` ′	` ′	(dBm)	(dDIII)			
3705	Vertical	-45.06	5.93	-39.13				
5557.5	V	-48.23	10.45	-37.78	(
7410	V(, G)	-64.43	14.82	-49.61	-13	PASS		
3705	Horizontal	-39.02	6.33	-32.69	10	17.00		
5557.5	Н	-47.37	10.06	-37.31				
7410	H H	-60.32	14.48	-45.84				
Band				Test chan		Middle		
Test	n 25(BPSK, 2	20MHz)	Temperatu		25°C		
mode:				Relative Hun ere found more that		56%		
limit line.		Spur	ious Emission	1	Limit			
Frequency		Level	Correction	Spurious	Liiiii	Result		
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	result		
		(GDIII)	I accordable					
		, ,	` ′	(dBm)	(5.2)			
3765	Vertical	-44.24	6.01	-38.23	(0.2111)			
5647.5	V	-55.50	6.01 10.54	-38.23 -44.96	(42)			
5647.5 7530	V	-55.50 -62.81	6.01 10.54 14.89	-38.23 -44.96 -47.92		PASS		
5647.5 7530 3765	V V Horizontal	-55.50 -62.81 -40.58	6.01 10.54 14.89 6.42	-38.23 -44.96 -47.92 -34.16	-13	PASS		
5647.5 7530 3765 5647.5	V V Horizontal H	-55.50 -62.81 -40.58 -48.35	6.01 10.54 14.89 6.42 10.24	-38.23 -44.96 -47.92 -34.16 -38.11		PASS		
5647.5 7530 3765 5647.5 7530	V V Horizontal	-55.50 -62.81 -40.58	6.01 10.54 14.89 6.42	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99	-13			
5647.5 7530 3765 5647.5 7530 Band	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64	6.01 10.54 14.89 6.42 10.24 14.65	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan	-13	Highes		
5647.5 7530 3765 5647.5 7530 Band Test	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35	6.01 10.54 14.89 6.42 10.24 14.65	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan	-13	Highest 25°C		
5647.5 7530 3765 5647.5 7530 Band Test mode:	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2	6.01 10.54 14.89 6.42 10.24 14.65	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan Temperatu Relative Hun	-13 nel: ure: nidity:	Highest 25°C 56%		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2	6.01 10.54 14.89 6.42 10.24 14.65	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan	-13 nel: ure: nidity:	Highest 25°C 56%		
5647.5 7530 3765 5647.5 7530 Band Test mode:	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2	6.01 10.54 14.89 6.42 10.24 14.65 20MHz)	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test change Temperature Relative Hundere found more that	nel: ure: nidity: an 20dB	Highest 25°C 56%		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30	6.01 10.54 14.89 6.42 10.24 14.65 20MHz)	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan Temperate Relative Hun	-13 nel: ure: nidity:	Highes 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H on 25(-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we ious Emission	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test change Temperature Relative Humbers found more than 1990 Spurious	nel: ure: nidity: an 20dB	Highest 25°C 56%		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30	6.01 10.54 14.89 6.42 10.24 14.65 20MHz)	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan Temperate Relative Hun	nel: ure: nidity: an 20dB	Highes 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H on 25(-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we ious Emission	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test chan Temperatu Relative Hun ere found more that	nel: ure: nidity: an 20dB	Highes 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurio	V V Horizontal H H Ous emissions Polarization	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur Level (dBm)	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we ious Emission Correction Factor(dB)	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test change Temperature Relative Hundere found more that the series of	nel: ure: nidity: an 20dB	Highes 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3825	V V Horizontal H H Ous emissions Polarization Vertical	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur Level (dBm) -46.00	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we ious Emission Correction Factor(dB) 6.09	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test changer of the control of the con	nel: ure: nidity: an 20dB Limit (dBm)	Highesi 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3825 5737.5	V V Horizontal H H Ous emissions Polarization Vertical V	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur Level (dBm) -46.00 -54.05	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we sious Emission Correction Factor(dB) 6.09 10.63	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test changer of the control of the con	nel: ure: nidity: an 20dB	Highes 25°C 56% below		
5647.5 7530 3765 5647.5 7530 Band Test mode: Note: Spurious limit line. Frequency (MHz) 3825 5737.5 7650	V V Horizontal H H Ous emissions Polarization Vertical V V	-55.50 -62.81 -40.58 -48.35 -61.64 BPSK, 2 within 30 Spur Level (dBm) -46.00 -54.05 -61.17	6.01 10.54 14.89 6.42 10.24 14.65 20MHz) 0-1000MHz we ious Emission Correction Factor(dB) 6.09 10.63 14.95	-38.23 -44.96 -47.92 -34.16 -38.11 -46.99 Test changer of the control of the con	nel: ure: nidity: an 20dB Limit (dBm)	Highest 25°C 56% below		

