TEST REPORT

2AQRG-W20Q10C					
TCT220513E015					
May 26, 2022					
SHENZHEN TONGCE TESTING LAB					
TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China					
Shenzhen Feihe Electronics Co., Ltd					
3/F, Bldg 3, HongFa Innovative Park, HuangMaBu Community, Baoan District, Shenzhen, 518101 China					
Shenzhen Feihe Electronics Co., Ltd					
3/F, Bldg 3, HongFa Innovative Park, HuangMaBu Community, Baoan District, Shenzhen, 518101 China					
FCC CFR Title 47 Part 15 Subpart C					
LED table lamp					
N/A					
W20Q10C, TL343Q					
Refer to EUT description of page 3					
May 13, 2022					
May 13, 2022 ~ May 26, 2022					
Rieo LIU Rieo Un ONGCE					
Beryl ZHAO					
Tomsin					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. Ge	eneral Pro	duct Info	rmation					
1.1	. EUT descr	ription						3
	2. Model(s) li							
2. Te	est Result	Summar	y					4
3. Ge	eneral Info	rmation.						5
	. Test envir							
3.2	2. Descriptio	n of Supp	ort Units.					5
4. Fa	cilities and	d Accrea	litations					6
	. Facilities.							
4.2	2. Location .		<u> </u>		<u> </u>			6
4.3	8. Measurem	ent Uncer	rtainty					6
5. Te	est Results	and Me	asureme	ent Data .				7
5.1	. Antenna re	equiremer	nt			\sim		7
	2. Conducted							
5.3	8. Radiated S	Spurious E	Emission	Measurem	nent		()	12
Арре	endix A: Pl	notograp	hs of Te	st Setup				
Appe	endix B: Pl	notograp	hs of El	Л				

1. General Product Information

1.1.EUT description

Product Name:	LED table lamp	
Model/Type reference:	W20Q10C	
Sample Number	TCT220513E015-0101	
Operation Frequency:	112.80kHz ~ 163.10kHz	
Modulation Technology:	Load modulation	
Antenna Type:	Inductive loop coil Antenna	
Rating(s):	Adapter Information: MODEL: K65A240250U INPUT: AC 100-240V, 50/60Hz, 1.5A OUTPUT: DC 24.0V, 2.5A	

Report No.: TCT220513E015

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

						Test	ed with
		W	/20Q10C				\boxtimes
s			FL343Q				
			S)				S
(C is tested	L is tested model, other	C is tested model, other models are	C is tested model, other models are derivative mo	C is tested model, other models are derivative models. The models are derivative models.	C is tested model, other models are derivative models. The models are ide	s IL343Q C is tested model, other models are derivative models. The models are identical in circu y different on the model names. So the test data of W20Q10C can represent the remain C C C C C C C C C C C C C C C C C C C

2. Test Result Summary

Requirement Antenna requirement			CFR 47 S	ection		Result	
			§15.203			PASS	
		t (Salaria	§15.20	07		PASS	
ourious Ei	mission		§15.209	(a)(f)		PASS	
				. (%)			
e test result ju	idgment is deci	ided by the limi	t of test standa	rd.			
	Emissi purious En SS: Test item I: Test item d A: Test case o	Emission purious Emission SS: Test item meets the requ Test item does not meet the Test case does not apply to	Durious Emission SS: Test item meets the requirement. I: Test item does not meet the requirement A: Test case does not apply to the test object	Emission § 15.20 purious Emission § 15.209 SS: Test item meets the requirement. § 15.209 I: Test item does not meet the requirement. § 15.209 I: Test item does not meet the requirement. § 15.209 I: Test item does not meet the requirement. § 15.209	Emission §15.207 purious Emission §15.209(a)(f) SS: Test item meets the requirement. Example 10 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Emission § 15.207 purious Emission §15.209(a)(f) SS: Test item meets the requirement. Item does not meet the requirement. Item to be a constructed on the test object. Item to be a constructed on the test object.	Emission §15.207 PASS purious Emission §15.209(a)(f) PASS SS: Test item meets the requirement. Emission Emission SS: Test item does not meet the requirement. Emission Emission SS: Test item does not meet the requirement. Emission Emission SS: Test item does not meet the requirement. Emission Emission SS: Test item does not meet the requirement. Emission Emission SS: Test item does not meet the requirement. Emission Emission SS: Test item does not apply to the test object. Emission Emission

General Information 3.

