FCC and ISED Test Report

PervasID Limited, Flow Ranger incorporating. Security Ranger, Model SRM 9380 (8-Port Master) Security Ranger, Model: SRS 9380 (8-Port Slave)

In accordance with FCC 47 CFR Part 15B and ICES-003

Prepared for:

PervasID Limited St John's Innovation Centre Cowley Road Cambridge CB4 OWS UNITED KINGDOM

FCC ID: 2AQQWSR9380 IC ID: Not Applicable

COMMERCIAL-IN-CONFIDENCE

Document 75957241-02 Issue 02

SIGNATURE			
P			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
John Laydon	General Manager	Authorised Signatory	30 April 2024

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	James Cumming		30 April 2024	Jane
FCC Accreditation 90987 Octagon House, Fareham Test Laboratory		ISED Accredit 12669A Octag	ation Jon House, Fareham	Test Laboratory
EXECUTIVE SUMMARY				

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B and ICES-003: 2021 and Issue 7: 2020 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 <u>www.tuvsud.com/en</u> TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Add value. Inspire trust.

Contents

1	Report Summary	2
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Report Modification Record Introduction Brief Summary of Results Declaration of Build Status Product Information Deviations from the Standard EUT Modification Record	
1.8	Test Location	
2	Test Details	9
2.1	Radiated Disturbance	9
3	Test Equipment Information	
3.1	General Test Equipment Used	
4	Incident Reports	
5	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	12 September 2023
2	Changed FCC ID configuration	30 April 2024

Table 1

1.2 Introduction

PervasID Limited
PervasID Limited
SRM 9380 (8-port Master) SRS 9380 (8-port Slave)
14051278-0046 14199633-0010
Motherboard v6.5.4 FR-DB v1.0 (Slave only) Sync-DB v0.2
Software: SR-0.1.0.4 Radio FW: 3.9.0.1 FR-DB FW: 1.0.2 (Slave only)
One System
FCC 47 CFR Part 15B and ICES-003: 2021 and Issue 7: 2020
PO-0774 09-December-2022
09-February-2023
29-June-2023
29-June-2023
James Cumming
ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 is shown below.

Section	Specification Clause	Test Description	Result	Comments/Base Standard	
Configuratio	Configuration and Mode: AC Powered - Idle				
2.1	15.109 and 3.2	Radiated Disturbance	Pass	ANSI C63.4: 2014	

1.4 Declaration of Build Status

	MAIN EUT				
MANUFACTURING DESCRIPTION	UHF RFID Distributed Antenna System				
MANUFACTURER	PervasID Ltd				
MODEL	SRM 9380 (8-port Master) SRS 9380 (8-port Slave)				
PART NUMBER	N/A				
HARDWARE VERSION	Motherboard v6.5.4; FR-DB v1.0 (Slave only); Sync-DB v0.2				
SOFTWARE VERSION	Software: SR-0.1.0.4; Radio FW: 3.9.0.1; FR-DB FW: 1.0.2 (Slave only)				
PSU VOLTAGE/FREQUENCY/CURRENT	24 V DC, 4 A				
HIGHEST INTERNALLY GENERATED FREQUENCY	868 MHz				
FCC ID (if applicable)	2AQQWSR9380				
INDUSTRY CANADA ID (if applicable)	Not Applicable				
TECHNICAL DESCRIPTION (a brief technical description of the intended use and operation)	UHF RFID Distributed Antenna System - intended use detection and monitoring of UHF RFID tags				
COUNTRY OF ORIGIN	UK				
	RACTERISTICS (if applicable)				
TRANSMITTER FREQUENCY OPERATING RANGE (MHz)	865-868 MHz				
RECEIVER FREQUENCY OPERATING RANGE (MHz)	865-868 MHz				
INTERMEDIATE FREQUENCIES	Direct conversion				
EMISSION DESIGNATOR(S): https://fccid.io/Emissions-Designator/					
MODULATION TYPES: (i.e., GMSK, QPSK)	PR-ASK				
OUTPUT POWER (W or dBm)	33 dBm (Master), 32 dBm (Slave)				
SEPARATE BATTERY/POWER SUPPLY (if applicable)					
MANUFACTURING DESCRIPTION	AC/DC Power Supply				
MANUFACTURER	Generic (see "Power Supply Unit Specification for 93x0 Readers")				
ТҮРЕ					
PART NUMBER	E.g., XP Power AEJ100PS24				
PSU VOLTAGE/FREQUENCY/CURRENT	100 to 264 V AC, 47 – 63 Hz, ≥ 92 W				
COUNTRY OF ORIGIN					
MODULES (if applicable)					
ANCILLARIES (if applicable)					

I hereby declare that the information supplied is correct and complete.

Name: Position held: Date: Andrew Bell VP Engineering 06 Feb 2023

1.5 **Product Information**

1.5.1 Technical Description

The Equipment under test (EUT) was a PervasID Limited Flow Ranger, incorporation Security Ranger Model: SRM 9380 (8-port Master) and Security Ranger Model: SRS 9380 (8-port Slave).

The primary function of the EUT is to detect and monitor UHF RFID tags.