Band				Test chan	nel:	Lowest	
Test	n 41 ((BPSK, 5	50MHz)	Temperature:		25°C	
mode:		,	,	Relative Hun		56%	
Note: Spurio	ous emissions	within 30	-1000MHz we	ere found more th			
limit line.							
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious	LIIIII	Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)		
		(dDIII)	r actor(db)	(dBm)	(dDIII)		
5002.02	Vertical	-42.73	6.04	-36.69			
7503.03	V	-48.48	10.58	-37.90	<.		
10004.04	V (, C	-65.72	14.92	-50.80	-25	PASS	
5002.02	Horizontal	-42.40	6.46	-35.94	-23	1 700	
7503.03	Н	-49.52	10.33	-39.19			
10004.04	Н	-62.43	14.72	-47.71			
Band				Test chan	nel:	Middle	
Test	n 41	n 41 (BPSK, 50MHz)			ıre:	25°C	
mode:				Relative Hun	nidity:	56%	
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more th	an 20dB	below	
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious	LIIIII	Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	rtesuit	
		, ,	` ′	(dBm)	(dDIII)		
5186.01	Vertical	-42.77	6.19	-36.58			
7779.015	V	-55.50	10.74	-44.76			
10372.02	V	-61.88	15.04	-46.84	-25	PASS	
5186.01	Horizontal	-40.50	6.64	-33.86	-23	1 700	
7779.015	Н	40 0-					
1119.013		-49.67	10.68	-38.99			
10372.02	H	-49.67 -62.36	10.68 15.04	-38.99 -47.32			
					nel:	Highest	
10372.02 Band Test	Н		15.04	-47.32 Test chan Temperati	ıre:	25°C	
10372.02 Band Test mode:	H n 41 (-62.36 (BPSK, 5	15.04 50MHz)	-47.32 Test chan Temperate Relative Hun	ure: nidity:	25°C 56%	
10372.02 Band Test mode:	H n 41 (-62.36 (BPSK, 5	15.04 50MHz)	-47.32 Test chan Temperati	ure: nidity:	25°C 56%	
Band Test mode: Note: Spurio	H n 41 (-62.36 (BPSK, 5 within 30	15.04 50MHz)	-47.32 Test chan Temperate Relative Hun ere found more the	ure: nidity: an 20dB	25°C 56%	
Band Test mode: Note: Spurio limit line.	n 41 (-62.36 (BPSK, 5) within 30	15.04 50MHz) 0-1000MHz we	-47.32 Test chan Temperate Relative Hun ere found more the	ure: nidity:	25°C 56% below	
Band Test mode: Note: Spurio	H n 41 (-62.36 (BPSK, 5) within 30 Spuri	15.04 50MHz) 0-1000MHz we ious Emission Correction	Test chan Temperate Relative Hun ere found more the Spurious emissions	ure: nidity: an 20dB	25°C 56%	
Band Test mode: Note: Spurio limit line. Frequency (MHz)	n 41 (-62.36 (BPSK, 5 within 30 Spuri	15.04 50MHz) 5-1000MHz we ious Emission Correction Factor(dB)	rest chan Temperate Relative Hun ere found more the Spurious emissions (dBm)	ure: nidity: an 20dB	25°C 56% below	
Band Test mode: Note: Spurio limit line. Frequency (MHz) 5370	n 41 of the polarization Polarization Vertical	-62.36 (BPSK, 5 within 30 Spurice Level (dBm) -44.24	15.04 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 6.34	-47.32 Test chan Temperate Relative Hun ere found more the Spurious emissions (dBm) -37.90	ure: nidity: an 20dB	25°C 56% below	
Band Test mode: Note: Spurio limit line. Frequency (MHz)	n 41 (-62.36 (BPSK, 5 within 30 Spuri	15.04 50MHz) 5-1000MHz we ious Emission Correction Factor(dB)	rest chan Temperate Relative Hun ere found more the Spurious emissions (dBm)	ure: nidity: an 20dB	25°C 56% below	
Band Test mode: Note: Spurio limit line. Frequency (MHz) 5370	n 41 of the polarization Polarization Vertical	-62.36 (BPSK, 5 within 30 Spurice Level (dBm) -44.24	15.04 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 6.34	-47.32 Test chan Temperate Relative Hun ere found more the Spurious emissions (dBm) -37.90	ure: nidity: an 20dB Limit (dBm)	25°C 56% below Result	
Band Test mode: Note: Spurio limit line. Frequency (MHz) 5370 8055	n 41 on 41 o	-62.36 (BPSK, 5 within 30 Spur Level (dBm) -44.24 -54.86	15.04 50MHz) 5-1000MHz we sious Emission Correction Factor(dB) 6.34 10.91	-47.32 Test chan Temperate Relative Hun ere found more the Spurious emissions (dBm) -37.90 -43.95	ure: nidity: an 20dB	25°C 56% below	
Band Test mode: Note: Spurio limit line. Frequency (MHz) 5370 8055 10740	n 41 (n 41 (Polarization Vertical V	-62.36 (BPSK, 5 within 30 Spur Level (dBm) -44.24 -54.86 -61.76	15.04 50MHz) 5-1000MHz we ious Emission Correction Factor(dB) 6.34 10.91 15.17	-47.32 Test chan Temperate Relative Hun ere found more the Spurious emissions (dBm) -37.90 -43.95 -46.59	ure: nidity: an 20dB Limit (dBm)	25°C 56% below Result	