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.3 °C	24.5 °C			
Humidity:	56 % RH	56 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
T (1)					

Test Mode:

Engineering mode:	Mode 1: Wireless charging (10W Max)			
	Mode 2: Wireless charging (10W Max) + Full Load(30W Max)			
Remark:	All modes were tested, and the worse mode(Mode 2) is reported only.			

The sample was placed 0.8m for the measurement below above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Mobile Phone	SM-G9350	R28HA2ER3GT	1	SAMSUNG
Noto:		(20)		

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

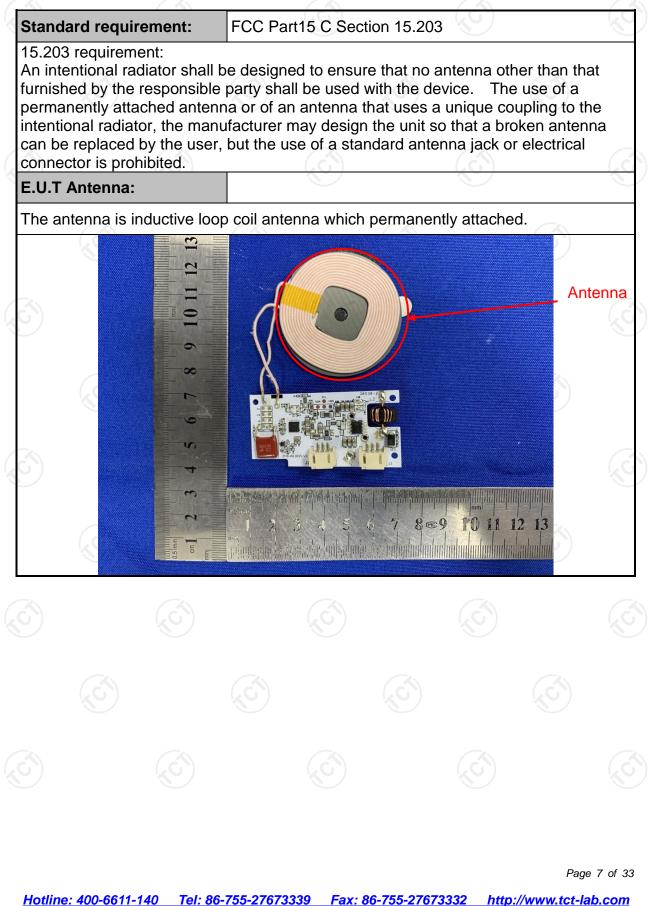
4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

2 RF power, conducted ± 0.12 dF 3 Spurious emissions, conducted ± 0.11 dF 4 All emissions, radiated(<1 GHz) ± 4.56 dF 5 All emissions, radiated(1 GHz - 18 GHz) ± 4.22 dF	No.	Item	MU
3 Spurious emissions, conducted ± 0.11 dE 4 All emissions, radiated(<1 GHz)	1	Conducted Emission	± 3.10 dB
4 All emissions, radiated(<1 GHz)	2	RF power, conducted	± 0.12 dB
5 All emissions, radiated(1 GHz - 18 GHz) ± 4.22 dE	3	Spurious emissions, conducted	± 0.11 dB
	4	All emissions, radiated(<1 GHz)	± 4.56 dB
	5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6 All emissions, radiated (18 GHz- 40 GHz) ± 4.36 dt	6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

