

RF Test Report

For

Applicant Name: FOXX Development Inc

Address: 3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

EUT Name: Smart Phone

Brand Name: FOXXD Model Number: A65

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF231121R00304 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2AQRM-A65

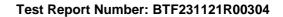
Test Date: 2023-11-15 to 2023-11-28

Date of Issue: 2023-11-29

Prepared By:

Chris Liu / Project Engineer

hris

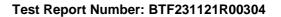

Date: 2023-11-29

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-11-29

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-11-29	Original	
Note: Once the revision has been made, then previous versions reports are invalid.			

Table of Contents

1	INTF	SODUC.	TION	5
	1.1	Identi	ification of Testing Laboratory	5
	1.2		ification of the Responsible Testing Location	
	1.3	Anno	uncement	5
2	PRO	DUCT	INFORMATION	6
	2.1	Appli	cation Information	6
	2.2	Manu	facturer Information	6
	2.3		ory Information	
	2.4		ral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3			OF TEST RESULTS	
	3.1		Standards	
	3.2 3.3		rtainty of Test nary of Test Result	
4			FIGURATION	
4				
	4.1 4.2		Equipment List Auxiliary Equipment	
	4.3		Modes	
5	ΕVΑ		ON RESULTS (EVALUATION)	
	5.1		nna requirement	
6	•		CTRUM MATTER TEST RESULTS (RF)	
	6.1		ucted Emission at AC power line	
	0.1	6.1.1	E.U.T. Operation:	
		6.1.2	Test Setup Diagram:	
		6.1.3	i o	
	6.2	Duty	Cycle	18
		6.2.1	E.U.T. Operation:	18
		6.2.2	Test Data:	18
	6.3	Maxir	num conducted output power	19
		6.3.1	E.U.T. Operation:	
		6.3.2		
	6.4		er spectral density	
		6.4.1		
	6.5	6.4.2		
	6.5		sion bandwidth and occupied bandwidth	
		6.5.1 6.5.2	E.U.T. Operation: Test Data:	
	6.6		edge emissions (Radiated)	
	0.0	6.6.1	E.U.T. Operation:	
		6.6.2	Test Setup Diagram:	
		6.6.3	Test Data:	
	6.7	Unde	sirable emission limits (below 1GHz)	
		6.7.1	E.U.T. Operation:	
		6.7.2	Test Setup Diagram:	
		6.7.3	Test Data:	
	6.8		sirable emission limits (above 1GHz)	
		6.8.1	E.U.T. Operation:	35

	6.8.2	Test Data:	36
7	TEST SETUR	P PHOTOS	38
		RUCTIONAL DETAILS (EUT PHOTOS)	
		· /	

1 Introduction

1.1 Identification of Testing Laboratory

	Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou	
	Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
ĺ	Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	FOXX Development Inc	
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA	

2.2 Manufacturer Information

Company Name:	FOXX Development Inc
Address:	3480 Preston Ridge Road, Suite500, Alpharetta, GA 30005, USA

2.3 Factory Information

Company Name:	YOLOTEL MOBILE LIMITED
Address:	Room 302, Building 2C, Software Industry Base, Nanshan District, Shenzhen

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Smart Phone
Test Model Number:	A65

2.5 Technical Information

Power Supply:	AC 120V 60Hz
Operation Frequency Range	U-NII Band 1: 5.18~5.24 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	1.80 dBi
Note:	·

Note

^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

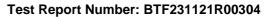
3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

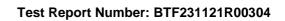

Test Configuration

Test Equipment List

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2024-11-15		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2024-11-15		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2024-11-15		

Duty Cycle							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

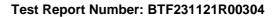
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		



Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Emission bandwidth and occupied bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15	
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15	

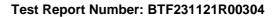
Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		



U-NII Detection Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

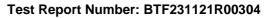
Channel Move Time, Channel Closing Transmission Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Period Test							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

DFS Detection Thresholds								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			


Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL SKET		PCI-GPIB	1	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15	

Undesirable emission	limits (above 1GF	lz)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	POSITIONAL SKET		/	/	1	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15	



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

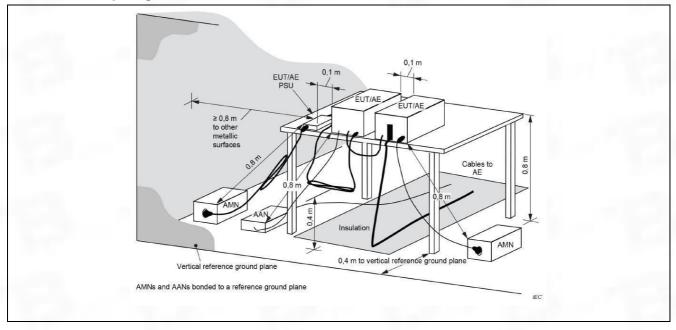
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

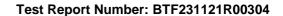
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

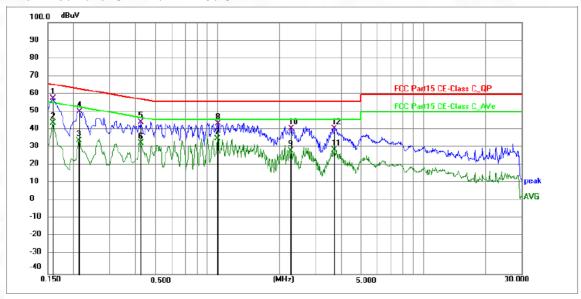

6.1 Conducted Emission at AC power line

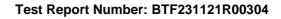

Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Test Limit:	0.15-0.5	66 to 56*	56 to 46*				
rest Limit.	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

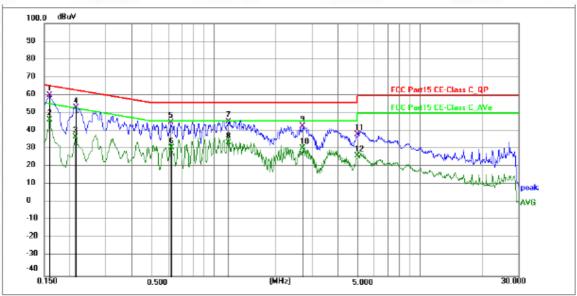
6.1.2 Test Setup Diagram:





6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.1590	47.26	10.47	57.73	65.52	-7.79	QP	Р	
2	0.1590	33.77	10.47	44.24	55.52	-11.28	AVG	Р	
3	0.2127	23.70	10.60	34.30	53.10	-18.80	AVG	Р	
4	0.2130	39.77	10.60	50.37	63.09	-12.72	QP	Р	
5	0.4243	33.17	11.20	44.37	57.36	-12.99	QP	Р	
6	0.4243	21.74	11.20	32.94	47.36	-14.42	AVG	Р	
7	1.0000	24.76	10.66	35.42	46.00	-10.58	AVG	Р	
8	1.0050	33.00	10.66	43.66	56.00	-12.34	QP	Р	
9	2.2830	17.99	10.67	28.66	46.00	-17.34	AVG	Р	
10	2.2920	30.24	10.67	40.91	56.00	-15.09	QP	Р	
11	3.6960	18.33	10.65	28.98	46.00	-17.02	AVG	Р	_
12	3.7050	30.41	10.65	41.06	56.00	-14.94	QP	Р	

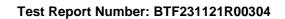
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu∀)	Margin (dB)	Detector	P/F	Remark
1 *	0.1590	49.76	10.47	60.23	65.52	-5.29	QP	Р	
2	0.1590	36.27	10.47	46.74	55.52	-8.78	AVG	Р	
3	0.2127	26.70	10.60	37.30	53.10	-15.80	AVG	Р	
4	0.2130	42.77	10.60	53.37	63.09	-9.72	QP	Р	
5	0.6180	34.19	11.20	45.39	56.00	-10.61	QP	Р	
6	0.6225	20.01	11.19	31.20	46.00	-14.80	AVG	Р	
7	1.1805	35.00	10.66	45.66	56.00	-10.34	QP	Р	
8	1.1805	23.28	10.66	33.94	46.00	-12.06	AVG	Р	
9	2.6924	32.38	10.67	43.05	56.00	-12.95	QP	Р	
10	2.6924	20.37	10.67	31.04	46.00	-14.96	AVG	Р	
11	4.9830	27.75	10.73	38.48	56.00	-17.52	QP	Р	
12	4.9830	15.84	10.73	26.57	46.00	-19.43	AVG	Р	

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


6.2.2 Test Data:

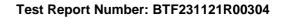
Please Refer to Appendix for Details.

6.3 Maximum conducted output power

6.3 Maximum conducted output power					
	47 CFR Part 15.407(a)(1)(i)				
	47 CFR Part 15.407(a)(1)(ii)				
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)				
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)				
	47 CFR Part 15.407(a)(2)				
	47 CFR Part 15.407(a)(3)(i)				
Test Method:	ANSI C63.10-2013, section 12.3				
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1				
	W provided the maximum antenna gain does not exceed 6 dBi.				
	If transmitting antennas of directional gain greater than 6 dBi are used, the				
	maximum conducted output power shall be reduced by the amount in dB that the				
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any				
	elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).				
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum				
	conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.				
	If transmitting antennas of directional gain greater than 6 dBi are used, the				
	maximum conducted output power shall be reduced by the amount in dB that the				
	directional gain of the antenna exceeds 6 dBi.				
	another gam of the anterma exceeded of abili				
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the				
	maximum conducted output power over the frequency band of operation shall not				
	exceed 1 W.				
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to				
	23 dBi without any corresponding reduction in the maximum conducted output				
	power.				
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater				
rest Limit.	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for				
	each 1 dB of antenna gain in excess of 23 dBi.				
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,				
	omnidirectional applications, and multiple collocated transmitters transmitting the				
	same information. The operator of the U-NII device, or if the equipment is				
	professionally installed, the installer, is responsible for ensuring that systems				
	employing high gain directional antennas are used exclusively for fixed,				
	point-to-point operations.				
	F				
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output				
	power over the frequency band of operation shall not exceed 250 mW provided the				
	maximum antenna gain does not exceed 6 dBi.				
	If transmitting antennas of directional gain greater than 6 dBi are used, the				
	maximum conducted output power shall be reduced by the amount in dB that the				
	directional gain of the antenna exceeds 6 dBi.				
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output				
	power over the frequency bands of operation shall not exceed the lesser of 250				
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.				
	If transmitting antennas of directional gain greater than 6 dBi are used, the				
	maximum conducted output power shall be reduced by the amount in dB that the				
	directional gain of the antenna exceeds 6 dBi.				
	J 5 5 5 5 5				

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	
Procedure.	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
C24 FUT Operations	

6.3.1 E.U.T. Operation:


Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral	density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

	and the land of th
	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
	1 dB to the final result to compensate for the difference between linear averaging
Procedure:	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 x RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.
	or continuous transmission of are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

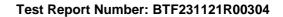
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

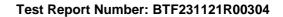
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
rest Requirement.	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
	KDB 789033 D02, Clause C.2
Took I insite	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectral
	envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are
	recovered and directly summed in linear power terms. The recovered amplitude
	data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%
	total to reaction, that frequency to recorded as the appel frequency. The 93/0


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth: a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

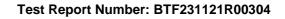
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

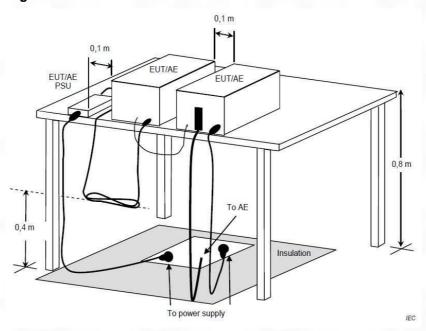
o.o Band edge em	47 CFR Part 15.407(b)	(1)		
	47 CEP Part 15 407(b)(2)			
Test Requirement:	47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4)			
	` ,	` ,		
Toot Mathadi	47 CFR Part 15.407(b)(10)			
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6			
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.			
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.			
	MHz	<u> </u>	MHz	CH-
		MHz		GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5
			5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4
	8.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41	156.7-156.9 162.0125-167.17 167.72-173.2 240-285 322-335.4	2690-2900 3260-3267 3332-3339 3345.8-3358 3600-4400	22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 (²)
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.			
	² Above 38.6			
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.			
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional



	radiator shall not exceed th	e field strength levels specified	in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		((meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	
			3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	a. For above 1GHz, the EU above the ground at a 3 med degrees to determine the pb. The EUT was set 3 meter was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to hof below 30MHz, the anten was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum hf. If the emission level of the specified, then testing could reported. Otherwise the emisting a data sheet. g. Test the EUT in the lowen heart the E	eter fully-anechoic chamber. The eter fully-anechoic chamber. The osition of the highest radiation. Ers away from the interference-re a variable-height antenna tower ried from one meter to four metalue of the field strength. Both he are set to make the measurement is sion, the EUT was arranged to reights from 1 meter to 4 meters and was tuned to heights 1 meter to 360 degrees to find the maxing was set to Peak Detect Functional Hold Mode. The EUT in peak mode was 10dB and be stopped and the peak valuations of the entry and the X axis positioning which is until all frequencies measured by the Antenna Factor- Pread GHz, the disturbance above 180 and the X axis positioning which is until all frequencies measured by the Antenna Factor- Pread GHz, the disturbance above 180 and the X axis positioning which is until all frequencies measured by the Highest emissions contains the peak measurement is shown that the peak field strength of the peak measurement is shown the peak measurement is	eceiving antenna, which r. ers above the ground to prizontal and vertical ment. its worst case and then so (for the test frequency r) and the rotatable table mum reading. In and Specified and then reported the Highest channel. It is positioning for it is the worst case. It is the worst case and then the worst case. It is the worst case and then the worst case. It is the worst case and then the worst case. It is the worst case and then the worst case. It is the worst case