	TESTING CENTRE TECHNO			Toot about	t No.: TCT240	
Band	n 66	(DDCK)	40MU=)	Test channel: Temperature:		Lowest
Test	n 66	(BPSK, 4	łUMHZ)			25°C
mode:	Luc omissions	within 20	1000MHz wo	Relative Humidity: 56% re found more than 20dB below		
limit line.	ous emissions	WILLIII 3C	i-Tuuulvinz we	re iouna more in	an Zuud	below
		Spur	ious Emission		Linait	
Frequency				Spurious	Limit	Dogult
(MHz)	Polarization	Level	Correction	emissions	(dBm)	Result
		(dBm)	Factor(dB)	(dBm)	(ubiii)	
3425	Vertical	-43.22	-0.46	-43.68		
5137.5	V	-49.47	6.15	-43.32		
6850	V	-64.22	9.78	-54.44	-13	PASS
3425	Horizontal	-44.46	-0.11	-44.57	-13	PASS
5137.5	Н	-46.26	6.59	-39.67		
6850	Н	-62.06	9.70	-52.36		
Band				Test chan	nel:	Middle
Test	n 66	(BPSK, 4	10MHz)	Temperat	ure:	25°C
mode:		, ,			nidity:	56%
limit line.	1			re found more th	1	BOIOW
_		Spur	ious Emission		Limit	
Frequency	D	Level	Correction	Spurious		Result
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	
2400	Nontinal	` ,	, ,	(dBm)	, ,	.01
3490	Vertical	-41.21	-0.45	-41.66	-	
5235	V	-53.24	6.27	-46.97	1	
6980	V	-63.85	10.21	-53.64	-13	PASS
3490	Horizontal	-40.20	-0.11	-40.31		1 7.00
				40.00		
5235	H	-47.69	6.73	-40.96		
6980	H	-47.69 -61.92		-51.85		I limb a av
6980 Band	Н	-61.92	10.07	-51.85 Test chan		
6980 Band Test	Н		10.07	-51.85 Test chan Temperat	ure:	25°C
6980 Band Test mode:	n 66 (-61.92 (BPSK, 4	10.07 40MHz)	-51.85 Test chan Temperat Relative Hur	ure: nidity:	25°C 56%
6980 Band Test mode:	n 66 (-61.92 (BPSK, 4 within 30	10.07 40MHz) 0-1000MHz we	-51.85 Test chan Temperat	ure: nidity:	25°C 56%
6980 Band Test mode: Note: Spurio	n 66 (-61.92 (BPSK, 4 within 30	10.07 40MHz)	-51.85 Test chan Temperat Relative Hur re found more th	ure: nidity: an 20dB	25°C 56%
6980 Band Test mode: Note: Spurio	n 66 (-61.92 (BPSK, 4 within 30	10.07 40MHz) 0-1000MHz we	-51.85 Test chan Temperat Relative Hur re found more th	ure: nidity:	25°C 56% below
6980 Band Test mode: Note: Spurio	n 66 (-61.92 (BPSK, 4) within 30 Spur Level	10.07 40MHz) 0-1000MHz we ious Emission Correction	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions	ure: nidity: an 20dB Limit	25°C 56%
6980 Band Test mode: Note: Spurio limit line. Frequency (MHz)	n 66 (-61.92 (BPSK, 4 within 30 Spur Level (dBm)	10.07 10MHz) 0-1000MHz we ious Emission Correction Factor(dB)	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm)	ure: nidity: an 20dB	25°C 56% below
6980 Band Test mode: Note: Spurio limit line. Frequency (MHz)	n 66 on 66 o	-61.92 (BPSK, 4 within 30 Spur Level (dBm) -46.52	10.07 10MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm) -46.70	ure: nidity: an 20dB Limit	25°C 56% below
6980 Band Test mode: Note: Spurio limit line. Frequency (MHz) 3555 5332.5	n 66 on 66 o	-61.92 (BPSK, 4 within 30 Spur Level (dBm) -46.52 -57.15	10.07 40MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm) -46.70 -50.77	ure: nidity: an 20dB Limit	25°C 56% below
6980 Band Test mode: Note: Spurio limit line. Frequency (MHz) 3555 5332.5 7110	n 66 (-61.92 (BPSK, 4 within 30 Spur Level (dBm) -46.52 -57.15 -66.99	10.07 10MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38 10.31	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm) -46.70 -50.77 -56.68	ure: nidity: an 20dB Limit (dBm)	25°C 56% below
6980 Band Test mode: Note: Spurior limit line. Frequency (MHz) 3555 5332.5 7110 3555	n 66 Dus emissions Polarization Vertical V V Horizontal	-61.92 (BPSK, 4) within 30 Spur Level (dBm) -46.52 -57.15 -66.99 -42.63	10.07 40MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38 10.31 0.29	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm) -46.70 -50.77 -56.68 -42.34	ure: nidity: an 20dB Limit	25°C 56% below
6980 Band Test mode: Note: Spurio limit line. Frequency (MHz) 3555 5332.5 7110	n 66 (-61.92 (BPSK, 4 within 30 Spur Level (dBm) -46.52 -57.15 -66.99	10.07 10MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38 10.31	-51.85 Test chan Temperat Relative Hur re found more th Spurious emissions (dBm) -46.70 -50.77 -56.68	ure: nidity: an 20dB Limit (dBm)	56% below Result