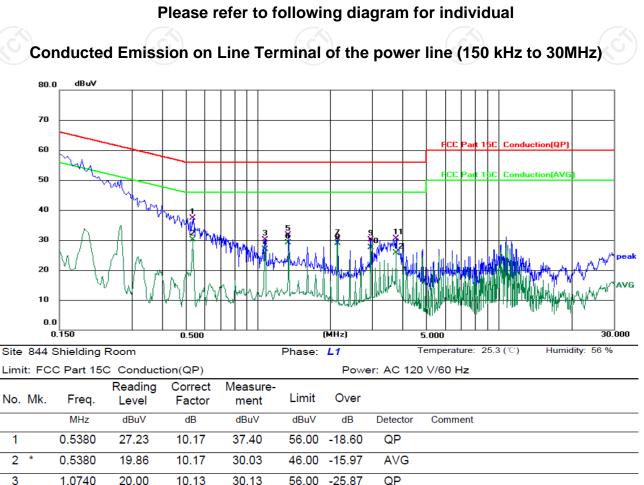
5.2. Conducted Emission

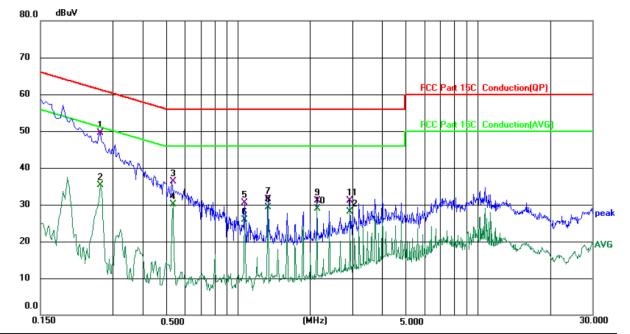
5.2.1. Test Specification

z.i. rest opecification								
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013						
Frequency Range:	150 kHz to 30 MHz	(C)	(\mathcal{C})					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto					
	Frequency range	Limit (dBuV)					
	(MHz)	Quasi-peak	Áverage 🔇					
Limits:	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	Refere	nce Plane						
Test Setup:	E.U.T Adap Test table/Insulation pla Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne						
Test Mode:	Refer to item 3.1							
Test Procedure:	 The E.U.T is connerimpedance stabilizy provides a 500hm/s measuring equipme The peripheral device power through a Licoupling impedance refer to the block photographs). Both sides of A.C. conducted interferememission, the relative provides of the stability of the stability	zation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm tern diagram of the line are checke nce. In order to fin e positions of equ	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o					
	ANSI C63.10: 2013	s must be chang on conducted me	u					

5.2.2. Test Instruments

C	Conducted Emission Shielding Room Test Site (843)							
Ň	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022			
	Line Impedance Stabilisation Newtork(LISN)	sation Schwarzbeck NSLK 8126		8126453	Feb. 24, 2023			
(Line-5	тст	CE-05	N/A	Jul. 07, 2022			
Ň	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			




5.2.3. Test data

	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.5380	27.23	10.17	37.40	56.00	-18.60	QP	
2 *	0.5380	19.86	10.17	30.03	46.00	-15.97	AVG	
3	1.0740	20.00	10.13	30.13	56.00	-25.87	QP	
4	1.0740	16.71	10.13	26.84	46.00	-19.16	AVG	
5	1.3420	21.49	10.12	31.61	56.00	-24.39	QP	
6	1.3420	19.02	10.12	29.14	46.00	-16.86	AVG	
7	2.1459	20.28	10.07	30.35	56.00	-25.65	QP	
8	2.1459	18.87	10.07	28.94	46.00	-17.06	AVG	
9	2.9500	20.12	10.08	30.20	56.00	-25.80	QP	
10	2.9500	17.36	10.08	27.44	46.00	-18.56	AVG	
11	3.7540	20.49	10.09	30.58	56.00	-25.42	QP	
12	3.7540	15.60	10.09	25.69	46.00	-20.31	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding RoomPhase: NTemperature: 25.3 (°C)Humidity: 56 %

Limit:	FCC Part	15C Conduc	tion(QP)		Power: AC 120 V/60 Hz					
No. M	1k. Freq	Reading . Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1 *	0.2660	39.14	10.31	49.45	61.24	-11.79	QP			
2	0.2660	25.06	10.31	35.37	51.24	-15.87	AVG			
3	0.5340	26.20	10.17	36.37	56.00	-19.63	QP			
4	0.5340	19.94	10.17	30.11	46.00	-15.89	AVG			
5	1.070	20.32	10.14	30.46	56.00	-25.54	QP			
6	1.070) 15.77	10.14	25.91	46.00	-20.09	AVG			
7	1.334(21.44	10.15	31.59	56.00	-24.41	QP			
8	1.3340) 19.17	10.15	29.32	46.00	-16.68	AVG			
9	2.138	20.94	10.17	31.11	56.00	-24.89	QP			
10	2.1380	18.77	10.17	28.94	46.00	-17.06	AVG			
11	2.9380	20.97	10.18	31.15	56.00	-24.85	QP			
12	2.9380	17.86	10.18	28.04	46.00	-17.96	AVG			

Note:

Freq. = Emission frequency in MHz

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

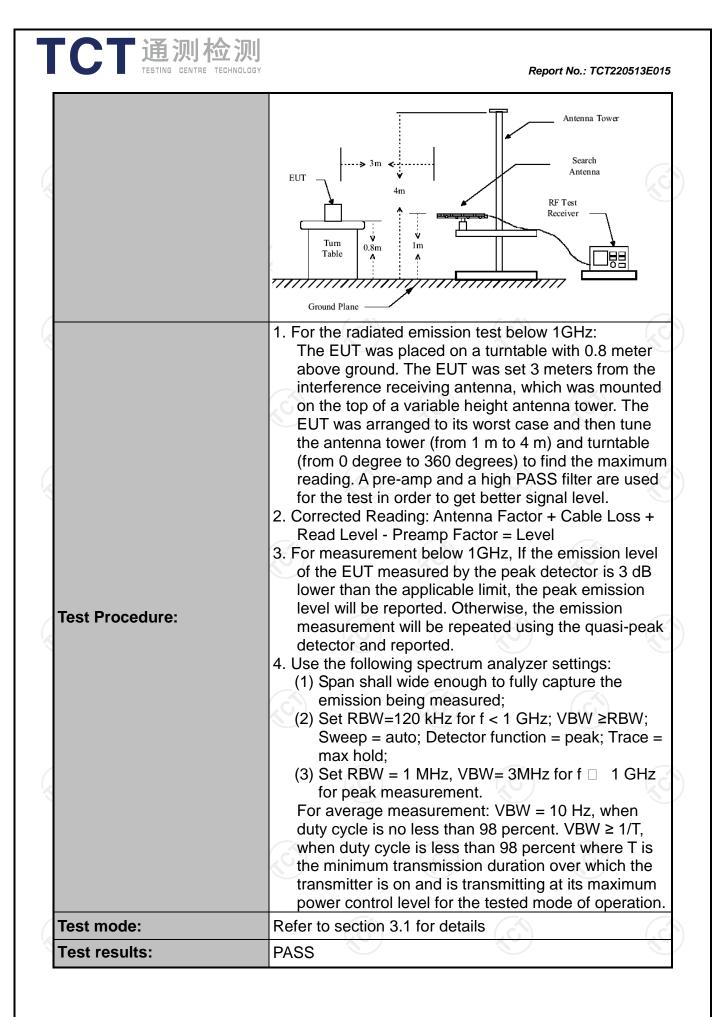
Measurement $(dB\mu V) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

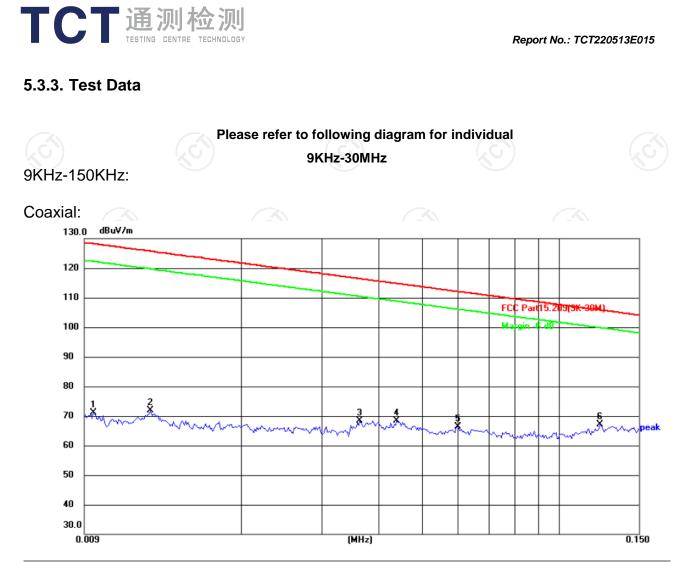

5.3. Radiated Spurious Emission Measurement

5.3.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209								
Test Method:	ANSI C63.10: 2013										
Frequency Range:	9 kHz to 25 GHz										
Measurement Distance:	3 m Horizontal & Vertical										
Antenna Polarization:											
Operation mode:	Refer to item	n 3.1	()		(
	Frequency	Detector	RBW	VBW	Remark						
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value						
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value						
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGHZ	Peak	1MHz	10Hz	Average Value						
	Frequen	су	Field Str (microvolts		Measurement Distance (meters)						
	0.009-0.4	490	2400/F(KHz)	300						
	0.490-1.7	705	24000/F	(KHz)	30						
Limit:	1.705-3		30		30						
	30-88		100		3						
	88-216	1	150		3						
	216-96		200		3						
	Above 9	80	500 3 C								
Test setup:		emissions stance = 3m	below 30	Pre-	Computer						
	30MHz to 10										