6.6.1 E.U.T. Operation:

Operating Environment:	Operating Environment:		
Temperature:	25.5 °C		
Humidity:	50.6 %		



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11n(20) are in the report UNII-1 20M 5180MHz Horizontal

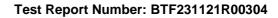
	_	_						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5063.638	83.75	-31.70	52.05	68.20	-16.15	peak	Р
2	5150.000	84.35	-31.66	52.69	68.20	-15.51	peak	Р

UNII-1 20M_5180MHz_Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5052.118	84.77	-31.70	53.07	68.20	-15.13	peak	Р
2	5150.000	85.37	-31.66	53.71	68.20	-14.49	peak	Р

UNII-1 20M 5320MHz Horizontal

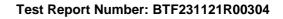
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	85.57	-31.89	53.68	68.20	-14.52	peak	Р
2	5839.623	83.94	-31.85	52.09	68.20	-16.11	peak	Р


UNII-1 20M 5320MHz Vertical

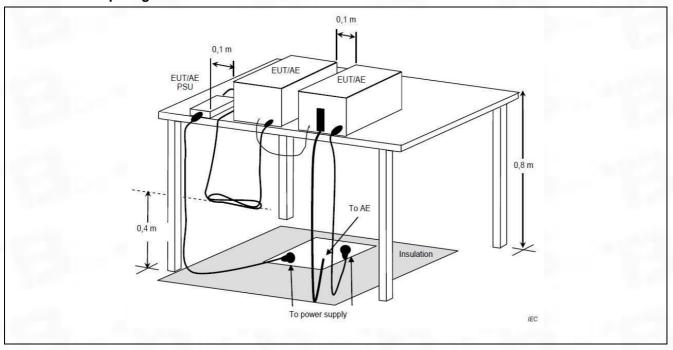
	No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
	1	5350.000	86.25	-31.89	54.36	68.20	-13.84	peak	Р
ĺ	2	5850.833	84.62	-31.85	52.77	68.20	-15.43	peak	Р

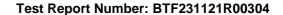
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)		
Test Method:	ANSI C63.10-2013, section	on 12.7.4, 12.7.5, 12.7.6	
Test Limit:	limits set forth in § 15.209 Except as provided elsew	here in this subpart, the emi he field strength levels spec Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30	issions from an intentional
	30-88 88-216 216-960 Above 960	100 ** 150 ** 200 ** 500	3 3 3 3
Procedure:	above the ground at a 3 m degrees to determine the b. The EUT was set 3 or 1 which was mounted on the c. The antenna height is v determine the maximum v polarizations of the antenna d. For each suspected em the antenna was tuned to of below 30MHz, the anterwas turned from 0 degree e. The test-receiver system Bandwidth with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the erre-tested one by one using data sheet. g. Test the EUT in the low h. The radiation measurer Transmitting mode, and for i. Repeat above procedure Remark: 1. Level= Read Level+ Ca 2. Scan from 9kHz to 30M points marked on above points marked on above points marked on above points marked on the reported. 3. The disturbance below	position of the highest radia 0 meters away from the interest top of a variable-height an aried from one meter to four falue of the field strength. But a are set to make the measures in the EUT was arrang heights from 1 meter to 4 means was tuned to heights 1 is to 360 degrees to find the means set to Peak Detect For Hold Mode. The EUT in peak mode was 1 filled be stopped and the peak missions that did not have 1 graphically graphically graphically are performed in X, Y, and the X axis positioning was until all frequencies means able Loss+ Antenna Factor-litz, the disturbance below 3 for which are attenuated more which are attenuated more which are attenuated more which are attenuated more performed in the control of	er. The table was rotated 360 tion. erference-receiving antenna, atenna tower. If meters above the ground to oth horizontal and vertical surement. It was determined to its worst case and then ateters (for the test frequency meter) and the rotatable table maximum reading. If an

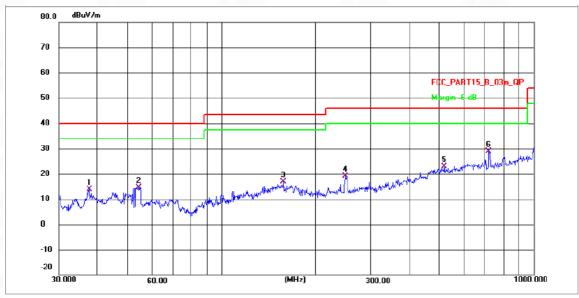


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.7.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

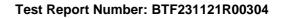


6.7.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	37.5478	32.21	-18.43	13.78	40.00	-26.22	QP	Р
2	54.2610	32.80	-18.24	14.56	40.00	-25.44	QP	Р
3	157.5586	44.49	-27.71	16.78	43.50	-26.72	QP	Р
4	249.4250	45.08	-25.85	19.23	46.00	-26.77	QP	Р
5	515.4373	44.27	-21.30	22.97	46.00	-23.03	QP	Р
6 *	719.1992	52.43	-23.65	28.78	46.00	-17.22	QP	Р

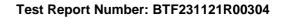
TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	37.5478	33.21	-18.43	14.78	40.00	-25.22	QP	Р
2	50.6747	33.19	-18.27	14.92	40.00	-25.08	QP	Р
3	135.9821	42.75	-27.91	14.84	43.50	-28.66	QP	Р
4	249.4250	46.08	-25.85	20.23	46.00	-25.77	QP	Р
5 *	719.1992	52.43	-23.65	28.78	46.00	-17.22	QP	Р
6	908.0730	50.05	-22.03	28.02	46.00	-17.98	QP	Р

6.8 Undesirable emission limits (above 1GHz)

	47.050 D. 1.45.407(1)						
	47 CFR Part 15.407(b)						
Test Requirement:	47 CFR Part 15.407(b)						
·	47 CFR Part 15.407(b)						
	47 CFR Part 15.407(b)						
Test Method:		ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the					
		nall not exceed an e.i.r.					
		ting in the 5.25-5.35 GH					
	5.15-5.35 GHZ band si	nall not exceed an e.i.r.	p. of -27 aBm/lv	IHZ.			
	For transmitters energy	ting cololy in the F 70F	E OEO CHa bona	1.			
		ting solely in the 5.725- imited to a level of −27					
		e increasing linearly to and from 25 MHz above					
	linearly to a level of 15						
	from 5 MHz above or b						
	dBm/MHz at the band		reasing inleany	to a level of 21			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5			
			5	0.0 0.0			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4			
			2				
Total Limits	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4			
		25					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(²)			
	13.36-13.41						
	1						
	Until February 1, 1999), this restricted band s	hall be 0.490-0.5	510 MHz.			
	² Above 38.6						
	The field strength of ou		in these frames	and bonda aball not			
		nissions appearing with					
	exceed the limits show						
	MHz, compliance with						
	measurement instrume	with the emission limit					
	based on the average						
	15.35apply to these mo		CITIOSIUIIS. TITE	hinaionia III 8			
	13.33appiy to these int	-asultilitilis.					
	Except as provided els	ewhere in this subpart,	the emissions for	rom an intentional			
		ed the field strength lev					
	Frequency (MHz)	Field strength		Measurement			
	1 requeries (ivil iz)	i ioid strongth		MODULOTION			

		(microvolts/meter)	distance
		· ·	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	300	3
		he EUT was placed on the top of	a rotating table 1.5 motors
		a 3 meter fully-anechoic chamber	
		the position of the highest radiat	
		3 meters away from the interferen	
		top of a variable-height antenna t	
		t is varied from one meter to four	
		um value of the field strength. Bo	
		ntenna are set to make the meas	
		d emission, the EUT was arrange	
		ed to heights from 1 meter to 4 m	
		antenna was tuned to heights 1 r	
		egrees to 360 degrees to find the	
	e. The test-receiver s	system was set to Peak Detect Fu	inction and Specified
	Bandwidth with Maxii		
		el of the EUT in peak mode was 1	
		g could be stopped and the peak	
		the emissions that did not have 10	
	re-tested one by one	using peak or average method as	s specified and then reported
Procedure:	in a data sheet.		
	g. Test the EUT in the	e lowest channel, the middle char	nnel, the Highest channel.
	h. The radiation meas	surements are performed in X, Y,	Z axis positioning for
	Transmitting mode, a	ind found the X axis positioning w	hich it is the worst case.
	i. Repeat above proc	edures until all frequencies meas	ured was complete.
	Remark:		
	1. Level= Read Leve	I+ Cable Loss+ Antenna Factor- F	Preamp Factor
	2. Scan from 18GHz	to 40GHz, the disturbance above	18GHz was very low. The
	points marked on abo	ove plots are the highest emission	ns could be found when
	testing, so only above	e points had been displayed. The	amplitude of spurious
	emissions from the ra	adiator which are attenuated more	e than 20dB below the limit
	need not be reported		
		ection, for frequencies above 1GH	Iz, the field strength limits
		e limits. However, the peak field s	
		num permitted average limits spe	
		on of modulation. For the emission	
	the sea the season in the	t and the made were the control of	ile villege peak level is lewel


6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

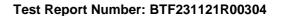
than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been

displayed.

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11n(20) are in the report UNII-1_20M_5180MHz_Horizontal


			_					
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1457.987	77.70	-24.06	53.64	74.00	-20.36	peak	Р
2	3072.613	73.00	-20.71	52.29	74.00	-21.71	peak	Р
3	5968.643	71.36	-17.74	53.62	74.00	-20.38	peak	Р
4	7974.039	74.21	-24.58	49.63	74.00	-24.37	peak	Р
5	9869.576	76.83	-22.86	53.97	74.00	-20.03	peak	Р
6	14054.822	76.63	-21.59	55.04	74.00	-18.96	peak	Р

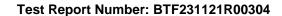
UNII-1 20M 5180MHz Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1346.765	72.36	-23.94	48.42	74.00	-25.58	peak	Р
2	2961.391	73.59	-20.59	53.00	74.00	-21.00	peak	Р
3	5857.421	71.95	-17.62	54.33	74.00	-19.67	peak	Р
4	7862.817	74.80	-24.46	50.34	74.00	-23.66	peak	Р
5	9758.354	77.42	-22.74	54.68	74.00	-19.32	peak	Р
6	13943.600	77.22	-21.47	55.75	74.00	-18.25	peak	Р

UNII-1_20M_5240MHz_Horizontal

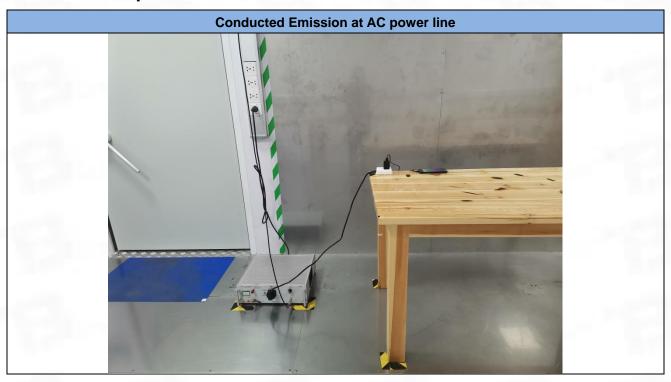
					. –			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1588.950	77.30	-24.13	53.17	74.00	-20.83	peak	Р
2	3203.576	72.60	-20.78	51.82	74.00	-22.18	peak	Р
3	6099.606	70.96	-17.81	53.15	74.00	-20.85	peak	Р
4	8105.002	73.81	-24.65	49.16	74.00	-24.84	peak	Р
5	10000.539	76.43	-22.93	53.50	74.00	-20.50	peak	Р
6	14185.785	76.23	-21.66	54.57	74.00	-19.43	peak	Р

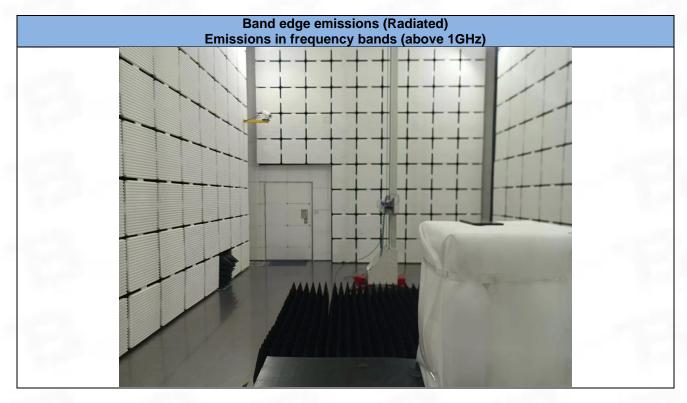
UNII-1_20M_5240MHz_Vertical

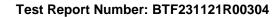

No.	Frequency	equency Reading		Level	Limit	Margin	Detector	P/F	
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F	
1	1477.728	71.96	-24.01	47.95	74.00	-26.05	peak	Р	
2	3092.354	73.19	-20.66	52.53	74.00	-21.47	peak	Р	
3	5988.384	71.55	-17.69	53.86	74.00	-20.14	peak	Р	
4	7993.780	74.40	-24.53	49.87	74.00	-24.13	peak	Р	
5	9889.317	77.02	-22.81	54.21	74.00	-19.79	peak	Р	
6	14074.563	76.82	-21.54	55.28	74.00	-18.72	peak	Р	