Band				Test chan	nel:	Lowest	
Test	n 71	(BPSK, 2	20MHz)	Temperat		25°C	
mode:		,	,	Relative Hur		56%	
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more th			
limit line.							
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious		Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions	(dBm)	Result	
		(ubiii)	Tactor(GD)	(dBm)	(abiii)		
1331	Vertical	-43.22	-0.46	-43.68			
1996.5	V	-49.47	6.15	-43.32			
2662	V	-64.22	9.78	-54.44	-13	PASS	
1331	Horizontal	-44.46	-0.11	-44.57		1 700	
1996.5	Н	-46.26	6.59	-39.67			
2662	Н	-62.06	9.70	-52.36			
Band					nel:	Middle	
Test	n 71 ((BPSK, 2	20MHz)	Temperat	ure:	25°C	
mode:		,			nidity:	56%	
Note: Spurio	ous emissions	within 30)-1000MHz we	ere found more th	an 20dB	below	
		Spur	ious Emission		Linnit		
Frequency					Limit		
1 ICQUCITO)			C = === = = = = = = = = = = = = = = = =	Spurious		Dooule	
(MHz)	Polarization	Level	Correction	Spurious emissions	(dDm)	Result	
•	Polarization	Level (dBm)	Correction Factor(dB)		(dBm)	Result	
•	Polarization Vertical			emissions	(dBm)	Result	
(MHz)		(dBm)	Factor(dB)	emissions (dBm)	(dBm)	Result	
(MHz)	Vertical	(dBm) -41.21	Factor(dB) -0.45	emissions (dBm) -41.66	-	<u> </u>	
(MHz) 1361 2041.5	Vertical V	(dBm) -41.21 -53.24	Factor(dB) -0.45 6.27	emissions (dBm) -41.66 -46.97	(dBm) -13	Result	
1361 2041.5 2722	Vertical V	(dBm) -41.21 -53.24 -63.85	-0.45 6.27 10.21	emissions (dBm) -41.66 -46.97 -53.64	-	<u> </u>	
1361 2041.5 2722 1361	Vertical V V Horizontal	-41.21 -53.24 -63.85 -40.20	Factor(dB) -0.45 6.27 10.21 -0.11	emissions (dBm) -41.66 -46.97 -53.64 -40.31	-	<u> </u>	
1361 2041.5 2722 1361 2041.5	Vertical V V Horizontal	-41.21 -53.24 -63.85 -40.20 -47.69	Factor(dB) -0.45 6.27 10.21 -0.11 6.73	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96	-13	PASS	
1361 2041.5 2722 1361 2041.5 2722	Vertical V V Horizontal H	-41.21 -53.24 -63.85 -40.20 -47.69	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85	-13 nel:	<u> </u>	
1361 2041.5 2722 1361 2041.5 2722 Band	Vertical V V Horizontal H	-41.21 -53.24 -63.85 -40.20 -47.69 -61.92	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan	-13 nel: ure:	PASS Highes	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode:	Vertical V V Horizontal H H	-41.21 -53.24 -63.85 -40.20 -47.69 -61.92	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperat	13 nel: ure: nidity:	PASS Highes 25°C 56%	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperate Relative Hurere found more the	nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperate Relative Hurere found more the	13 nel: ure: nidity:	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurious limit line.	Vertical V V Horizontal H H	(dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperat Relative Hurere found more the	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n71 ((dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperate Relative Hurere found more the	nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n71 ((dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperat Relative Hur ere found more the	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H n71 ((dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur Level (dBm)	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction Factor(dB)	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperat Relative Hurere found more the	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H n71 ((dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur Level (dBm) -46.52	Factor(dB) -0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperate Relative Hurere found more the spurious emissions (dBm) -46.70	-13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurious limit line. Frequency (MHz) 1391 2086.5	Vertical V V Horizontal H H ous emissions Polarization Vertical V	(dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur Level (dBm) -46.52 -57.15	-0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperat Relative Hurere found more the semissions (dBm) -46.70 -50.77	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
1361 2041.5 2722 1361 2041.5 2722 Band Test mode: Note: Spurious limit line. Frequency (MHz) 1391 2086.5 2782	Vertical V V Horizontal H H n71 (ous emissions Polarization Vertical V V	(dBm) -41.21 -53.24 -63.85 -40.20 -47.69 -61.92 BPSK, 2 within 30 Spur Level (dBm) -46.52 -57.15 -66.99	-0.45 6.27 10.21 -0.11 6.73 10.07 20MHz) 0-1000MHz we ious Emission Correction Factor(dB) -0.18 6.38 10.31	emissions (dBm) -41.66 -46.97 -53.64 -40.31 -40.96 -51.85 Test chan Temperate Relative Hurere found more the Spurious emissions (dBm) -46.70 -50.77 -56.68	-13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below Result	