Page 12 of 33

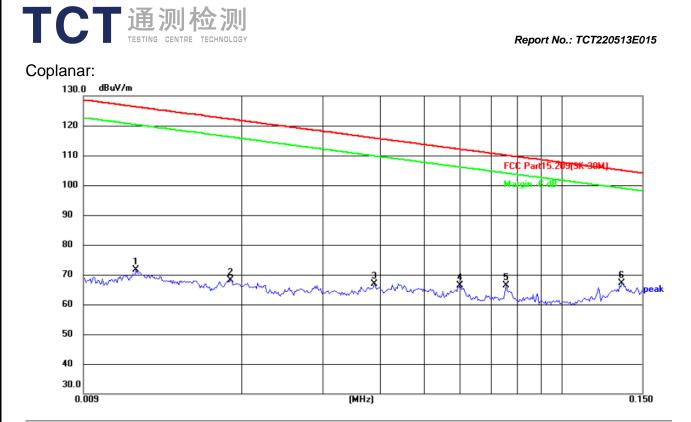


Page 13 of 33

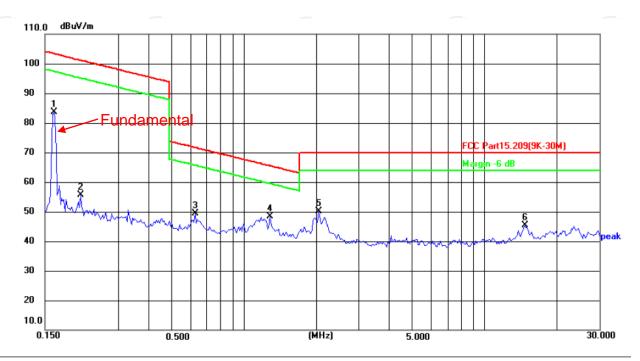
5.3.2. Test Instruments

Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022						
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022						
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023						
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023						
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022						
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022						
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022						
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023						
Antenna Mast	Keleto	RE-AM	N/A	N/A						
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023						
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023						
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

Page 14 of 33

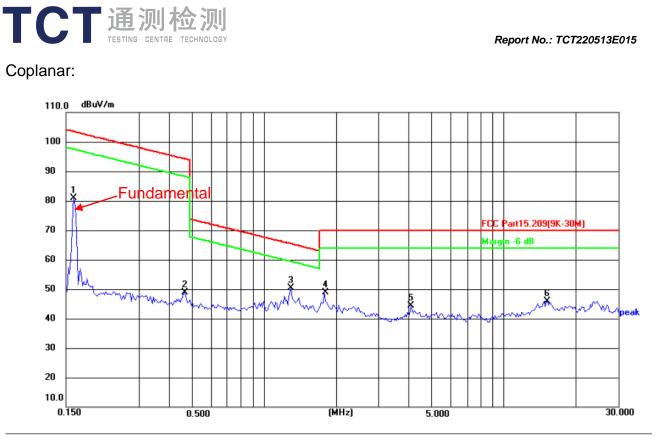

Site					Polari	zation:	Coaxi	al	Temperature: 24(℃)
Limit:	FCC Part15.2		Power: AC 120 V60Hz			lz	Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0094	50.58	20.61	71.19	128.14	-56.95	peak	Ρ	
2	0.0125	51.11	20.80	71.91	125.67	-53.76	peak	Р	
3	0.0364	47.76	20.72	68.48	116.38	-47.90	peak	Р	
4	0.0439	47.51	20.76	68.27	114.76	-46.49	peak	Р	
5	0.0600	45.65	20.79	66.44	112.04	-45.60	peak	Р	
6 *	0.1228	46.89	20.34	67.23	105.82	-38.59	peak	Ρ	
			/			/			