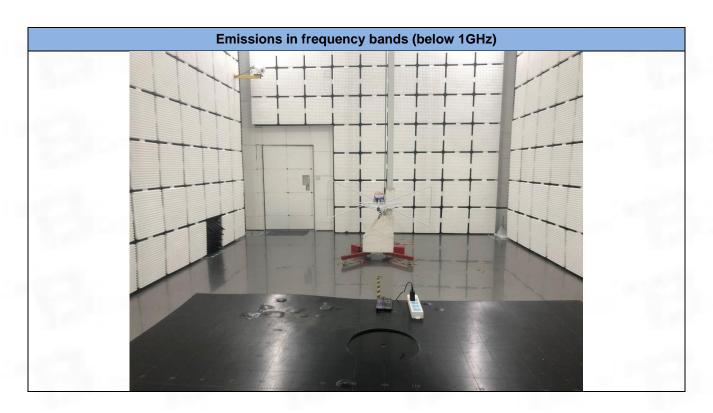
UNII-1_20M_5320MHz_Horizontal

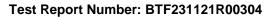
Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/I
1784.987	76.80	-24.08	52.72	74.00	-21.28	peak	Р
3399.613	72.10	-20.73	51.37	74.00	-22.63	peak	Р
6295.643	70.46	-17.76	52.70	74.00	-21.30	peak	Р
8301.039	73.31	-24.60	48.71	74.00	-25.29	peak	Р
10196.576	75.93	-22.88	53.05	74.00	-20.95	peak	Р
14381.822	75.73	-21.61	54.12	74.00	-19.88	peak	Р
	(MHz) 1784.987 3399.613 6295.643 8301.039 10196.576	(MHz) (dBuV) 1784.987 76.80 3399.613 72.10 6295.643 70.46 8301.039 73.31 10196.576 75.93	(MHz) (dBuV) (dB/m) 1784.987 76.80 -24.08 3399.613 72.10 -20.73 6295.643 70.46 -17.76 8301.039 73.31 -24.60 10196.576 75.93 -22.88	(MHz) (dBuV) (dB/m) (dBuV/m) 1784.987 76.80 -24.08 52.72 3399.613 72.10 -20.73 51.37 6295.643 70.46 -17.76 52.70 8301.039 73.31 -24.60 48.71 10196.576 75.93 -22.88 53.05	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 1784.987 76.80 -24.08 52.72 74.00 3399.613 72.10 -20.73 51.37 74.00 6295.643 70.46 -17.76 52.70 74.00 8301.039 73.31 -24.60 48.71 74.00 10196.576 75.93 -22.88 53.05 74.00	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1784.987 76.80 -24.08 52.72 74.00 -21.28 3399.613 72.10 -20.73 51.37 74.00 -22.63 6295.643 70.46 -17.76 52.70 74.00 -21.30 8301.039 73.31 -24.60 48.71 74.00 -25.29 10196.576 75.93 -22.88 53.05 74.00 -20.95	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1784.987 76.80 -24.08 52.72 74.00 -21.28 peak 3399.613 72.10 -20.73 51.37 74.00 -22.63 peak 6295.643 70.46 -17.76 52.70 74.00 -21.30 peak 8301.039 73.31 -24.60 48.71 74.00 -25.29 peak 10196.576 75.93 -22.88 53.05 74.00 -20.95 peak

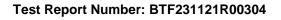

UNII-1_20M_5320MHz_Vertical


No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	1673.765	71.46	-23.96	47.50	74.00	-26.50	peak	J
2	3288.391	72.69	-20.61	52.08	74.00	-21.92	peak	Р
3	6184.421	71.05	-17.64	53.41	74.00	-20.59	peak	Р
4	8189.817	73.90	-24.48	49.42	74.00	-24.58	peak	J
5	10085.354	76.52	-22.76	53.76	74.00	-20.24	peak	Р
6	14270.600	76.32	-21.49	54.83	74.00	-19.17	peak	Р



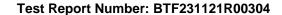

Test Setup Photos




8 EUT Constructional Details (EUT Photos)

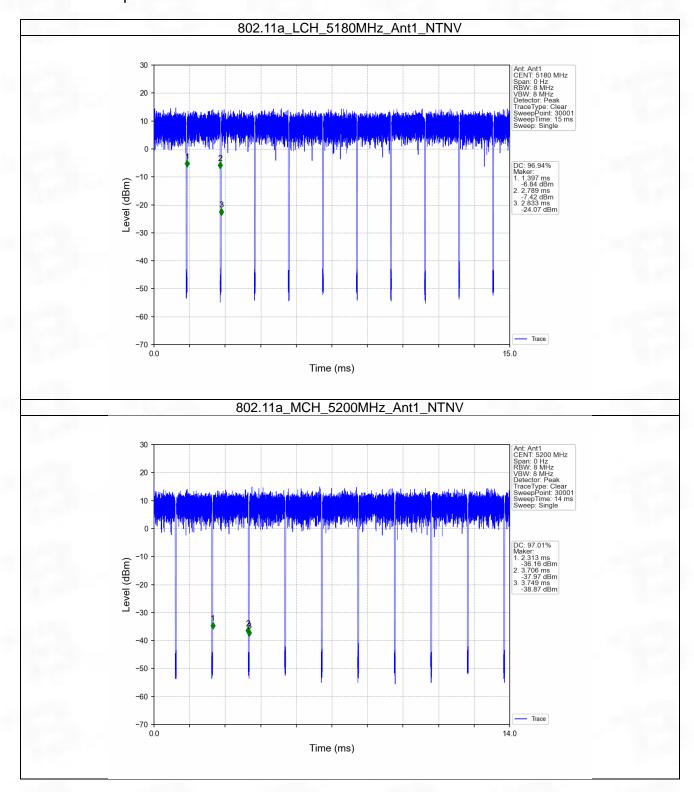
Please refer to the report No. BTF231121R00301

Appendix

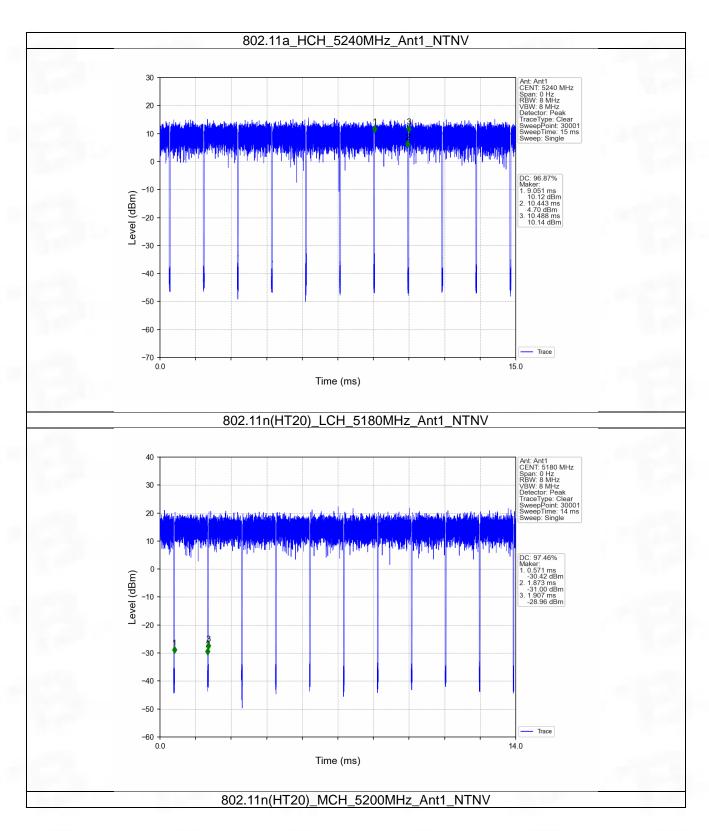


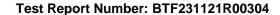
1. Duty Cycle

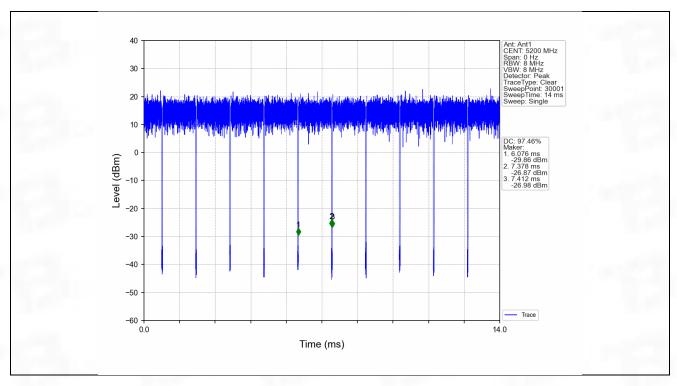
1.1 Ant1

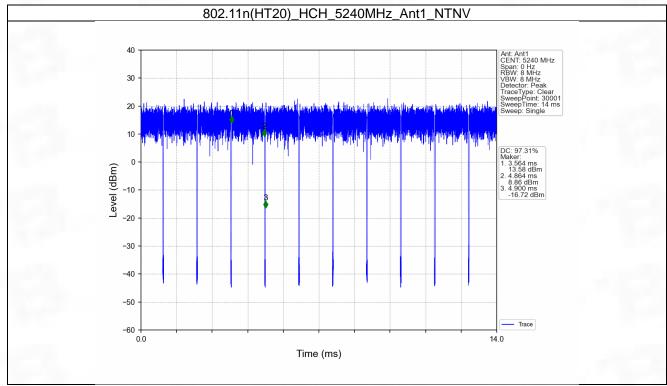

1.1.1 Test Result

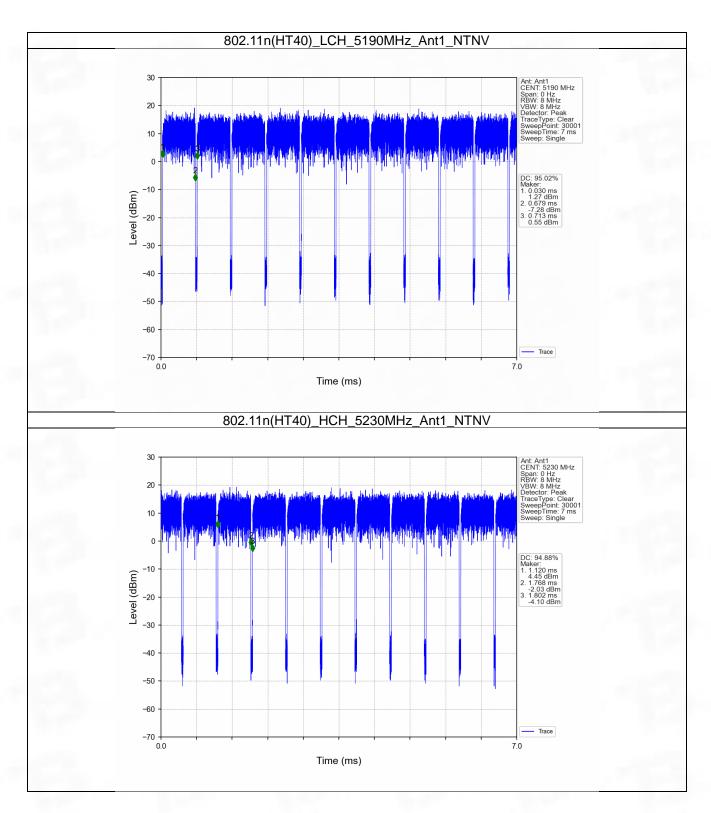
					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
iviode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.393	1.437	96.94	0.14	0.00
802.11a	SISO	5200	1.393	1.436	97.01	0.13	0.03
		5240	1.392	1.437	96.87	0.14	0.07
000 115	SISO	5180	1.302	1.336	97.46	0.11	0.04
802.11n (HT20)		5200	1.302	1.336	97.46	0.11	0.04
		5240	1.300	1.336	97.31	0.12	0.04
802.11n (HT40)	SISO	5190	0.649	0.683	95.02	0.22	0.03
	3130	5230	0.648	0.683	94.88	0.23	0.07
902 1100		5180	1.313	1.356	96.83	0.14	0.07
802.11ac (VHT20)	SISO	5200	1.314	1.356	96.90	0.14	0.03
(11120)		5240	1.314	1.357	96.83	0.14	0.07
802.11ac	SISO	5190	0.652	0.696	93.68	0.28	0.04
(VHT40)		5230	0.652	0.696	93.68	0.28	0.03
802.11ac (VHT80)	SISO	5210	0.326	0.368	88.59	0.53	0.03