		LOGY					
Band				Test channel:		Lowest	
Test	n 77a	(BPSK,	50MHz)	Temperat	ure:	25°C	
mode:					Relative Humidity:		
Note: Spurio limit line.	ous emissions	within 30)-1000MHz we	ere found more th	an 20dB	below	
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious		Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions (dBm)	(dBm)	rtoodit	
7410	Vertical	-43.52	10.41	-33.11	1		
11115	V	-46.58	15.26	-31.32	1		
14820	V	-65.48	15.00	-50.48	10	D400	
7410	Horizontal	-43.86	9.98	-33.88	-13	PASS	
11115	Н	-47.65	15.91	-31.74			
14820	Н	-63.66	14.90	-48.76	1		
Band				Test chan	nel:	Middle	
Test	n 77a	n 77a (BPSK, 50MHz)		Temperat		25°C	
mode:		(,	,	Relative Hur		56%	
	ous emissions	within 30)-1000MHz we	ere found more th			
limit line.		Cour	iaua Emigaian				
		Spur	ious Emission		Limit		
Fraguenav					Limit		
Frequency	Delevization	Level	Correction	Spurious	Limit	Result	
Frequency (MHz)	Polarization			Spurious emissions	(dBm)	Result	
(MHz)		Level (dBm)	Correction Factor(dB)	Spurious emissions (dBm)		Result	
(MHz) 7680	Vertical	Level (dBm) -42.48	Correction Factor(dB)	Spurious emissions (dBm) -31.85		Result	
7680 11520	Vertical V	Level (dBm) -42.48 -54.04	Correction Factor(dB) 10.63 15.00	Spurious emissions (dBm) -31.85 -39.04		Result	
7680 11520 15360	Vertical V	Level (dBm) -42.48 -54.04 -62.83	Correction Factor(dB) 10.63 15.00 14.00	Spurious emissions (dBm) -31.85 -39.04 -48.83		Result	
7680 11520 15360 7680	Vertical V V Horizontal	Level (dBm) -42.48 -54.04 -62.83 -41.61	Correction Factor(dB) 10.63 15.00 14.00 10.43	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18	(dBm)		
7680 11520 15360 7680 11520	Vertical V V Horizontal	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74	(dBm)		
7680 11520 15360 7680 11520 15360	Vertical V V Horizontal	Level (dBm) -42.48 -54.04 -62.83 -41.61	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19	(dBm) -13	PASS	
7680 11520 15360 7680 11520 15360 Band	Vertical V V Horizontal H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan	(dBm) -13 nel:	PASS Highes	
7680 11520 15360 7680 11520 15360 Band Test	Vertical V V Horizontal H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat	(dBm) -13 nel:	PASS Highes	
7680 11520 15360 7680 11520 15360 Band Test mode:	Vertical V V Horizontal H H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK,	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz)	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat Relative Hur	(dBm) -13 nel: ure: midity:	PASS Highest 25°C 56%	
7680 11520 15360 7680 11520 15360 Band Test mode:	Vertical V V Horizontal H H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK,	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz)	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat	(dBm) -13 nel: ure: midity:	PASS Highes 25°C 56%	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK,	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz)	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperate Relative Hurere found more the	(dBm) -13 -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK,	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperate Relative Hurere found more the	(dBm) -13 nel: ure: midity:	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperate Relative Hurere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 77a	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK,	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat Relative Hurere found more the	(dBm) -13 -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 77a	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperate Relative Hurere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 77a ous emissions Polarization	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30 Spur Level (dBm)	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction Factor(dB)	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat Relative Hurere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H n 77a ous emissions Polarization Vertical	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30 Spur Level (dBm) -45.03	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.84	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperate Relative Hure ere found more the Spurious emissions (dBm) -34.19	(dBm) -13 nel: ure: midity: an 20dB Limit (dBm)	PASS Highes 25°C 56% below Result	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7950 11925	Vertical V V Horizontal H H n 77a ous emissions Polarization Vertical V	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30 Spur Level (dBm) -45.03 -53.95	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.84 14.80	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat Relative Hurere found more the Spurious emissions (dBm) -34.19 -39.15	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7680 11520 15360 7680 11520 15360 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7950 11925 15900	Vertical V V Horizontal H H n 77a ous emissions Polarization Vertical V V	Level (dBm) -42.48 -54.04 -62.83 -41.61 -49.44 -63.39 (BPSK, within 30 Spur Level (dBm) -45.03 -53.95 -61.85	Correction Factor(dB) 10.63 15.00 14.00 10.43 15.70 14.20 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.84 14.80 13.00	Spurious emissions (dBm) -31.85 -39.04 -48.83 -31.18 -33.74 -49.19 Test chan Temperat Relative Hur ere found more th Spurious emissions (dBm) -34.19 -39.15 -48.85	(dBm) -13 nel: ure: midity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below Result	