Figure 1 – EUT Front View - SRM 9380 (8-port Master)

Figure 2 – EUT Rear View - SRM 9380 (8-port Master)

Figure 3 – EUT Product Identification - SRM 9380 (8-port Master)

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened
AC Power Port	2 m	Power to EUT	AC to DC power adapter	No
RF antenna Port 1	3 m	Communication	RF antenna port	Yes
RF antenna Port 2	3 m	Communication	RF antenna port	Yes
RF antenna Port 3	3 m	Communication	RF antenna port	Yes
RF antenna Port 4	3 m	Communication	RF antenna port	Yes
RF antenna Port 5	3 m	Communication	RF antenna port	Yes
RF antenna Port 6	3 m	Communication	RF antenna port	Yes
RF antenna Port 7	3 m	Communication	RF antenna port	Yes
RF antenna Port 8	3 m	Communication	RF antenna port	Yes
Host Port	2 m	Data	USB Micro – Type B	Yes
IDE Port	5 m	Data	Ribbon Cable	No
Network Port	2 m	Data	Cat 6 Ethernet	Yes

Table 3

1.5.3 Test Configuration

Configuration	Description
AC Powered	The EUT was powered from a 120 V 60 Hz AC supply. The following connections were made to the EUT: RF antenna Ports 1 to 8 were fitted with client provided terminations. The Ethernet port was terminated using a network switch. The IDE port of both parts of the EUT were connected to each other.

Table 4

1.5.4 Modes of Operation

Mode	Description
Idle	The EUT was powered and operating with the EUT's intentional transmitters switched off from the internal settings of the EUT.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
Model: SRM 9380 (8-port Master), Serial Number: 14051278-0046			
0	As supplied by the customer	Not Applicable	Not Applicable
Model: SRS 9380 (8-port Slave), Serial Number: 14199633-0010			
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation	
Configuration and Mode: AC Powered - Idle			
Radiated Disturbance	James Cumming	UKAS	

Table 7

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B and ICES-003, Clause 15.109 and 3.2

2.1.2 Equipment Under Test and Modification State

SRM 9380 (8-port Master), S/N: 14051278-0046 - Modification State 0 SRS 9380 (8-port Slave), S/N: 14199633-0010 - Modification State 0

2.1.3 Date of Test

29-June-2023

2.1.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semianechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

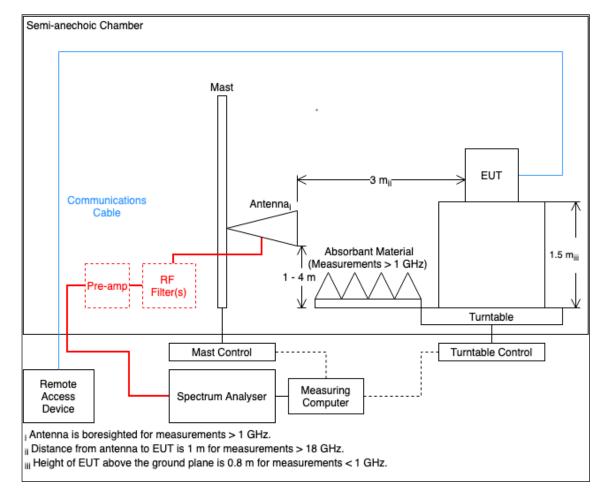
For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:


Quasi-Peak level $(dB\mu V/m) = Receiver level (dB\mu V) + Correction Factor (dB/m)$ Margin (dB) = Quasi-Peak level $(dB\mu V/m) - Limit (dB\mu V/m)$

Above 1 GHz:

CISPR Average level $(dB\mu V/m) = Receiver level (dB\mu V) + Correction Factor (dB/m)$ Margin (dB) = CISPR Average level (dB μ V/m) - Limit (dB μ V/m)

Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m) Margin (dB) = Peak level (dB μ V/m) - Limit (dB μ V/m)

2.1.6 Example Test Setup Diagram

Figure 4

2.1.7 Environmental Conditions

Ambient Temperature	18.1 °C
Relative Humidity	63 %
Atmospheric Pressure	1009.2 mbar

2.1.8 **Specification Limits**

T (1) (1)	
Test Limit (µV/m)	Test Limit (dBµV/m)
90	39.1
150	43.5
210	46.4
300	49.5
	90 150 210

Supplementary information: Note 1. A Quasi-Peak detector is to be used for measurements below 1 GHz. Note 2. A CISPR Average detector is to be used for measurements above 1 GHz. Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

2.1.9 Test Results

Results for Configuration and Mode: AC Powered - Idle.

This test was performed to the requirements of the Class A limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 868 MHz Which necessitates an upper frequency test limit of: 5 GHz (Te

868 MHz 5 GHz (Tested to 10 GHz as per quotation).

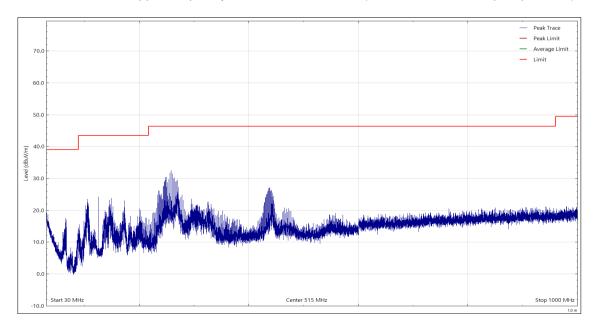


Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 9

*No final measurements were made as all peak emissions seen were greater than 10 dB below the Quasi-Peak test limit.