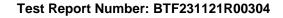


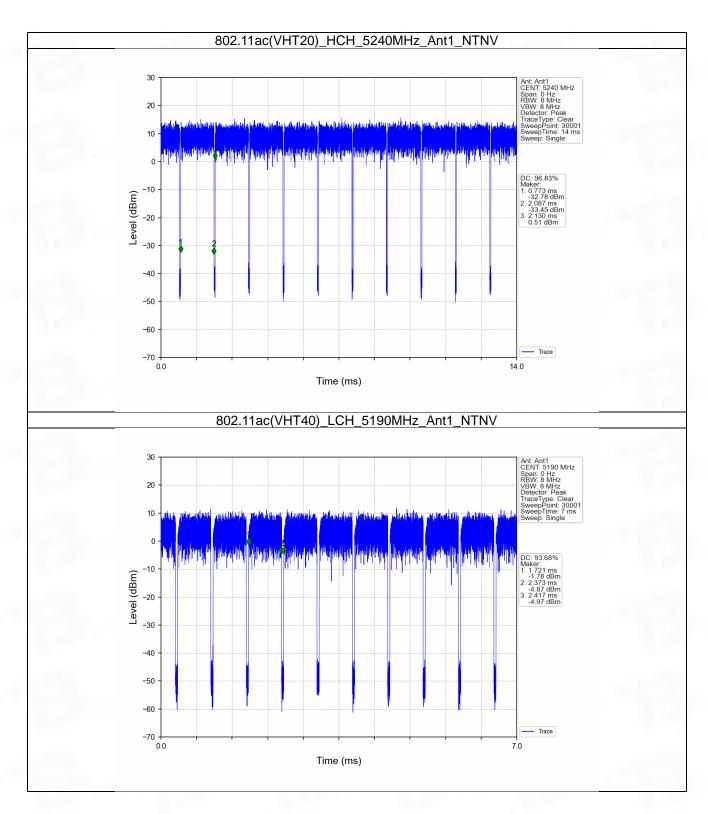

1.1.2 Test Graph

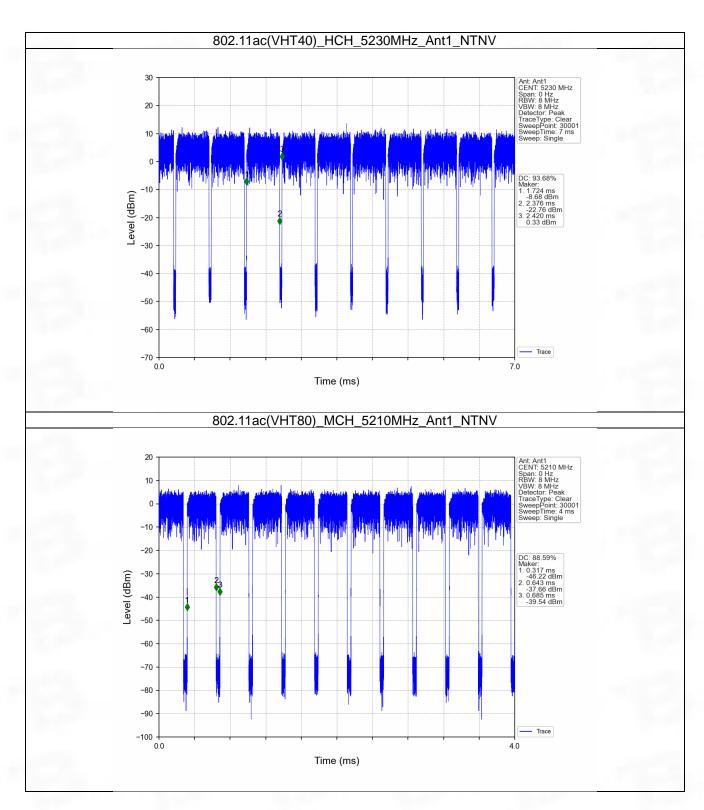


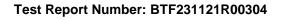






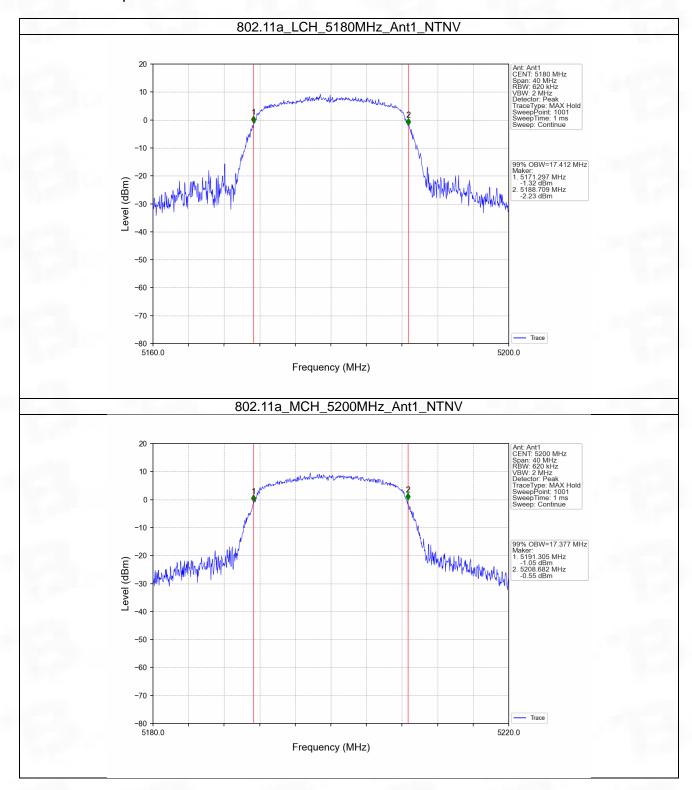




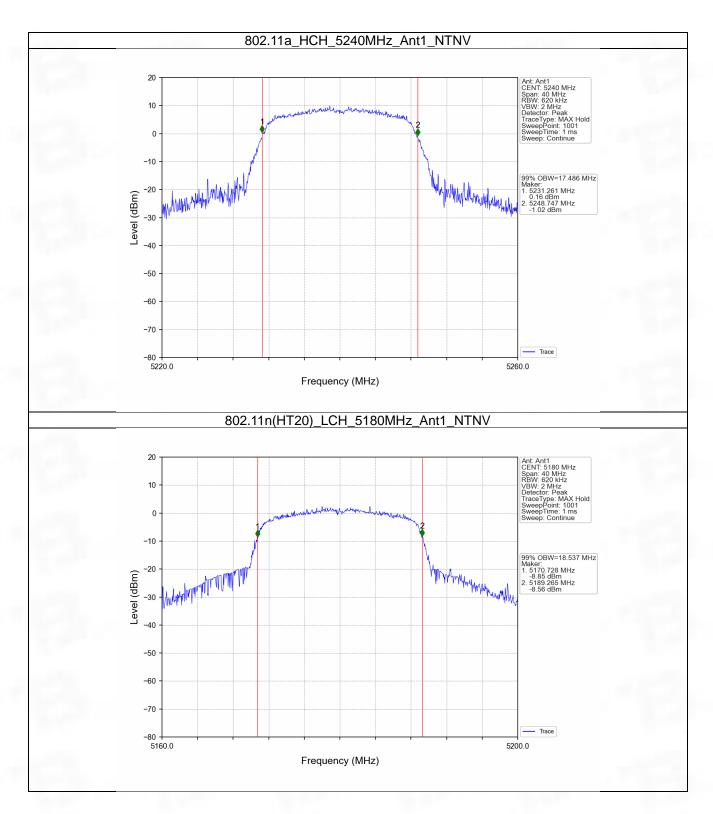


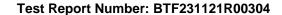
2. Bandwidth

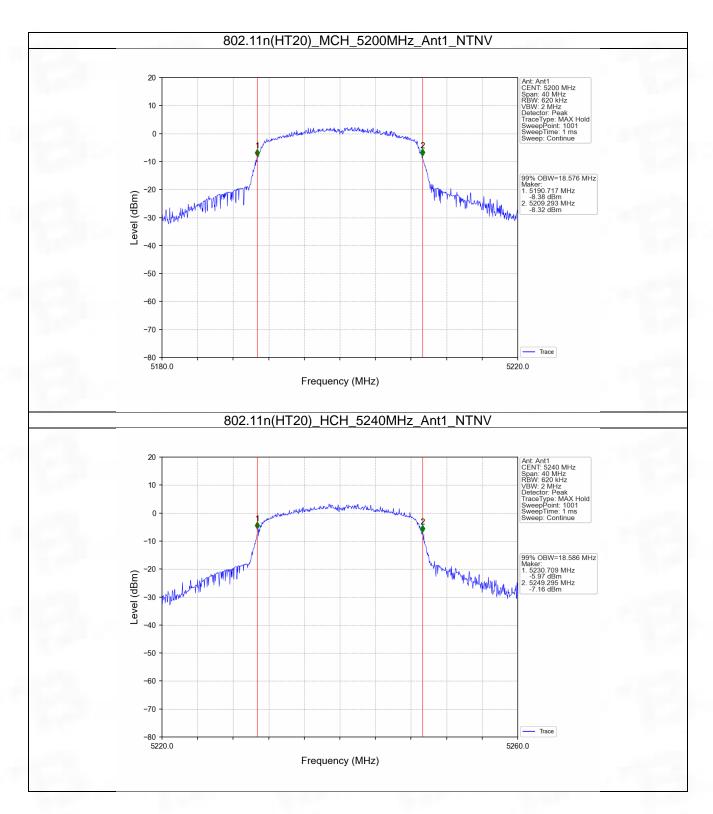
2.1 OBW

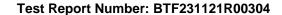

2.1.1 Test Result

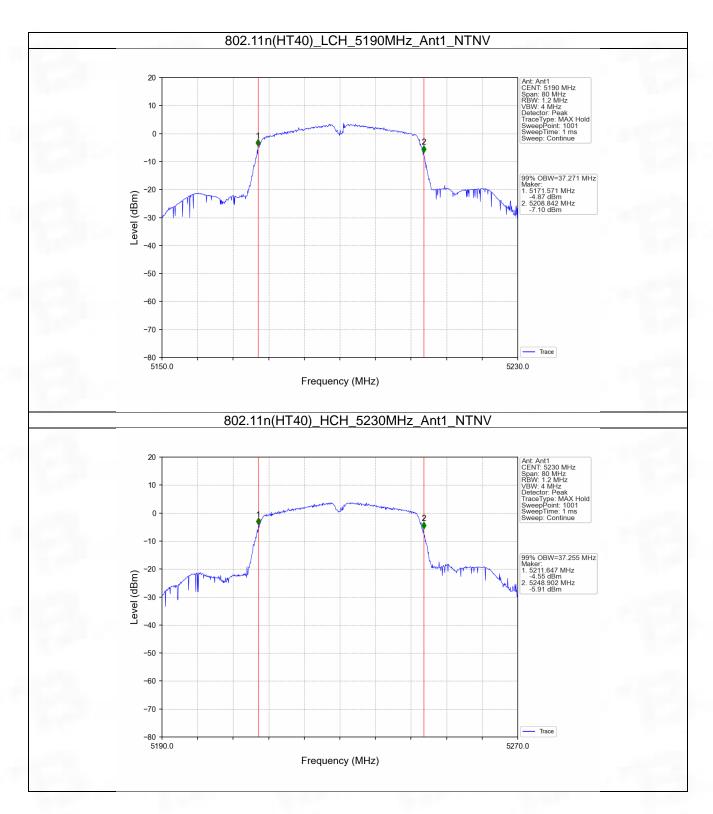
Mode	TX	Frequency	ANT	99% Occupied B	andwidth (MHz)	Verdict
Mode	Type	(MHz)	ANI	Result	Limit	
		5180	1	17.412	/	Pass
802.11a	SISO	5200	1	17.377	/	Pass
		5240	1	17.486	/	Pass
802.11n		5180	1	18.537	/	Pass
(HT20)	SISO	5200	1	18.576	/	Pass
(П120)		5240	1	18.586	/	Pass
802.11n	SISO	5190	1	37.271	/	Pass
(HT40)		5230	1	37.255	/	Pass
000 1100	SISO	5180	1	18.352	/	Pass
802.11ac		5200	1	18.382	/	Pass
(VHT20)		5240	1	18.501	/	Pass
802.11ac	1ac cico	5190	1	36.605	/	Pass
(VHT40)	SISO	5230	1	36.695	/	Pass
802.11ac (VHT80)	SISO	5210	1	76.243	1	Pass