	TESTING CENTRE TECHNO	1001		_	Report		
Band				Test channel:		Lowest	
Test	n 78a (BPSK, 50MHz)			Temperat		25°C	
mode:				Relative Hur		56%	
Note: Spurio limit line.	ous emissions	within 30)-1000MHz we	re found more th	an 20dB	below	
		Spur	ious Emission		Limit		
Frequency		Level	Correction	Spurious	Lillin	Result	
(MHz)	Polarization	(dBm)	Factor(dB)	emissions (dBm)	(dBm)	rtocan	
7410	Vertical	-43.91	10.21	-33.70			
11115	V	-50.54	15.12	-35.42			
14820	V	-65.29	19.10	-46.19	-13	PASS	
7410	Horizontal	-46.40	10.07	-36.33	-13	1 700	
11115	Н	-46.46	15.23	-31.23			
14820	Н	-62.82	17.80	-45.02			
Band				Test chan	nel:	Middle	
Test	n 78a	(BPSK,	50MHz)	Temperat	ure:	25°C	
mode:					nidity:	56%	
limit line.	T			ere found more th	T 2002		
Frequency		Spur	ious Emission		Limit		
Frequency							
	Dolorization	Level	Correction	Spurious		Result	
(MHz)	Polarization	Level (dBm)	Correction Factor(dB)	emissions	(dBm)	Result	
(MHz)		(dBm)	Factor(dB)	emissions (dBm)		Result	
(MHz) 7500	Vertical	(dBm) -45.24	Factor(dB)	emissions (dBm) -34.95		Result	
7500 11250	Vertical V	(dBm) -45.24 -54.48	Factor(dB) 10.29 15.13	emissions (dBm) -34.95 -39.35		Result	
7500 11250 15000	Vertical V	(dBm) -45.24 -54.48 -65.66	Factor(dB) 10.29 15.13 19.20	emissions (dBm) -34.95 -39.35 -46.46		Result	
7500 11250 15000 7500	Vertical V V Horizontal	(dBm) -45.24 -54.48 -65.66 -41.75	Factor(dB) 10.29 15.13 19.20 10.14	emissions (dBm) -34.95 -39.35 -46.46 -31.61	(dBm)		
7500 11250 15000 7500 11250	Vertical V V Horizontal	-45.24 -54.48 -65.66 -41.75 -48.03	Factor(dB) 10.29 15.13 19.20 10.14 15.26	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77	(dBm)		
7500 11250 15000 7500 11250 15000	Vertical V V Horizontal	(dBm) -45.24 -54.48 -65.66 -41.75	Factor(dB) 10.29 15.13 19.20 10.14 15.26	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11	(dBm) -13	PASS	
7500 11250 15000 7500 11250 15000 Band	Vertical V V Horizontal H	-45.24 -54.48 -65.66 -41.75 -48.03 -63.01	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan	(dBm) -13	PASS Highes	
7500 11250 15000 7500 11250 15000 Band Test	Vertical V V Horizontal H	-45.24 -54.48 -65.66 -41.75 -48.03	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat	(dBm) -13 nel:	PASS Highes	
7500 11250 15000 7500 11250 15000 Band Test mode:	Vertical V V Horizontal H H	-45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz)	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur	(dBm) -13 nel: ure: midity:	PASS Highes 25°C 56%	
7500 11250 15000 7500 11250 15000 Band Test mode:	Vertical V V Horizontal H H	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur	(dBm) -13 nel: ure: midity:	PASS Highes 25°C 56%	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz)	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hurere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 78a	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur ere found more the	(dBm) -13 nel: ure: midity:	PASS Highes 25°C 56% below	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurious	Vertical V V Horizontal H H	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur ere found more the	(dBm) -13 nel: ure: nidity: an 20dB - Limit	PASS Highes 25°C 56%	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 78a ous emissions Polarization	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm)	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB)	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hurere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurious limit line. Frequency (MHz)	Vertical V V Horizontal H H n 78a ous emissions Polarization Vertical	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur ere found more the Spurious emissions (dBm) -36.34	(dBm) -13 nel: ure: nidity: an 20dB - Limit	PASS Highes 25°C 56% below	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7590 11385	Vertical V V Horizontal H H n 78a ous emissions Polarization Vertical V	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59	Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29 15.14	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hurere found more the semissions (dBm) -36.34 -40.45	(dBm) -13 nel: ure: nidity: an 20dB - Limit	PASS Highes 25°C 56% below	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurior limit line. Frequency (MHz) 7590 11385 15180	Vertical V V Horizontal H H n 78a ous emissions Polarization Vertical V V	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59 -67.50	10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 50MHz) 10.29 15.14 19.10	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hurere found more the series on s (dBm) -36.34 -40.45 -48.40	(dBm) -13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highes 25°C 56% below Result	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7590 11385 15180 7590	Vertical V V Horizontal H H n 78a ous emissions Polarization Vertical V V Horizontal	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59 -67.50 -41.82	10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29 15.14 19.10 10.14	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hur ere found more the spurious emissions (dBm) -36.34 -40.45 -48.40 -31.68	(dBm) -13 nel: ure: nidity: an 20dB - Limit	PASS Highes 25°C 56% below	
7500 11250 15000 7500 11250 15000 Band Test mode: Note: Spurior limit line. Frequency (MHz) 7590 11385 15180	Vertical V V Horizontal H H n 78a ous emissions Polarization Vertical V V	(dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59 -67.50	10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 50MHz) 10.29 15.14 19.10	emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperat Relative Hurere found more the series on s (dBm) -36.34 -40.45 -48.40	(dBm) -13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below Result	