Page 15 of 33



Site					Polari	zation:	Copla	nar	Temperature: 24(°C)
Limit:	FCC Part15.2	Л)		Power: AC 120 V60Hz			z	Humidity: 52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0117	50.73	20.81	71.54	126.24	-54.70	peak	Ρ	
2	0.0188	47.46	20.76	68.22	122.12	-53.90	peak	Ρ	
3	0.0388	46.11	20.73	66.84	115.83	-48.99	peak	Ρ	
4	0.0600	45.65	20.79	66.44	112.04	-45.60	peak	Ρ	
5	0.0756	45.55	20.84	66.39	110.03	-43.64	peak	Ρ	
6 *	0.1353	46.90	20.28	67.18	104.98	-37.80	peak	Ρ	

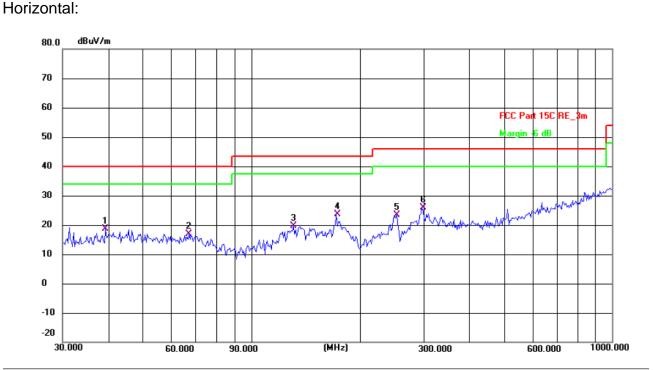
Page 16 of 33


TCT通测检测 TESTING CENTRE TECHNOLOGY

150KHz-30MHz: Coaxial:

Site				Polari	zation:	Coaxia	a/	Temperature: 24(°C)	
Limit:	FCC Part15.2		Power: AC 120 V60Hz				Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1633	63.04	20.55	83.59	103.34	-19.75	peak	Ρ	
2	0.2106	34.97	20.72	55.69	101.13	-45.44	peak	Ρ	
3	0.6307	27.43	21.88	49.31	71.61	-22.30	peak	Ρ	
4 *	1.2862	25.34	23.14	48.48	65.44	-16.96	peak	Ρ	
5	2.0546	25.48	24.68	50.16	70.00	-19.84	peak	Ρ	
6	14.7077	25.83	19.46	45.29	70.00	-24.71	peak	Ρ	
				(\mathbf{U})					

Page 17 of 33



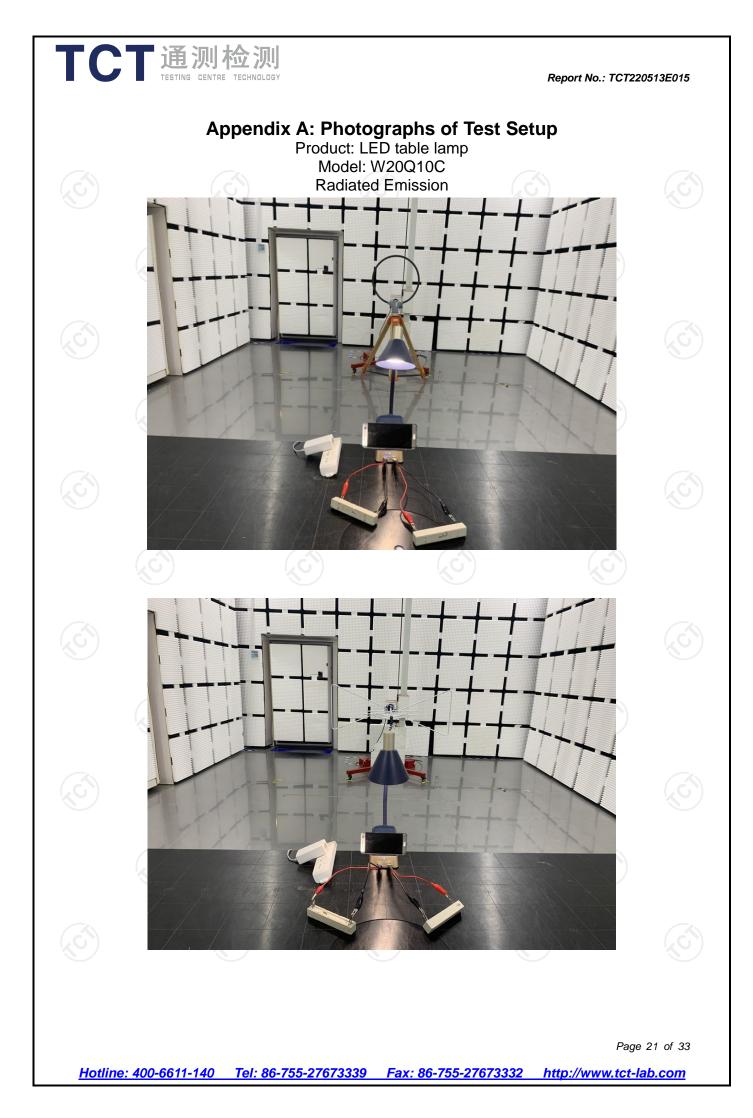
Site			•		Polarization: Coplanar				Temperature: 24(°℃)		
Limit:	FCC Part15.2	VI)		Power	r: AC	120 V60H	Z	Humidity: 52 %			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1	0.1615	60.26	20.55	80.81	103.44	-22.63	peak	Р			
2	0.4682	27.38	21.54	48.92	94.20	-45.28	peak	Ρ			
3 *	1.3003	27.14	23.17	50.31	65.35	-15.04	peak	Р			
4	1.7884	24.69	24.15	48.84	70.00	-21.16	peak	Р			
5	4.1025	15.55	28.87	44.42	70.00	-25.58	peak	Р			
6	15.1844	26.51	19.41	45.92	70.00	-24.08	peak	Р			