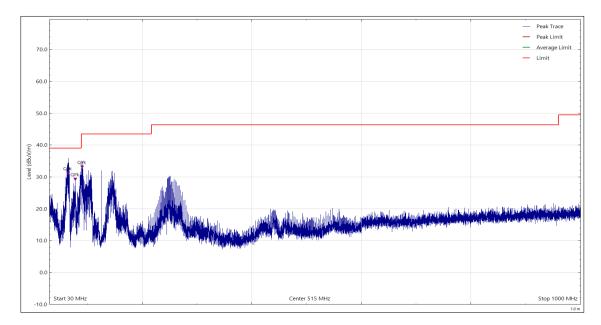


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
64.188	30.36	39.10	-8.74	Q-Peak	1	100	Vertical
77.186	28.51	39.10	-10.59	Q-Peak	339	101	Vertical
90.343	32.32	43.50	-11.18	Q-Peak	332	100	Vertical

Table 10

*No final measurements were made as all peak emissions seen were greater than 10 dB below the Quasi-Peak test limit.

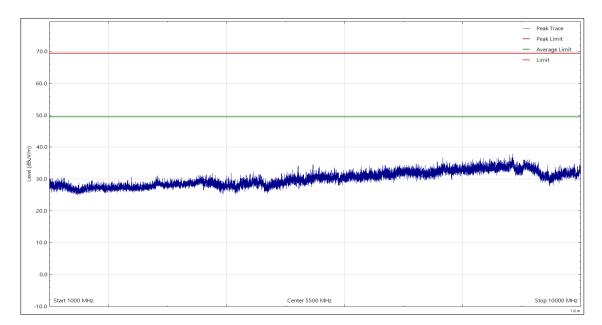


Figure 7 - 1 GHz to 10 GHz, Peak and CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 11

*No final measurements were made as all peak emissions seen were greater than 10 dB below the CISPR average test limit.

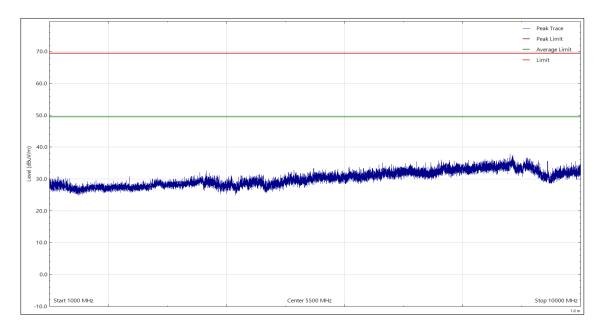


Figure 8 - 1 GHz to 10 GHz, Peak and CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 12

*No final measurements were made as all peak emissions seen were greater than 10 dB below the CISPR average test limit.

Figure 9 - Test Setup - 30 MHz to 1 GHz

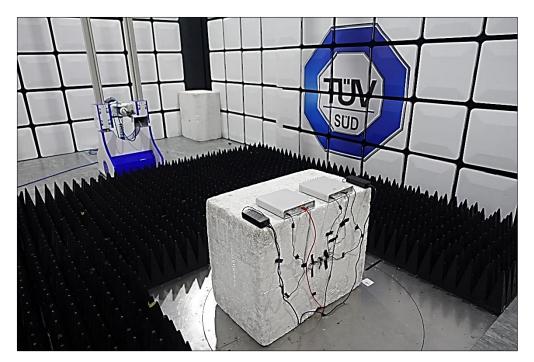


Figure 10 - Test Setup - 1 GHz to 10 GHz

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Antenna (Bilog with attenuator, 30 MHz to 3 GHz)	Schaffner	CBL6143	287	24	02-Dec-2024
Test Receiver	Rohde & Schwarz	ESU40	3506	12	30-Mar-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	N/A - Software
Pre-Amplifier (1 GHz to 26.5 GHz)	Agilent Technologies	8449B	5445	12	25-May-2024
Cable (K-Type to K-Type, 2 m)	Junkosha	MWX241- 02000KMSKMS/A	5524	12	24-Oct-2023
Antenna (DRG, 1 GHz to 10.5 GHz)	Schwarzbeck	BBHA9120B	5611	12	16-Oct-2023
Turntable & Mast Controller	Maturo Gmbh	NCD/498/2799.01	5612	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	5613	-	TU
Screened Room (12)	MVG	EMC-3	5621	36	11-Aug-2023
Cable (SMA to N-Type, 2 m)	Junkosha	MWX241/B	5817	6	04-Aug-2023
Cable (N to N 8m)	Junkosha	MWX221- 08000NMSNMS/B	6321	12	04-Feb-2024

Table 13

TU - Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5471	12	28-Apr-2024

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 15

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.