	TESTING CENTRE TECHNO	1001			Report		
Band				Test chan	nel:	Lowest	
Test	n 78e	(BPSK,	50MHz)	Temperati	ure:	25°C	
mode:				Relative Hun	nidity:	56%	
Note: Spurio limit line.	ous emissions	within 30)-1000MHz we	ere found more tha	an 20dB	below	
		Spur	ious Emission		Lingit		
Frequency		Lovel	Correction	Spurious	Limit	Result	
(MHz)	Polarization	Level	Correction	emissions	(dDm)		
		(dBm)	Factor(dB)	(dBm)	(dBm)		
6910.02	Vertical	-43.91	10.21	-33.70			
10365.03	V	-50.54	15.12	-35.42			
13820.04	V	-65.29	19.10	-46.19	40	DACC	
6910.02	Horizontal	-46.40	10.07	-36.33	-13	PASS	
10365.03	Н	-46.46	15.23	-31.23			
13820.04	Н	-62.82	17.80	-45.02]		
Band			1	Test chan	nel:	Middle	
Test	n 78e	n 78e (BPSK, 50MHz)			ure:	25°C	
mode:		•	•	Relative Hun		56%	
limit line.	ous emissions	within 30	0-1000MHZ W6	ere found more the	an 20dB	below	
	Spurious Emission				,		
					i Limit		
Frequency				Spurious	Limit	Result	
Frequency (MHz)	Polarization	Level	Correction	Spurious emissions		Result	
(MHz)		Level (dBm)	Correction Factor(dB)	Spurious	(dBm)	Result	
•	Polarization Vertical	Level (dBm)	Correction Factor(dB)	Spurious emissions		Result	
(MHz)	Vertical V	Level (dBm)	Correction Factor(dB)	Spurious emissions (dBm)		Result	
(MHz) 7000.02	Vertical V	Level (dBm)	Correction Factor(dB)	Spurious emissions (dBm) -34.95	(dBm)		
7000.02 10500	Vertical V	Level (dBm) -45.24 -54.48	Correction Factor(dB) 10.29 15.13	Spurious emissions (dBm) -34.95 -39.35		Result	
7000.02 10500 14000	Vertical V V Horizontal	Level (dBm) -45.24 -54.48 -65.66	Correction Factor(dB) 10.29 15.13 19.20	Spurious emissions (dBm) -34.95 -39.35 -46.46	(dBm)		
7000.02 10500 14000 7000.02	Vertical V V Horizontal	Level (dBm) -45.24 -54.48 -65.66 -41.75	Correction Factor(dB) 10.29 15.13 19.20 10.14	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61	(dBm)	PASS	
7000.02 10500 14000 7000.02 10500	Vertical V V Horizontal	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77	(dBm) -13	PASS Highes	
7000.02 10500 14000 7000.02 10500 14000	Vertical V V Horizontal H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11	(dBm) -13	PASS	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode:	Vertical V V Horizontal H H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz)	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperate Relative Hun	-13 nel: ure: nidity:	PASS Highest 25°C 56%	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode:	Vertical V V Horizontal H H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz)	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperati	-13 nel: ure: nidity:	PASS Highes 25°C 56%	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz)	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the	-13 nel: ure: nidity:	PASS Highes 25°C 56% below	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperate Relative Hundere found more that	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56%	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 78e	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK,	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the	-13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio	Vertical V V Horizontal H H n 78e	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperate Relative Hun ere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurio limit line. Frequency (MHz)	Vertical V V Horizontal H H n 78e ous emissions	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm)	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB)	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7089.99	Vertical V V Horizontal H H n 78e Polarization Vertical	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the Spurious emissions (dBm) -36.34	-13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highes 25°C 56% below Result	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7089.99 10634.985	Vertical V V Horizontal H H Ous emissions Polarization Vertical V	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29 15.14	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperatu Relative Hun ere found more the Spurious emissions (dBm) -36.34 -40.45	(dBm) -13 nel: ure: nidity: an 20dB	PASS Highes 25°C 56% below	
7000.02 10500 14000 7000.02 10500 14000 Band Test mode: Note: Spurious limit line. Frequency (MHz) 7089.99 10634.985 14179.98	Vertical V V Horizontal H H n 78e Polarization Vertical V V	Level (dBm) -45.24 -54.48 -65.66 -41.75 -48.03 -63.01 (BPSK, within 30 Spur Level (dBm) -46.63 -55.59 -67.50	Correction Factor(dB) 10.29 15.13 19.20 10.14 15.26 17.90 50MHz) 0-1000MHz we ious Emission Correction Factor(dB) 10.29 15.14 19.10	Spurious emissions (dBm) -34.95 -39.35 -46.46 -31.61 -32.77 -45.11 Test chan Temperate Relative Hun ere found more the spurious emissions (dBm) -36.34 -40.45 -48.40	-13 nel: ure: nidity: an 20dB Limit (dBm)	PASS Highest 25°C 56% below Result	