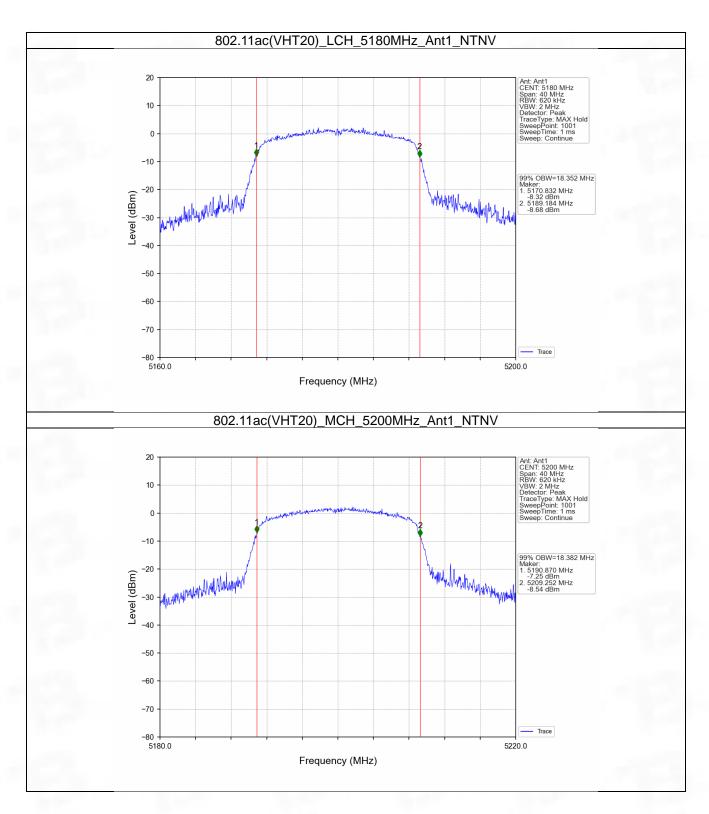


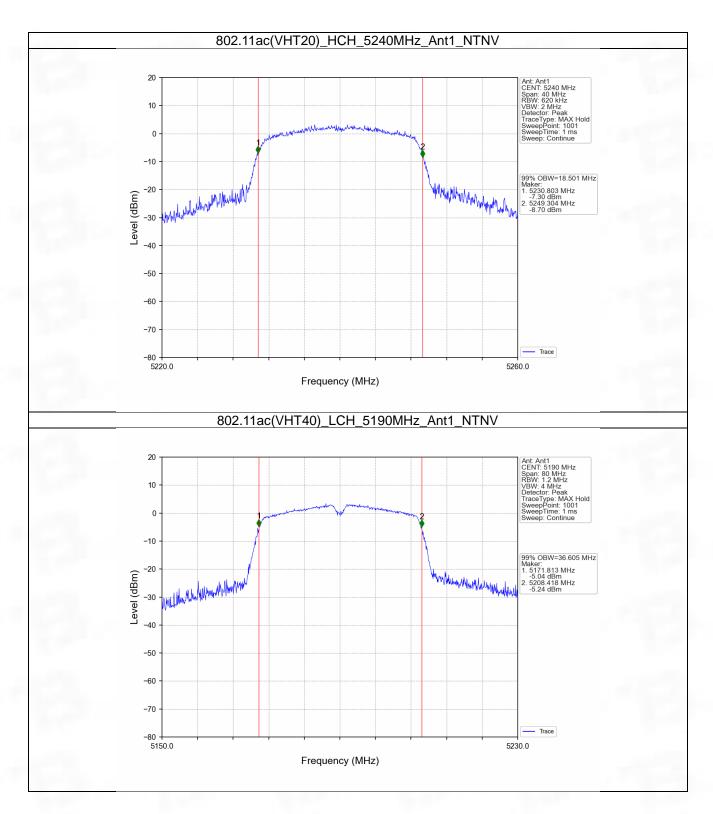

2.1.2 Test Graph

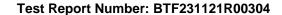


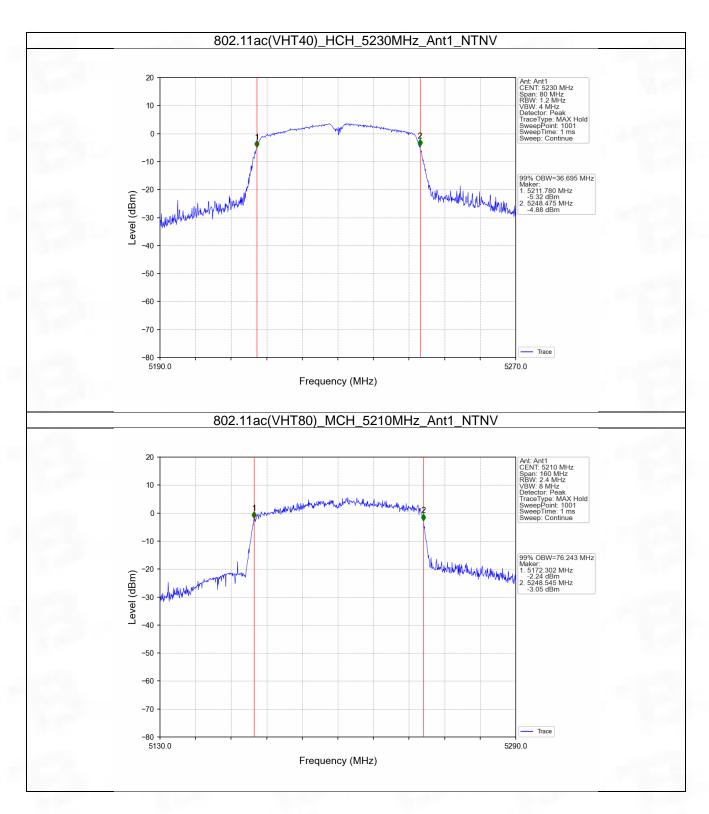


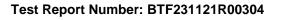




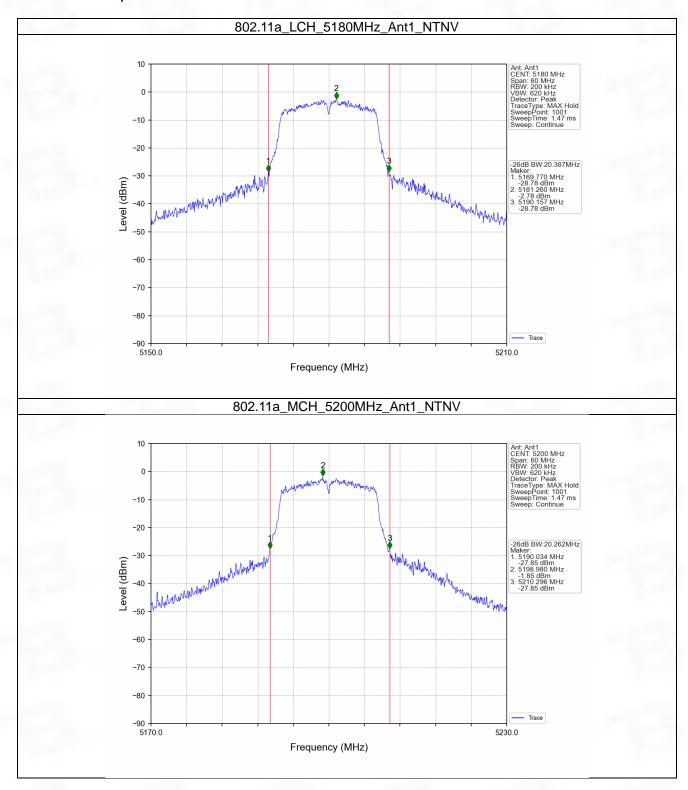


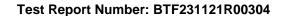


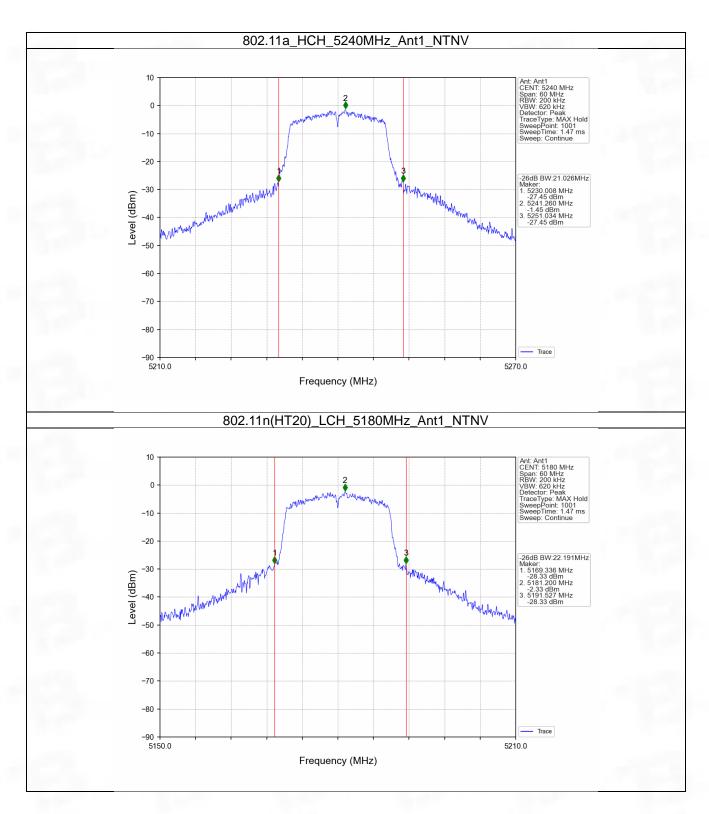




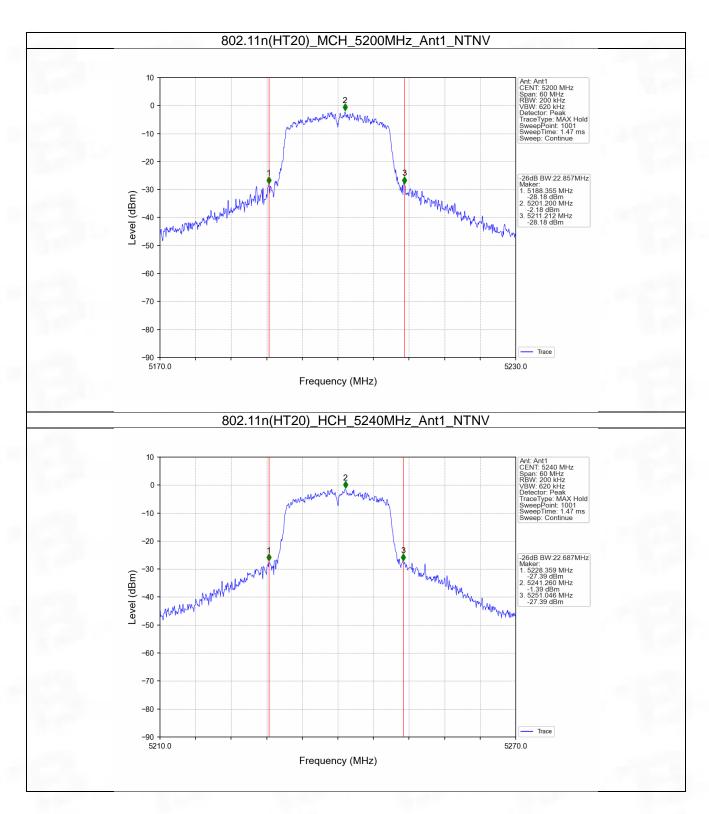
2.2 26dB BW

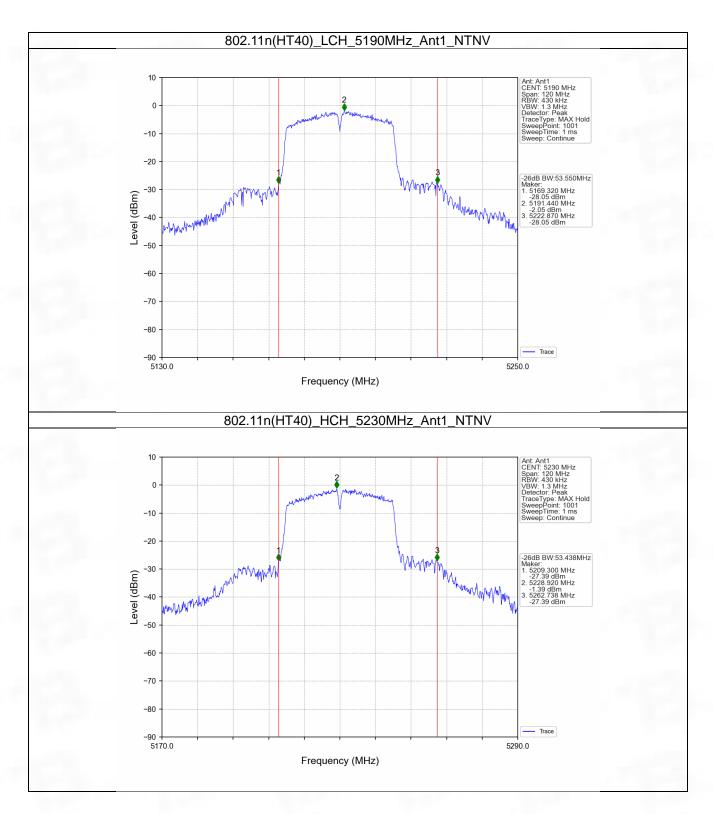

2.2.1 Test Result

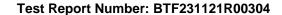

Mada	TX	Frequency	ANIT	26dB Bandv	vidth (MHz)	\/o.v.d:o4
Mode	Туре	(MHz)	ANT	Result	Limit	Verdict
		5180	1	20.387	/	Pass
802.11a	SISO	5200	1	20.262	/	Pass
		5240	1	21.026	/	Pass
000 44 =		5180	1	22.191	/	Pass
802.11n	SISO	5200	1	22.857	/	Pass
(HT20)		5240	1	22.687	/	Pass
802.11n (HT40)	SISO	5190	1	53.550	/	Pass
		5230	1	53.438	/	Pass
000 1100	SISO	5180	1	20.314	/	Pass
802.11ac (VHT20)		5200	1	21.500	/	Pass
(VIII 20)		5240	1	20.666	/	Pass
802.11ac	SISO	5190	1	45.886	/	Pass
(VHT40)		5230	1	49.677	/	Pass
802.11ac (VHT80)	SISO	5210	1	116.356	1	Pass