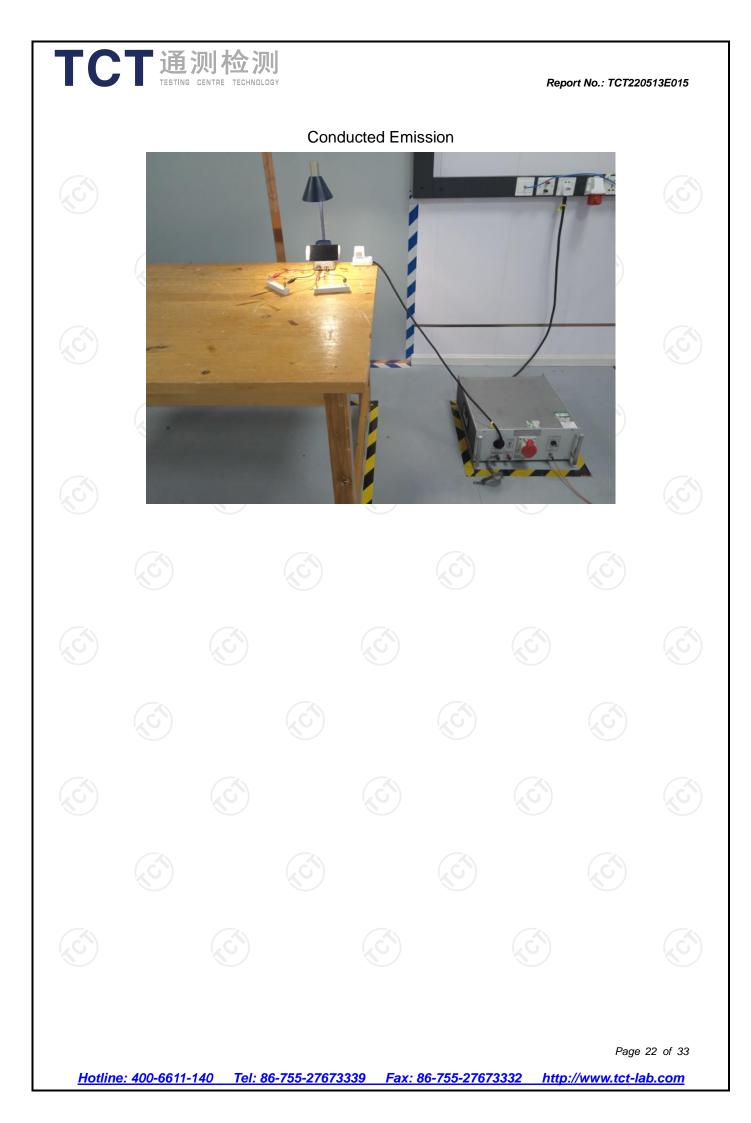
Page 18 of 33

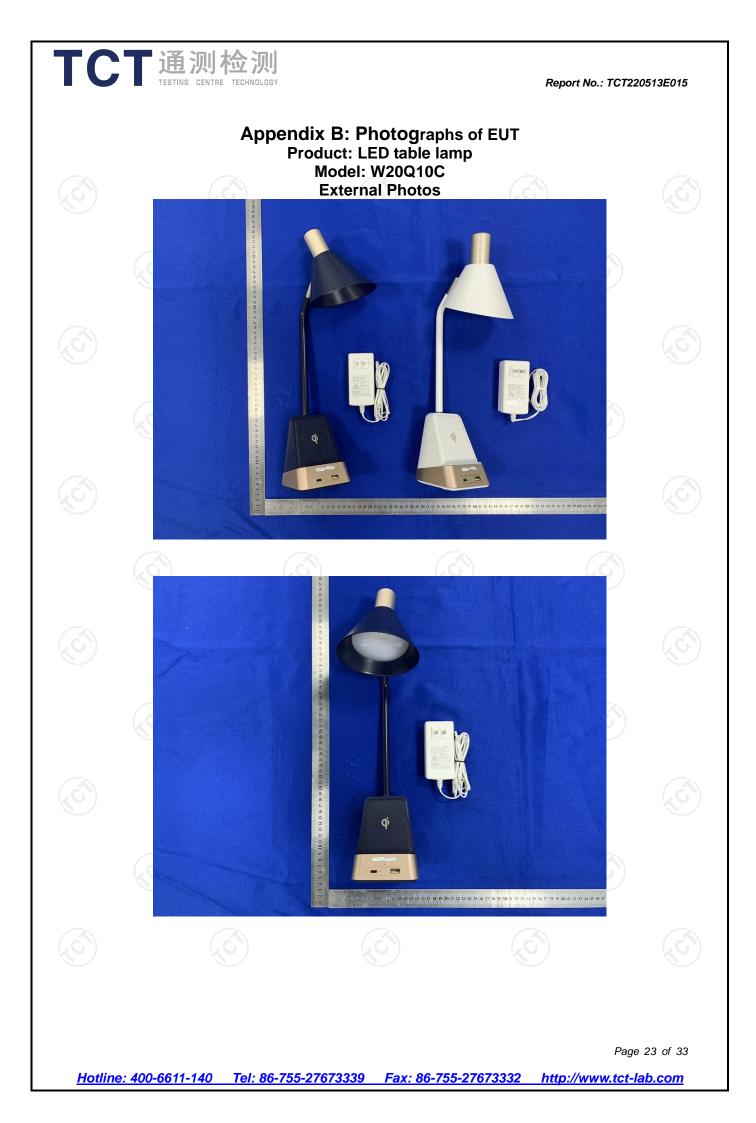
30MHz-1GHz

Site #1 3m Anechoic Chamber Temperature: 24.5(C) Humidity: 56 % Polarization: Horizontal Limit: FCC Part 15C RE_3m Power: AC 120 V/60 Hz Frequency Reading Factor Limit Margin Level Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 39.4371 4.96 18.63 13.67 40.00 -21.37 QP Ρ 1 67.2021 5.61 40.00 -23.13 2 11.26 16.87 QP Ρ Ρ 3 130.8369 7.54 12.17 19.71 43.50 -23.79 QP 171.9946 12.21 43.50 4 * 11.31 23.52 -19.98 QP Ρ 252.9481 12.30 23.45 -22.55 5 11.15 46.00 QP Ρ 297.2240 12.39 13.44 25.83 46.00 -20.17 Ρ 6 QP

Page 19 of 33


TCT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT220513E015 Vertical: dBu¥/m 80.0 70 60 FCC Part 15C RE_3 i dB argin 50 40 30 <u>5</u> 2 20 10 0 -10 -20 60.000 30.000 (MHz) 300.000 600.000 1000.000 90.000


	1 3m Anecho		r	Polarization: Vertical					emperature: 24.5(C)	Humidity: 56 %
Limit:	FCC Part 150	CRE_3m			Pov	ver: AC	120 V/6	0 Hz		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	39.9942	9.95	13.73	23.68	40.00	-16.32	QP	Ρ		
2	71.0803	13.97	10.68	24.65	40.00	-15.35	QP	Ρ		
3 *	124.5690	26.40	11.85	38.25	43.50	-5.25	QP	Ρ		
4	159.2251	24.15	13.35	37.50	43.50	-6.00	QP	Ρ		
5	251.1804	13.34	12.30	25.64	46.00	-20.36	QP	Ρ		
6	407.5145	8.79	16.23	25.02	46.00	-20.98	QP	Ρ		


Note:


Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