5.6. Frequency Stability Measurement

5.6.1. Test Specification

Test Requirement:	FCC part 22.355, FCC part 24.235, FCC part 27.54
Test Method:	FCC Part 2.1055
Limit:	For 5G NR n 5, 26: 1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station. For 5G NR n 2, 7, 41, 66, 77, 78: The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation (authorized frequency block).
Test Setup:	System Simulator Thermal Chamber
Test Procedure:	Test Procedures for Temperature Variation 1. The testing follows FCC KDB 971168 D01v03r01 Section 9.0. 2. The EUT was set up in the thermal chamber and connected with the system simulator. 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. Test Procedures for Voltage Variation 1. The testing follows FCC KDB 971168 D01v03r01 Section 9.0. 2. The EUT was placed in a temperature chamber at 25±5°C and connected with the system simulator. 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT. 4. The variation in frequency was measured for the worst case. 5. The worst case(worst bandwidth) for frequency stability reported in the Test Data. The worst bandwidth is as follow: 5M is for 5G NR n 2, 5M is for 5G NR n 5, 5M is for 5G NR n 7, 5M is for 5G NR n 26-1, 5M is for 5G NR n 76, 20M is for 5G NR n 41, 5M is for 5G NR n 66, 20M is for 5G NR n 77, 20M is for 5G NR n 78

Report No.: TCT240910E041


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Result: PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wireless communication test platform	Anritsu	MT8000A	6262208369	Jan. 31, 2025
Radio communication analyzer	Anritsu	MT8821C	6262192286	Jan. 31, 2025
Programable tempratuce and humidity chamber	JQ	JQ-2000	510101234	Jun. 26, 2025
DC power supply	Kingrang	KR3005K	/	Jun. 26, 2025

Appendix A: Test Result of Conducted Test

please refer to appendix document of test date.

Appendix B: Photographs of Test Setup

Please refer to document Appendix No.: TCT240910E034-A

Appendix C: Photographs of EUT

Please refer to document Appendix No.: TCT240910E034-B & TCT240910E034-C

*****END OF REPORT****

Page 30 of 30

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com