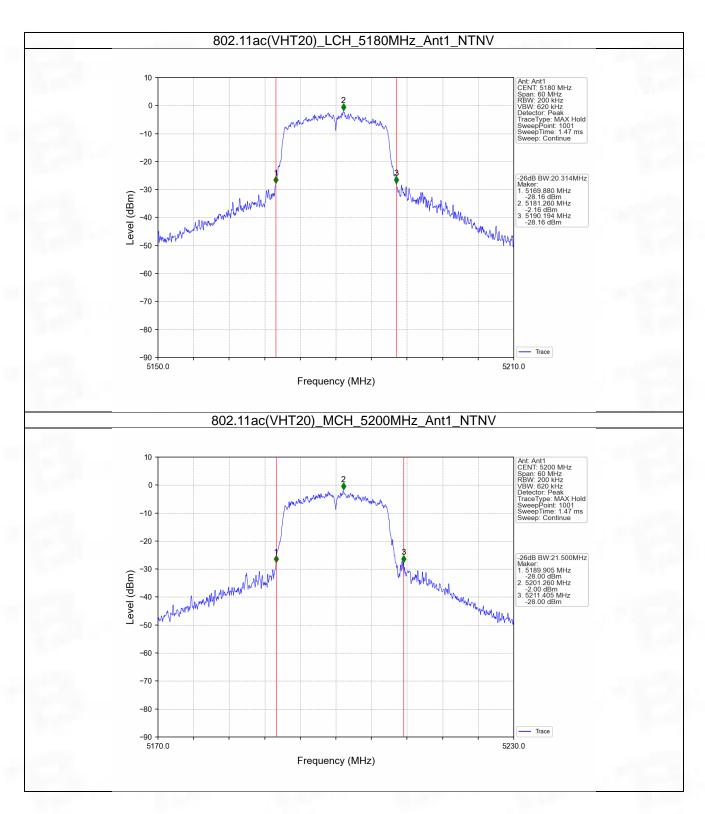


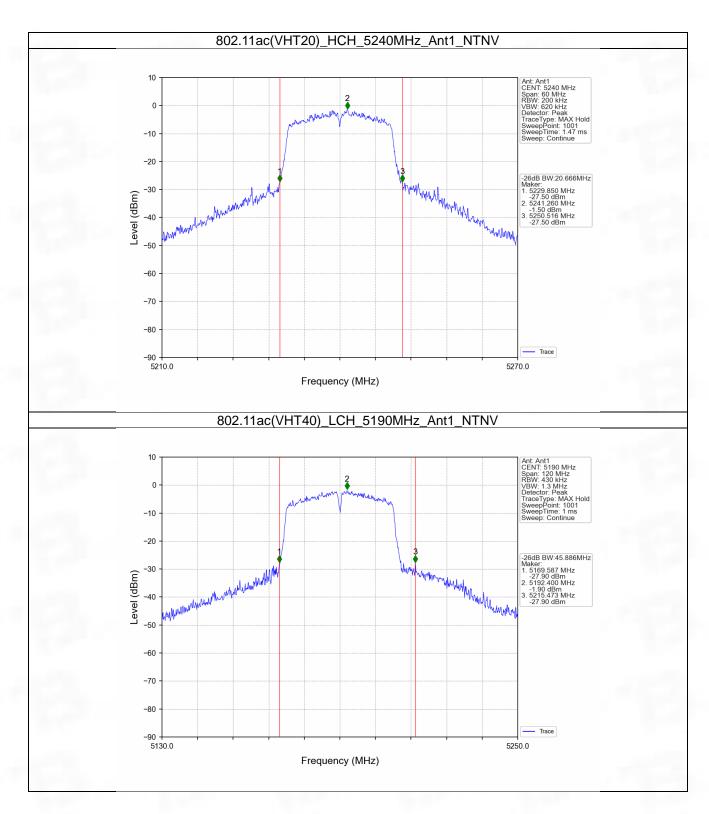
2.2.2 Test Graph

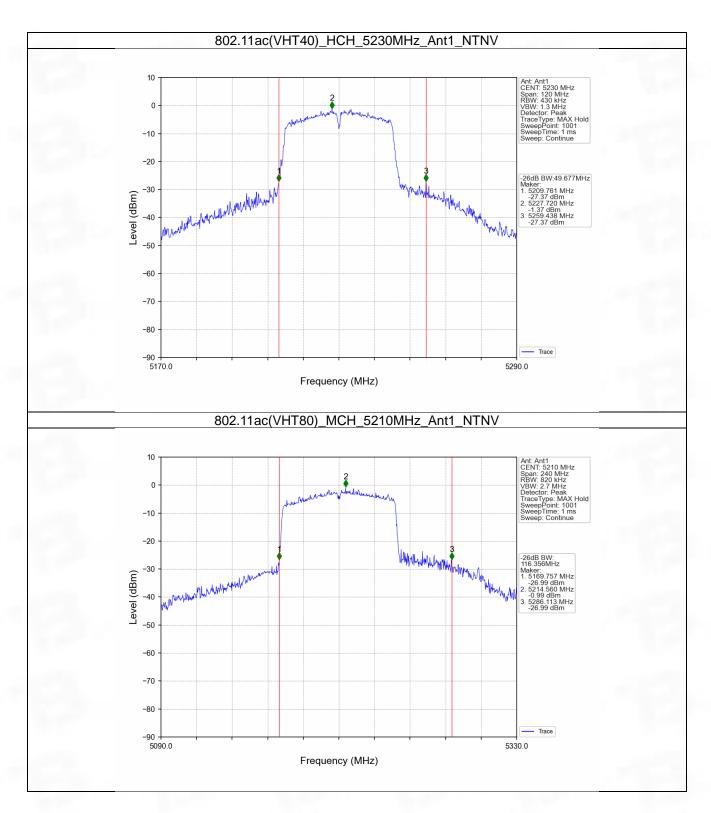


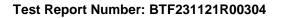


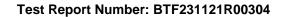






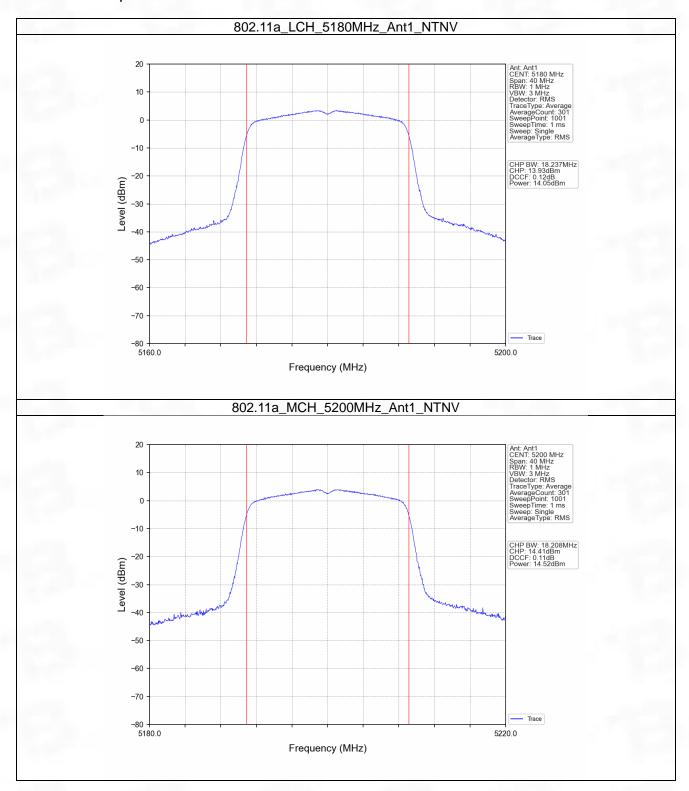


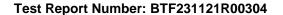


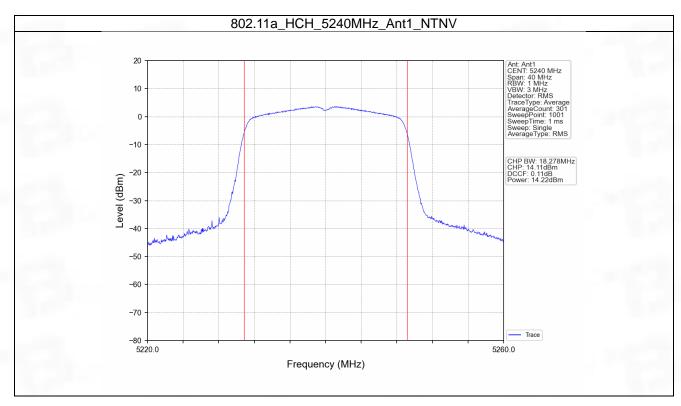


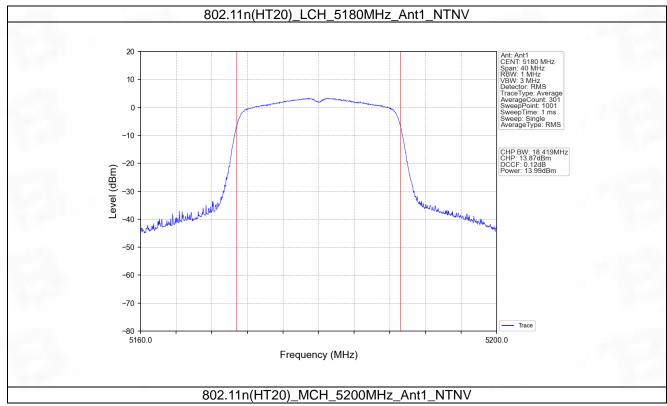
3. Maximum Conducted Output Power

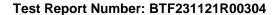
3.1 Power

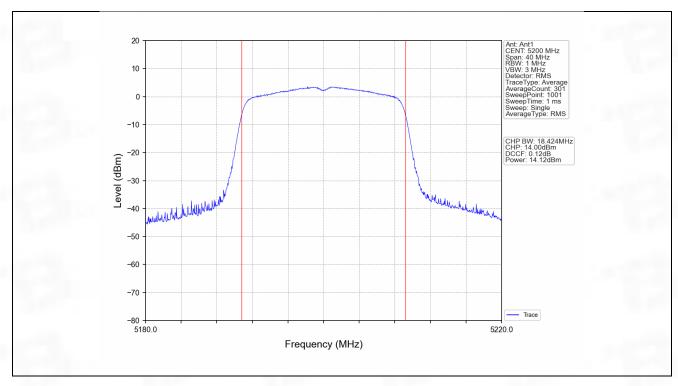

3.1.1 Test Result

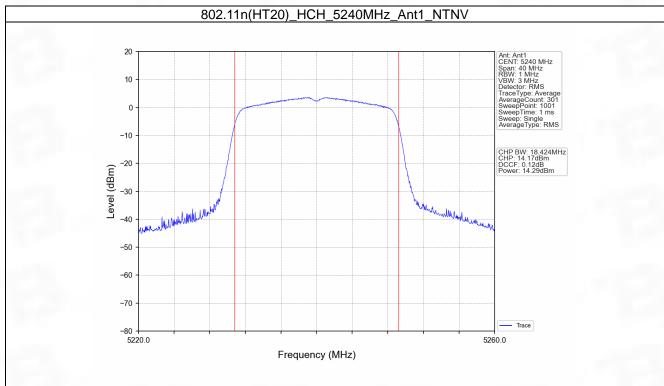

Mode	TX	Frequency	Maximum Average Condu	ucted Output Power (dBm)	Verdict	
Mode	Type	(MHz)	ANT1	Limit	verdict	
			5180	14.05	<=23.98	Pass
802.11a	SISO	5200	14.52	<=23.98	Pass	
		5240	14.22	<=23.98	Pass	
000 11n		5180	13.99	<=23.98	Pass	
802.11n (HT20)	SISO	5200	14.12	<=23.98	Pass	
(11120)		5240	14.29	<=23.98	Pass	
802.11n	SISO	5190	14.33	<=23.98	Pass	
(HT40)		5230	14.36	<=23.98	Pass	
000 1100	SISO	5180	14.01	<=23.98	Pass	
802.11ac (VHT20)		5200	14.22	<=23.98	Pass	
(VIII 20)		5240	14.33	<=23.98	Pass	
802.11ac	0100	5190	14.38	<=23.98	Pass	
(VHT40)	SISO	5230	14.31	<=23.98	Pass	
802.11ac (VHT80)	SISO	5210	14.89	<=23.98	Pass	
Note1: Antenn	a Gain: Ant1	: 1.8dBi;				

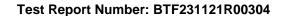


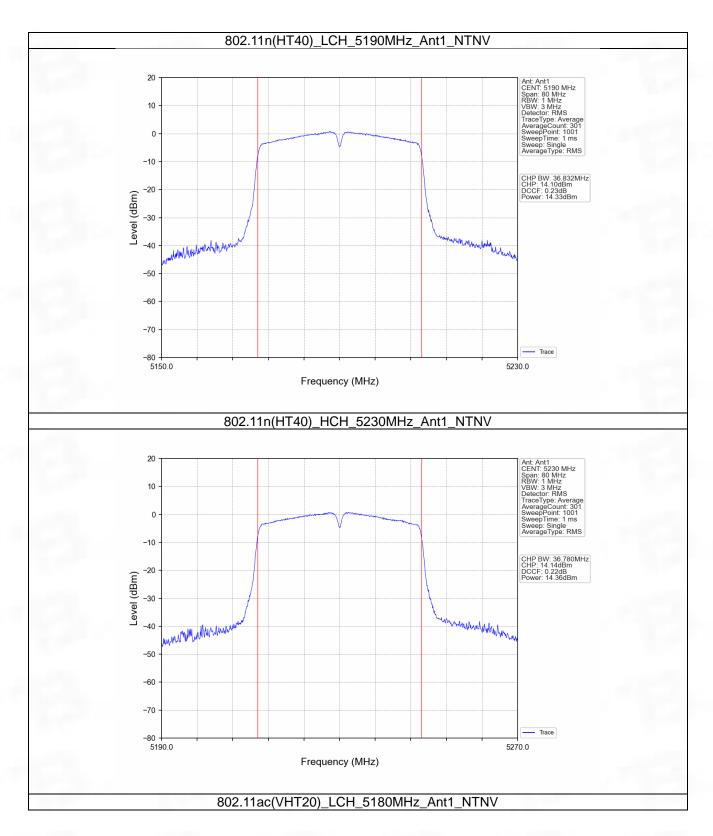

3.1.2 Test Graph

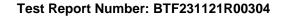


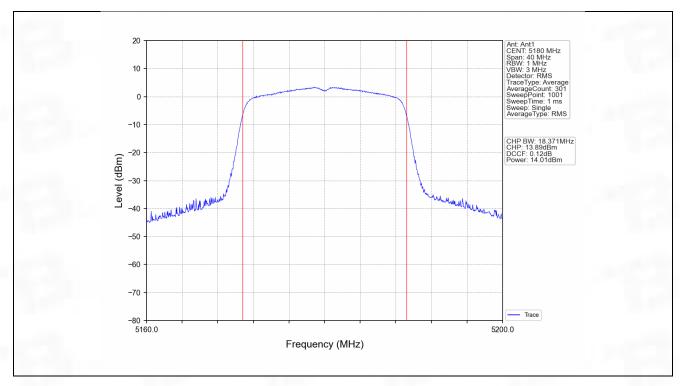


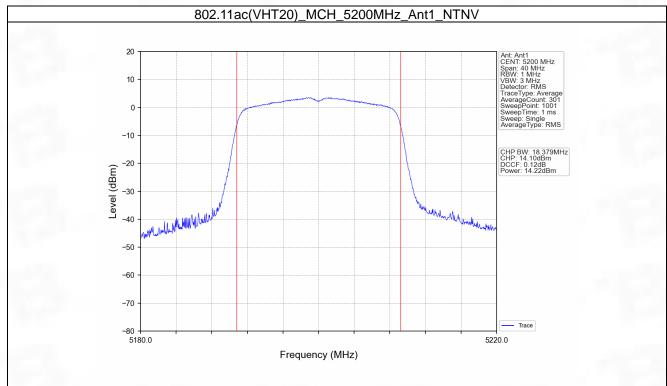


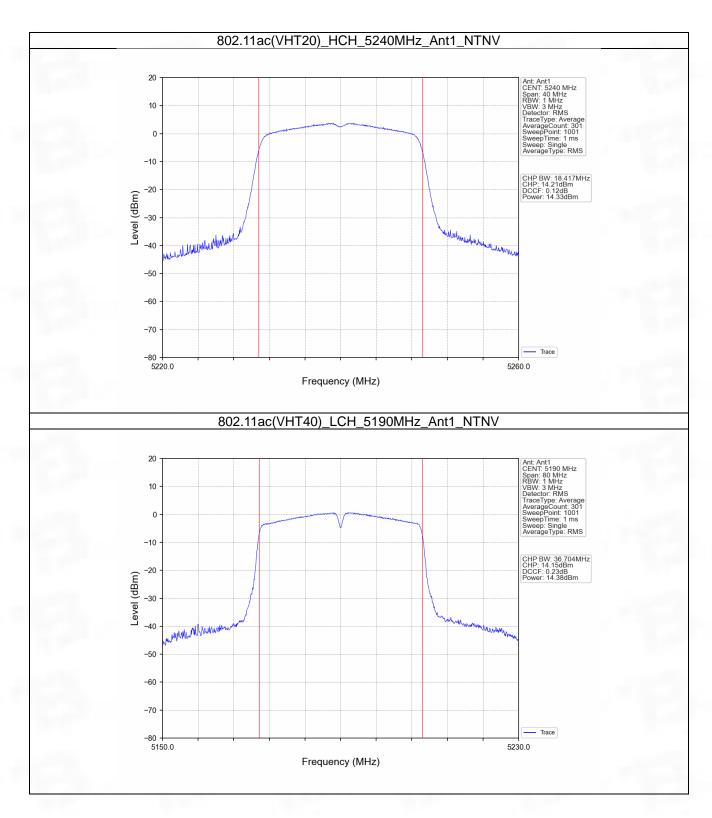


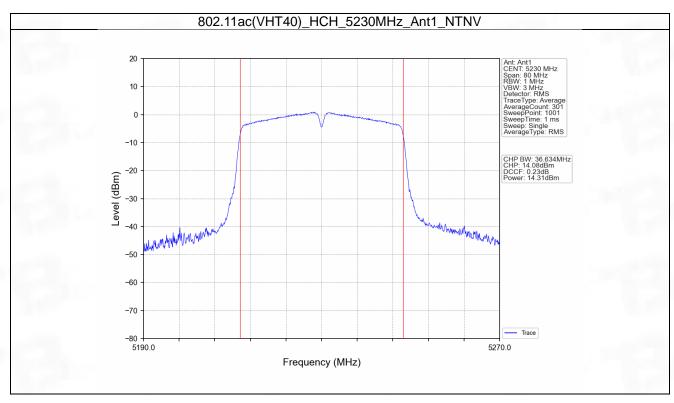


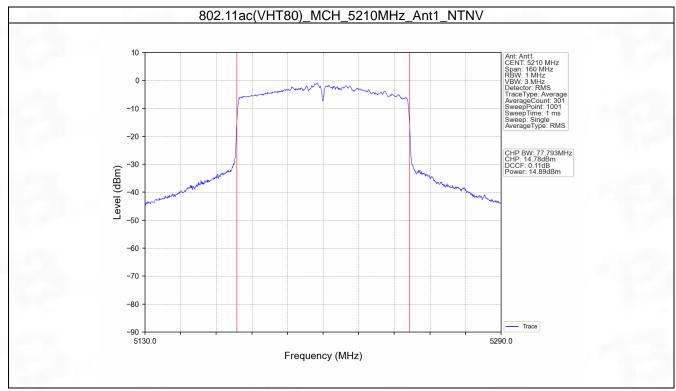


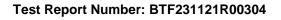






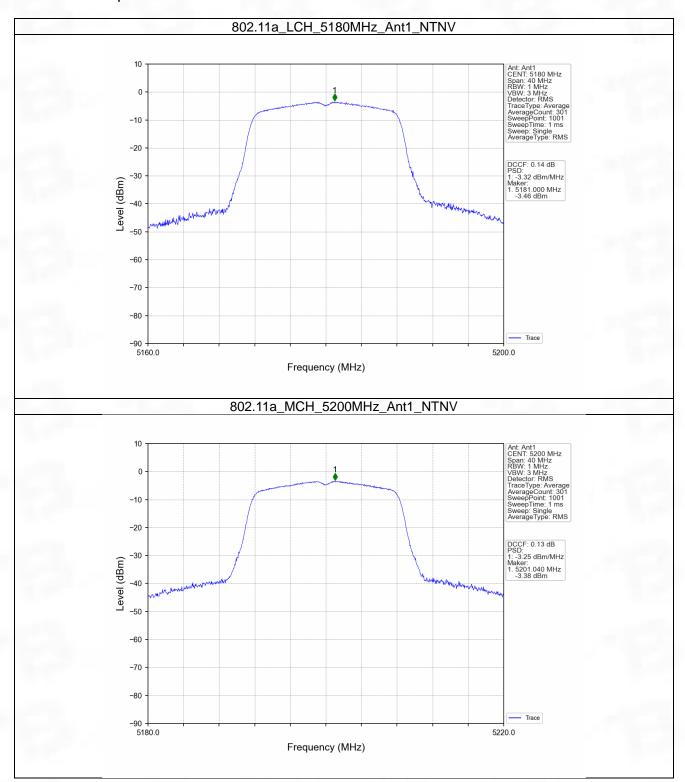




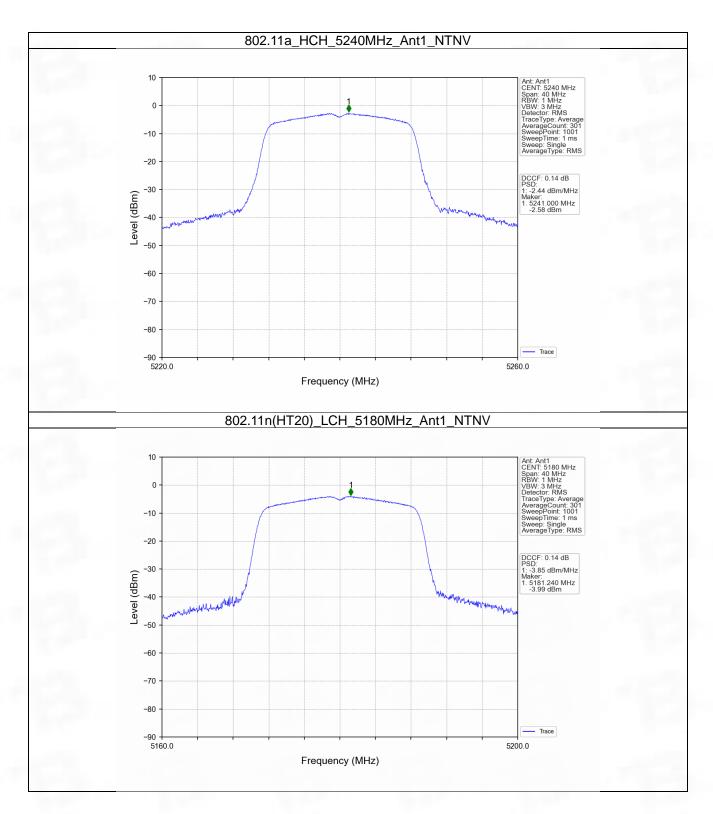


4. Maximum Power Spectral Density

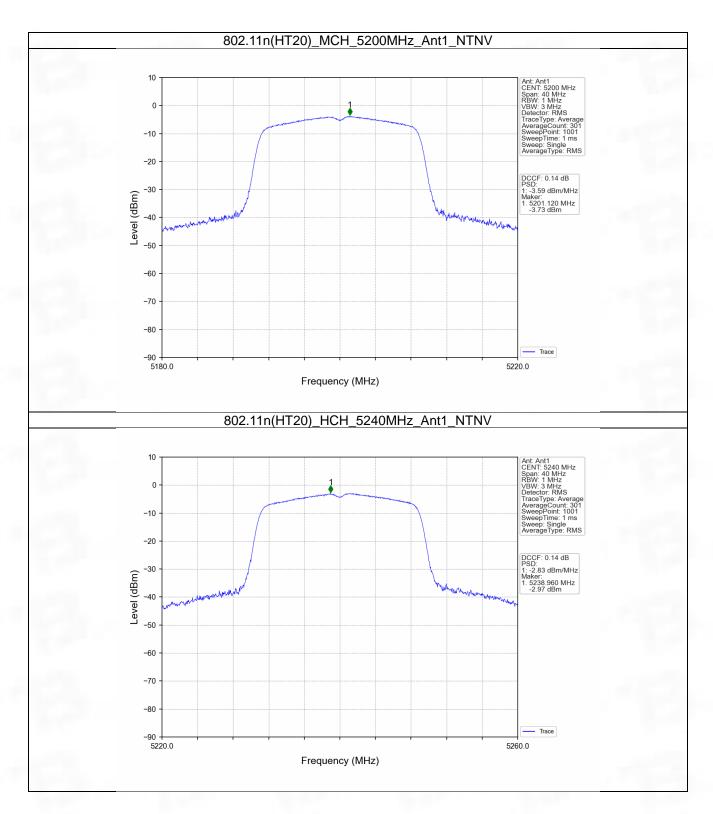
4.1 PSD

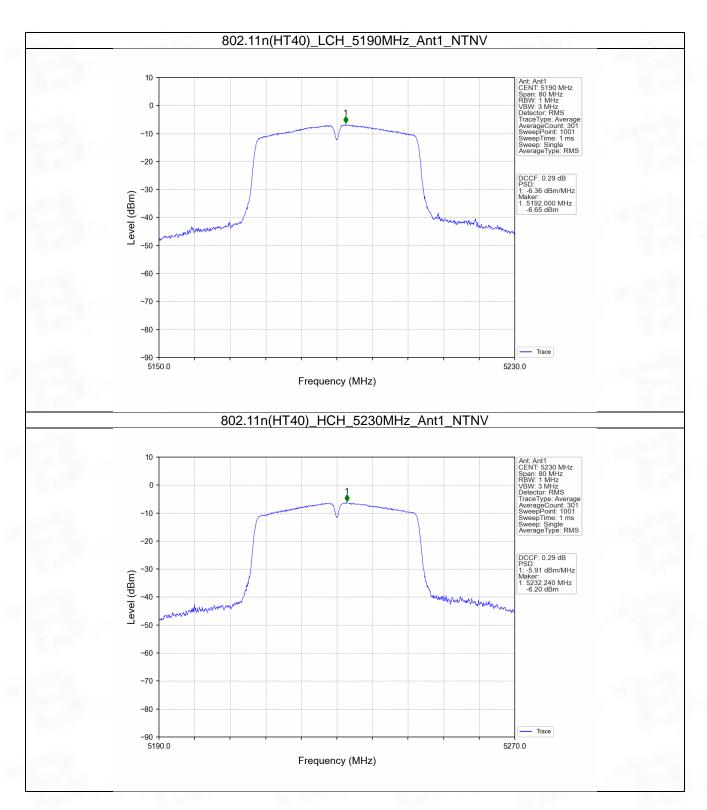

4.1.1 Test Result

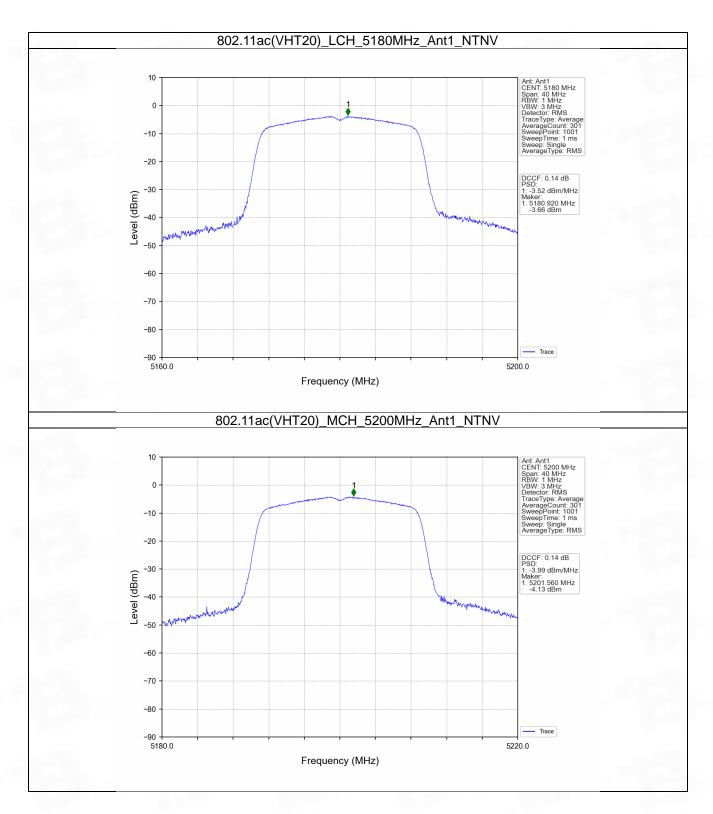
Mode	TX	Frequency	Maximum PS	Verdict	
Mode	Type	(MHz)	ANT1	Limit	verdict
		5180	-3.32	<=11	Pass
802.11a	SISO	5200	-3.25	<=11	Pass
		5240	-2.44	<=11	Pass
000 11n		5180	-3.85	<=11	Pass
802.11n	SISO	5200	-3.59	<=11	Pass
(HT20)		5240	-2.83	<=11	Pass
802.11n	SISO	5190	-6.36	<=11	Pass
(HT40)		5230	-5.91	<=11	Pass
802.11ac (VHT20)	SISO	5180	-3.52	<=11	Pass
		5200	-3.99	<=11	Pass
		5240	-3.45	<=11	Pass
802.11ac	SISO	5190	-7.01	<=11	Pass
(VHT40)	3130	5230	-6.27	<=11	Pass
802.11ac (VHT80)	SISO	5210	-9.19	<=11	Pass
Note1: Antenna (Gain: Ant1: 1.80	dBi;			

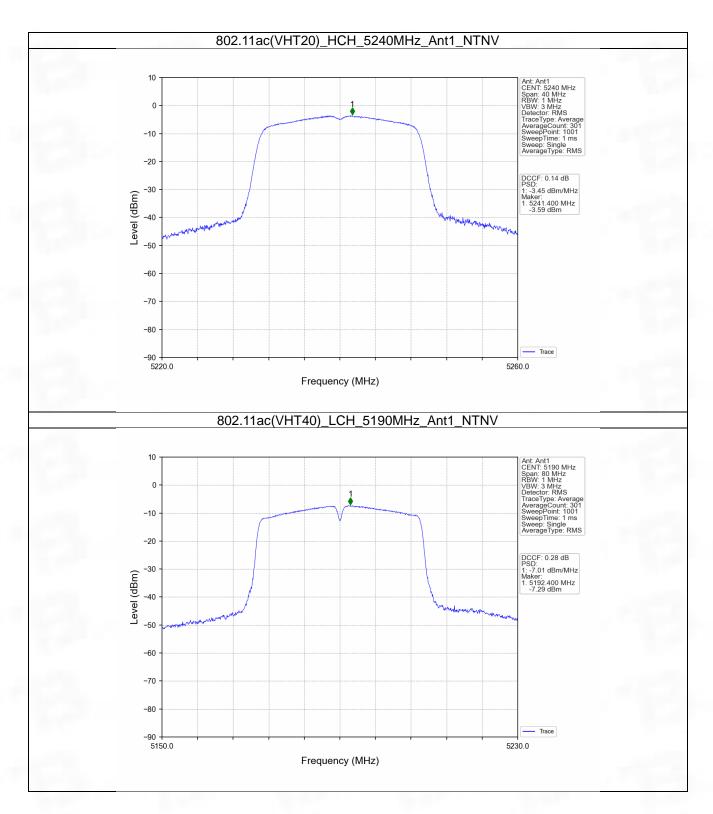


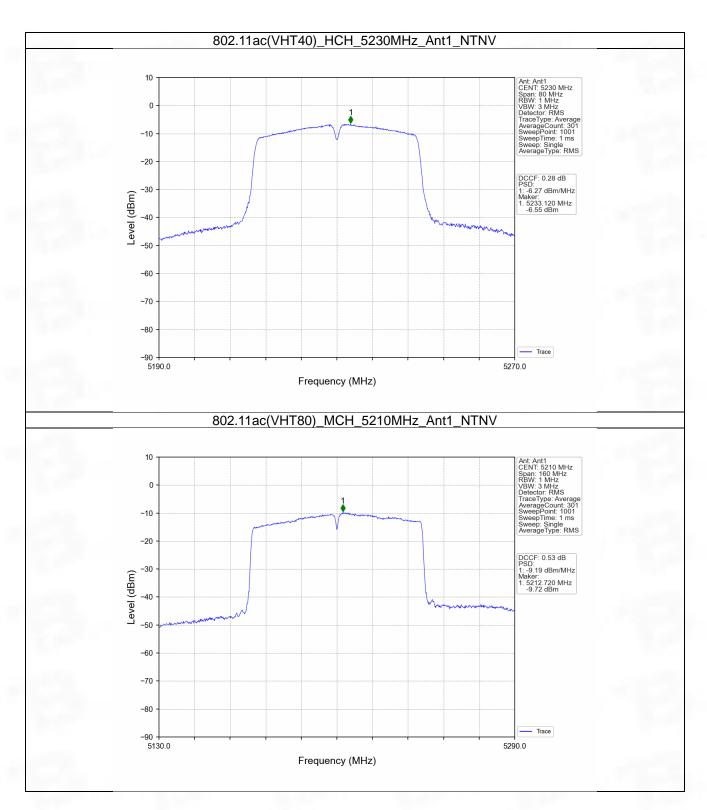
4.1.2 Test Graph

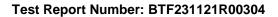




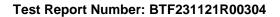








5. Frequency Stability

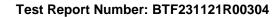

5.1 Ant1

5.1.1 Test Result

				Ant1					
Mode	TX Type	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict		
		(********)	()	102	5179.980	5150 to 5250	Pass		
			20	120	5180.020	5150 to 5250	Pass		
				138	5179.960	5150 to 5250	Pass		
			-30	120	5180.060	5150 to 5250	Pass		
			-20	120	5179.980	5150 to 5250	Pass		
		5180	-10	120	5179.980	5150 to 5250	Pass		
		0.00	0	120	5180.060	5150 to 5250	Pass		
			10	120	5179.980	5150 to 5250	Pass		
			30	120	5180.020	5150 to 5250	Pass		
			40	120	5180.040	5150 to 5250	Pass		
			50	120	5180.060	5150 to 5250	Pass		
				102	5199.980	5150 to 5250	Pass		
			20	120	5200.020	5150 to 5250	Pass		
			20	138	5199.980	5150 to 5250	Pass		
			-30	120	5200.020	5150 to 5250	Pass		
		SISO 5200	-20	120	5199.940	5150 to 5250	Pass		
802.11a	SISO		-10	120	5199.960	5150 to 5250	Pass		
002	0.00		0	120	5200.060	5150 to 5250	Pass		
			10	120	5200.040	5150 to 5250	Pass		
			30	120	5199.960	5150 to 5250	Pass		
			40	120	5199.920	5150 to 5250	Pass		
			50	120	5199.980	5150 to 5250	Pass		
			20	102	5240.020	5150 to 5250	Pass		
				120	5240.020	5150 to 5250	Pass		
				138	5239.960	5150 to 5250	Pass		
			-30	120	5239.980	5150 to 5250	Pass		
			-20	120	5239.980	5150 to 5250	Pass		
				5240	-10	120	5239.980	5150 to 5250	Pass
			0	120	5240.000	5150 to 5250	Pass		
			10	120	5240.020	5150 to 5250	Pass		
			30	120	5239.900	5150 to 5250	Pass		
			40	120	5240.060	5150 to 5250	Pass		
			50	120	5239.940	5150 to 5250	Pass		
				102	5180.020	5150 to 5250	Pass		
		SISO 5180	20	120	5179.940	5150 to 5250	Pass		
				138	5179.980	5150 to 5250	Pass		
802.11n	0100		-30	120	5180.080	5150 to 5250	Pass		
(HT20)	SISO		-20	120	5180.060	5150 to 5250	Pass		
· /			-10	120	5179.960	5150 to 5250	Pass		
			0	120	5180.040	5150 to 5250	Pass		
			10	120	5180.020	5150 to 5250	Pass		

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 82 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

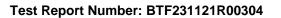
Page 82 of 87



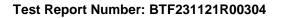
			30	120	5179.960	5150 to 5250	Pass
			40	120	5179.960	5150 to 5250	Pass
			50	120	5179.960	5150 to 5250	Pass
	-		30	102	5200.020	5150 to 5250	Pass
			20	120	5200.020	5150 to 5250	Pass
			20	138	5199.960	5150 to 5250	Pass
			-30	120	5200.020	5150 to 5250 5150 to 5250	Pass
			-30	120			
		5000		120	5199.940	5150 to 5250	Pass
		5200	-10 0	120	5200.000	5150 to 5250	Pass
			10	120	5200.060	5150 to 5250	Pass
				120	5200.020	5150 to 5250	Pass
			30		5199.980	5150 to 5250	Pass
			40	120	5199.960	5150 to 5250	Pass
	-		50	120	5200.020	5150 to 5250	Pass
			00	102	5240.080	5150 to 5250	Pass
			20	120	5239.980	5150 to 5250	Pass
			20	138	5240.040	5150 to 5250	Pass
			-30	120	5240.040	5150 to 5250	Pass
		5040	-20	120	5240.060	5150 to 5250	Pass
		5240	-10	120	5240.040	5150 to 5250	Pass
			0	120	5240.000	5150 to 5250	Pass
			10	120	5240.000	5150 to 5250	Pass
			30	120	5240.020	5150 to 5250	Pass
			40	120	5239.960	5150 to 5250	Pass
			50	120	5240.040	5150 to 5250	Pass
			20	102	5190.000	5150 to 5250	Pass
				120	5190.000	5150 to 5250	Pass
			20	138	5190.120	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250	Pass
			-20	120	5190.000	5150 to 5250	Pass
		5190	-10	120	5190.080	5150 to 5250	Pass
			0	120	5190.040	5150 to 5250	Pass
			10	120	5190.040	5150 to 5250	Pass
			30	120	5190.040	5150 to 5250	Pass
000 11			40	120	5190.000	5150 to 5250	Pass
802.11n	SISO		50	120	5190.000	5150 to 5250	Pass
(HT40)	3130		20	102	5230.000	5150 to 5250	Pass
				120	5230.080	5150 to 5250	Pass
			22	138	5230.040	5150 to 5250	Pass
			-30	120	5230.040	5150 to 5250	Pass
		5000	-20	120	5230.000	5150 to 5250	Pass
		5230	-10	120	5230.120	5150 to 5250	Pass
		SISO 5180	0	120	5230.000	5150 to 5250	Pass
			10	120	5230.080	5150 to 5250	Pass
			30	120	5230.080	5150 to 5250	Pass
			40	120	5230.080	5150 to 5250	Pass
			50	120	5230.040	5150 to 5250	Pass
			20	102	5180.040	5150 to 5250	Pass
	SISO			120	5179.960	5150 to 5250	Pass
802.11ac (VHT20)				138	5179.960	5150 to 5250	Pass
			-30	120	5180.020	5150 to 5250	Pass
			-20	120	5180.100	5150 to 5250	Pass
			-10	120	5180.020	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 83 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 83 of 87

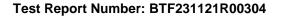


	Г		0	120	5190.060	5150 to 5250	Doco
			0 10	120	5180.060 5180.040	5150 to 5250 5150 to 5250	Pass Pass
			30	120	5180.040	5150 to 5250 5150 to 5250	Pass
			40	120	5179.760	5150 to 5250 5150 to 5250	Pass
			50	120	5179.760	5150 to 5250 5150 to 5250	Pass
	-		30	102	5200.000	5150 to 5250 5150 to 5250	Pass
			20	120	5200.000	5150 to 5250 5150 to 5250	Pass
			20	138	5200.000	5150 to 5250 5150 to 5250	Pass
			20				
			-30 -20	120 120	5199.880 5200.000	5150 to 5250 5150 to 5250	Pass Pass
		F200	-20 -10	120		5150 to 5250 5150 to 5250	
		5200	0	120	5200.060 5200.040	5150 to 5250 5150 to 5250	Pass Pass
			10	120	5200.040	5150 to 5250 5150 to 5250	Pass
			30	120	5199.980	5150 to 5250 5150 to 5250	Pass
			40	120			
					5200.080	5150 to 5250	Pass
	-		50	120	5199.980	5150 to 5250	Pass
			20	102 120	5240.040 5239.920	5150 to 5250	Pass
			20			5150 to 5250	Pass
			20	138 120	5239.940	5150 to 5250	Pass
			-30		5240.100	5150 to 5250	Pass
		E240	-20 -10	120 120	5240.040 5240.040	5150 to 5250 5150 to 5250	Pass
		5240	0	120		5150 to 5250 5150 to 5250	Pass
			10	120	5240.060		Pass
			30	120	5239.960	5150 to 5250	Pass
			40	120	5240.040 5240.000	5150 to 5250 5150 to 5250	Pass Pass
			50	120	5240.000	5150 to 5250 5150 to 5250	Pass
			30	102	5239.960	5150 to 5250 5150 to 5250	Pass
	SISO -	5190	20	120	5190.040	5150 to 5250 5150 to 5250	Pass
				138	5190.000	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250 5150 to 5250	Pass
			-30	120	5190.040	5150 to 5250 5150 to 5250	Pass
			-10	120	5190.000	5150 to 5250	Pass
			0	120	5190.040	5150 to 5250	Pass
			10	120	5190.040	5150 to 5250	Pass
			30	120	5190.040	5150 to 5250	Pass
			40	120	5190.040	5150 to 5250	Pass
802.11ac		SISO	50	120	5190.040	5150 to 5250	Pass
(VHT40)			3	30	102	5230.040	5150 to 5250
(• • • • • • • • • • • • • • • • • • •			20	120	5230.040	5150 to 5250	Pass
			20	138	5230.040	5150 to 5250	Pass
			-30	120	5230.040	5150 to 5250	Pass
			-20	120	5230.040	5150 to 5250	Pass
		5230	-10	120	5230.040	5150 to 5250	Pass
			0	120	5230.040	5150 to 5250	Pass
			10	120	5230.040	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
			40	120	5230.040	5150 to 5250	Pass
			50	120	5230.040	5150 to 5250	Pass
			30	102	5230.040	5150 to 5250 5150 to 5250	Pass
802 1100			20	120	5210.000	5150 to 5250 5150 to 5250	Pass
802.11ac (VHT80)	SISO	SISO 5210	5210	138	5210.000	5150 to 5250 5150 to 5250	Pass
			-30	120	5210.000	5150 to 5250 5150 to 5250	
			-30	120	3210.000	3130 (0 5250	Pass


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 84 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 84 of 87

		-20	120	5210.000	5150 to 5250	Pass
		-10	120	5210.000	5150 to 5250	Pass
		0	120	5210.000	5150 to 5250	Pass
		10	120	5210.000	5150 to 5250	Pass
		30	120	5209.925	5150 to 5250	Pass
		40	120	5210.000	5150 to 5250	Pass
		50	120	5210.000	5150 to 5250	Pass



6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0062	7.91
5190	5230	0.0058	7.67
5210	5210	0.0058	7.65

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --