FCC and ISED Test Report

PervasID Limited Security Ranger, Model: SRM 9380 (8-port Master) Security Ranger, Model: SRS 9380 (8-port Slave)

In accordance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN (RFiD)

Prepared for: PervasID Limited St John's Innovation Centre Cowley Road, Cambridge CB4 OWS, UNITED KINGDOM

FCC ID: 2AQQWSR9380 IC: Not Applicable

COMMERCIAL-IN-CONFIDENCE

Document 75957241-04 Issue 02

SIGNATURE		
S. MM		
NAME	JOB TITLE	RESPONSIBLE FOR ISSUE DATE
Steve Marshall	Senior Engineer	Authorised Signatory 03 May 2024

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	Ahmad Javid		03 May 2024	Air
FCC Accreditation 90987 Octagon House, F	areham Test Laboratory	ISED Accredita 12669A Octago	ation on House, Fareham	Test Laboratory
EXECUTIVE SUMMARY	,			

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C: 2021, ISED RSS-247: Issue 2 (02-2017) and ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Add value. Inspire trust.

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2		
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	
1.6	Deviations from the Standard	7
1.7	EUT Modification Record	7
1.8	Test Location	7
2	Test Details	8
2 2.1	Spurious Radiated Emissions	8
-	Spurious Radiated Emissions Maximum Conducted Output Power	8 22
2.1	Spurious Radiated Emissions	8 22
2.1 2.2	Spurious Radiated Emissions Maximum Conducted Output Power	8 22 28
2.1 2.2 2.3	Spurious Radiated Emissions Maximum Conducted Output Power Authorised Band Edges	8 22 28 34

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

	Issue Description of Change		Date of Issue
ſ	1	First Issue	15-May-2023
ſ	2	Changed FCC ID configuration	03-May-2024

Table 1

1.2 Introduction

Applicant	PervasID Limited
Manufacturer	PervasID Limited
Model Number(s)	SRM 9380 (8-port Master) and SRS 9380 (8-port Slave)
Serial Number(s)	14051278-0046 and 14199633-0010
Hardware Version(s)	Motherboard v6.5.4; FR-DB v1.0 (Slave only); Sync-DB v0.2
Software Version(s)	Software: SR-0.1.0.4; Radio FW: 3.9.0.1; FR-DB FW: 1.0.2 (Slave only)
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 15C: 2021 ISED RSS-247: Issue 2 (02-2017) ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021)
Order Number Date	PO-0774 09-December-2022
Date of Receipt of EUT	09-February-2023
Start of Test	09-February-2023
Finish of Test	15-April-2023
Name of Engineer(s)	Ahmad Javid
Related Document(s)	ANSI C63.10 (2020) KDB 662911 D01 v02r01 KDB 558074 D01 v03r03 ANSI C63.10 (2013) ANSI C63.4 (2014)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN is shown below.

Section	Sp	ecification Clause		Test Description		Comments/Base Standard
Section	Part 15C	RSS-247	RSS-GEN	Test Description	Result	Comments/base Standard
Configuration and Mode: RFID Transceiver						
2.1	15.209 and 15.247 (d)	3.3 and 5.5	6.13 and 8.9	Spurious Radiated Emissions	Pass	
Configuration and Mode: RFID Transceiver - SRS 9380						
2.2	15.247 (b)	5.4	6.12	Maximum Conducted Output Power	Pass	
2.3	15.247 (d)	5.5	-	Authorised Band Edges	Pass	
Configurat	Configuration and Mode: RFID Transceiver - SRM 9380					
2.2	15.247 (b)	5.4	6.12	Maximum Conducted Output Power	Pass	
2.3	15.247 (d)	5.5	-	Authorised Band Edges	Pass	

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)	UHF RFID Distributed Antenna System - intended use detection and monitoring of UHF RFID tags		
Manufacturer:	PervasID Ltd		
Model:	SRM 9380 (8-port Master) SRS 9380 (8-port Slave)		
Part Number:	N/A		
Hardware Version:	Motherboard ve	6.5.4; FR-DB v1.0 (Slave only); Sync-DB v0.2	
Software Version:	Software: SR-0	R-0.1.0.4; Radio FW: 3.9.0.1; FR-DB FW: 1.0.2 (Slave only)	
FCC ID of the product under test – see guidance here		2AQQWSR9380	
IC ID of the product under test – see guidance here		Not Applicable	

Table 3

Intentional Radiators

Technology	ISM (RFID)			
Frequency Range (MHz to MHz)	902 - 928			
Conducted Declared Output Power (dBm)	33			
Antenna Gain (dBi)	8.5			
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)				
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	PR-ASK			
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	TBD			
Bottom Frequency (MHz)	902.75			
Middle Frequency (MHz)	914.75			
Top Frequency (MHz)	927.25			

Table 4

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	927.25 MHz	
Lowest frequency generated or used in the device or on which the device operates or tunes	902.75 MHz	
Class A Digital Device (Use in commercial, industrial or business environment)		
Class B Digital Device (Use in residential environment only) \Box		

AC Power Source

AC supply frequency:	Hz
Voltage	V
Max current:	A
Single Phase Three Phase	

Table 6

DC Power Source

Nominal voltage:	24	V
Extreme upper voltage:	25.2	V
Extreme lower voltage:	23.8	V
Max current:	4	A

Table 7

Battery Power Source

Voltage:			V
End-point voltage:			V (Point at which the battery will terminate)
Alkaline 🗆 Leclanche 🗆 Lithium 🗆 Nicke	el Cadmium 🗆 Lead A	$did* \square *(Vehicle reg$	gulated)
Other	Please detail:		

Table 8

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Table 9

Temperature

Minimum temperature:	0	°C
Maximum temperature:	30	°C

Table 10

Cable Loss

Adapter Cable Loss (Conducted sample)		dB
--	--	----

Antenna Characteristics

Antenna connector			State impedance	50	Ohm
Temporary antenna connector \Box			State impedance		Ohm
Integral antenna \Box	Type:		Gain		dBi
External antenna \boxtimes	Type:	Circular polarised Directional	Gain	8.5	dBic
For external antenna only	<i>r</i> :				
Standard Antenna Jack 🗆 If yes, describe how user is prohibited from changing antenna (if not professional installed):					
Equipment is only ever professionally installed $oxtimes$					
Non-standard Antenna Ja	ack 🛛				

Table 12

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

Table 13

I hereby declare that the information supplied is correct and complete.

Name: Position held: Date: Andrew Bell VP Engineering 06 Feb 2023

1.5 **Product Information**

1.5.1 Technical Description

The EUT is a UHF RFID Distributed Antenna System - intended use detection and monitoring of UHF RFID tags.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted				
Model: SRM 9380 (8-port Master), Serial Number: 14051278-0046							
0	As supplied by the customer	Not Applicable	Not Applicable				
Model: SRS 9380 (8	Model: SRS 9380 (8-port Slave), Serial Number: 14199633-0010						
0	As supplied by the customer	Not Applicable	Not Applicable				

Table 14

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation				
Configuration and Mode: RFID Transceiver						
Spurious Radiated Emissions	Ahmad Javid	UKAS				
Configuration and Mode: RFID Transceiver - SRS 938	0					
Maximum Conducted Output Power	Ahmad Javid	UKAS				
Authorised Band Edges	Ahmad Javid	UKAS				
Configuration and Mode: RFID Transceiver - SRM 938	Configuration and Mode: RFID Transceiver - SRM 9380					
Maximum Conducted Output Power	Ahmad Javid	UKAS				
Authorised Band Edges	Ahmad Javid	UKAS				

Table 15

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Spurious Radiated Emissions

2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.209 and 15.247 (d) ISED RSS-247, Clause 3.3 and 5.5 ISED RSS-GEN, Clause 6.13 and 8.9

2.1.2 Equipment Under Test and Modification State

SRM 9380 (8-port Master), S/N: 14051278-0046 - Modification State 0 SRS 9380 (8-port Slave), S/N: 14199633-0010 - Modification State 0

2.1.3 Date of Test

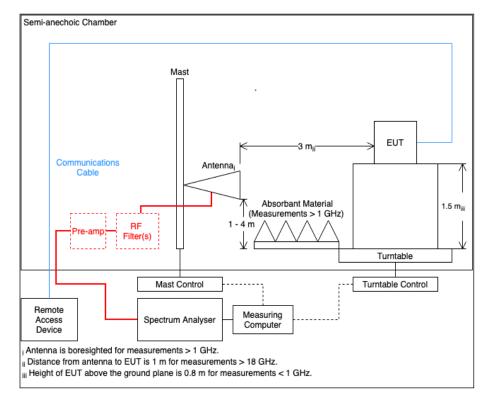
09-February-2023 to 10-February-2023

2.1.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.5 and 6.6.

For frequencies > 1 GHz, plots for average measurements were taken in accordance with ANSI C63.10, clause 4.1.5.2.6 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10, clause 4.1.4.2.2.

The EUT was placed on the non-conducting platform in a manner typical of a normal installation


Ports on the EUT were terminated with loads as described in ANSI C63.4 clause 6.2.4. For EUT's with multiple connectors of the same type.

The plots shown are the characterisation of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: 10⁽Field Strength in $dB\mu V/m/20$).

Where formal measurements have been necessary, the results have been presented in the emissions table.

2.1.5 Example Test Setup Diagram

Figure 1

2.1.6 Environmental Conditions

Ambient Temperature	18.6 - 19.6 °C
Relative Humidity	39.5 - 40.2 %

2.1.7 Test Results

RFID Transceiver

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
108.815	38.11	43.52	-5.41	Q-Peak	60	110	Vertical
125.008	40.21	43.52	-3.31	Q-Peak	320	251	Horizontal
125.022	37.64	43.52	-5.88	Q-Peak	178	100	Vertical
1805.420	68.20	73.98	-5.78	Peak	212	201	Vertical
2708.180	47.72	54.00	-6.28	CISPR Avg	196	116	Vertical
3611.059	44.97	54.00	-9.03	CISPR Avg	169	107	Vertical

Table 16 - FHSS, 902.75MHz, 30 MHz to 10 GHz

No other emissions found within 10 dB of the limit.

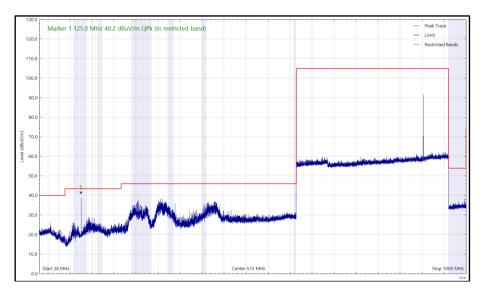


Figure 2 - FHSS, 902.75MHz, 30 MHz to 1 GHz, Horizontal (Peak)

Figure 3 - FHSS, 902.75MHz, 1 GHz to 10 GHz, Horizontal (Peak)

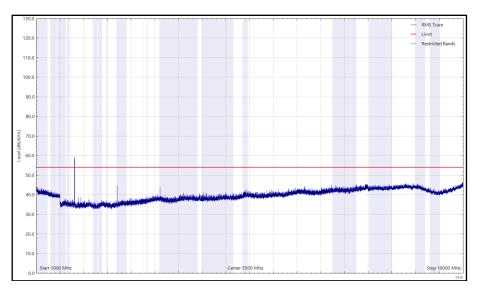


Figure 4 - FHSS, 902.75MHz, 1 GHz to 10 GHz, Horizontal (rms)

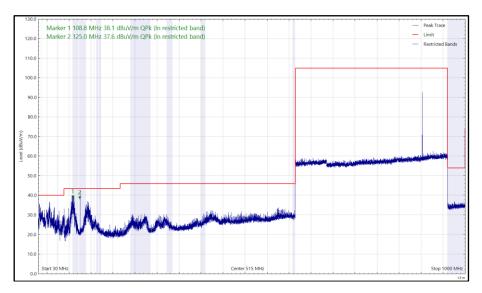


Figure 5 - FHSS, 902.75MHz, 30 MHz to 1 GHz, Vertical (Peak)

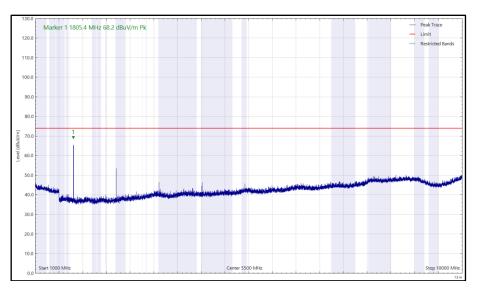


Figure 6 - FHSS, 902.75MHz, 1 GHz to 10 GHz, Vertical (Peak)

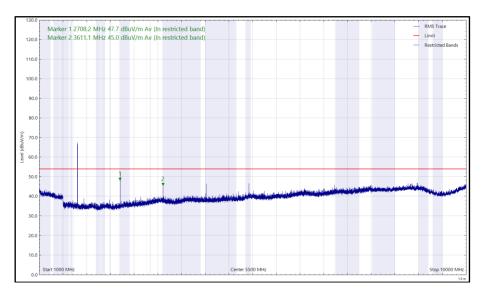
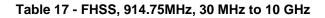



Figure 7 - FHSS, 902.75MHz, 1 GHz to 10 GHz, Vertical (rms)

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
108.821	37.86	43.52	-5.66	Q-Peak	94	100	Vertical
125.011	39.85	43.52	-3.67	Q-Peak	182	251	Horizontal
125.013	34.07	43.52	-9.45	Q-Peak	180	103	Vertical
1829.515	70.11	73.98	-3.87	Peak	196	155	Vertical
2744.325	50.55	54.00	-3.45	CISPR Avg	202	104	Vertical

No other emissions found within 10 dB of the limit.

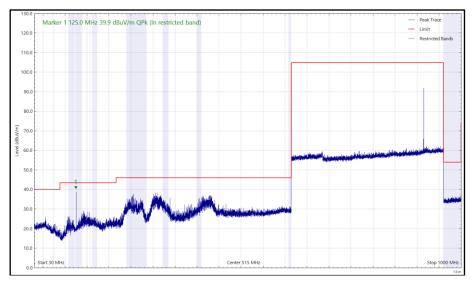


Figure 8 - FHSS, 914.75MHz, 30 MHz to 1 GHz, Horizontal (Peak)

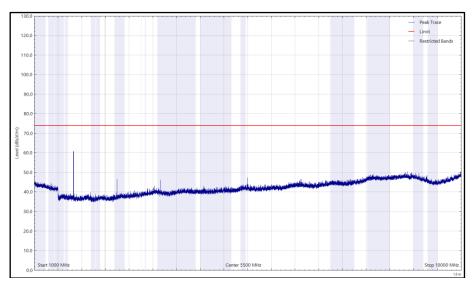


Figure 9 - FHSS, 914.75MHz, 1 GHz to 10 GHz, Horizontal (Peak)

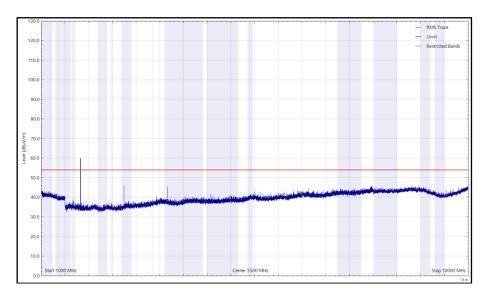


Figure 10 - FHSS, 914.75MHz, 1 GHz to 10 GHz, Horizontal (rms)

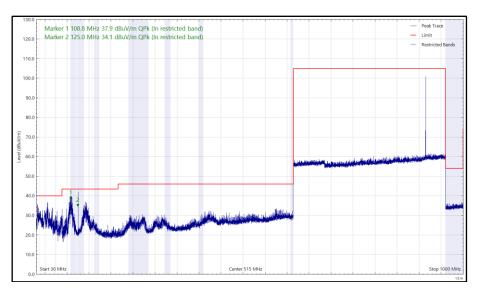


Figure 11 - FHSS, 914.75MHz, 30 MHz to 1 GHz, Vertical (Peak)

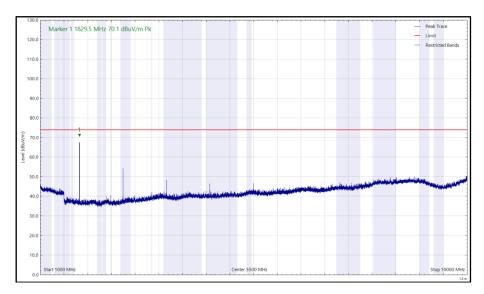


Figure 12 - FHSS, 914.75MHz, 1 GHz to 10 GHz, Vertical (Peak)

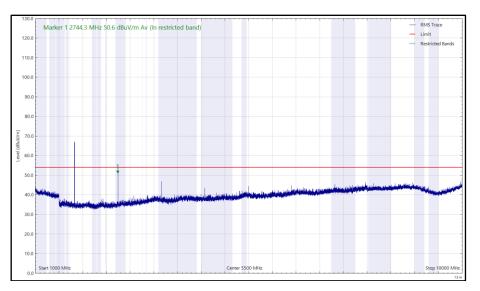


Figure 13 - FHSS, 914.75MHz, 1 GHz to 10 GHz, Vertical (rms)

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
108.814	37.62	43.52	-5.90	Q-Peak	84	100	Vertical
125.008	36.23	43.52	-7.29	Q-Peak	168	103	Vertical
125.014	40.52	43.52	-3.00	Q-Peak	324	242	Horizontal
1854.505	65.74	73.98	-8.24	Peak	197	101	Vertical
2781.735	53.08	54.00	-0.92	CISPR Avg	196	100	Vertical
3709.265	44.48	54.00	-9.52	CISPR Avg	201	155	Vertical

No other emissions found within 10 dB of the limit.

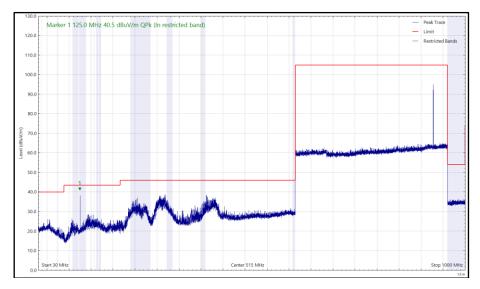


Figure 14 - FHSS, 927.25MHz, 30 MHz to 1 GHz, Horizontal (Peak)

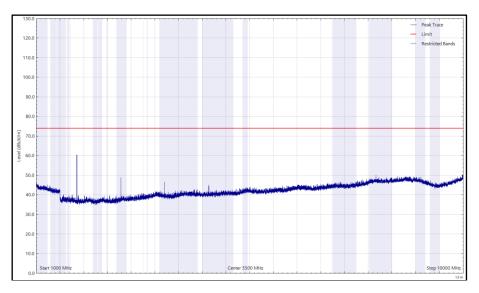


Figure 15 - FHSS, 927.25MHz, 1 GHz to 10 GHz, Horizontal (Peak)

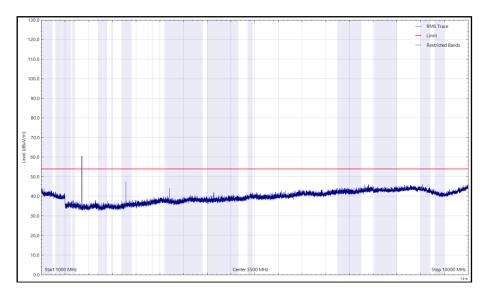


Figure 16 - FHSS, 927.25MHz, 1 GHz to 10 GHz, Horizontal (rms)

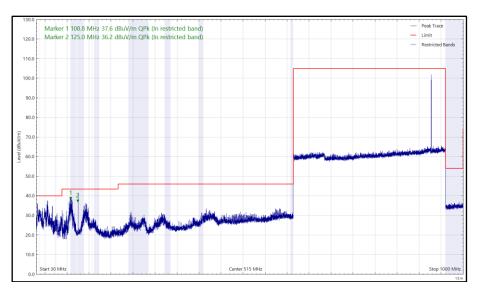


Figure 17 - FHSS, 927.25MHz, 30 MHz to 1 GHz, Vertical (Peak)

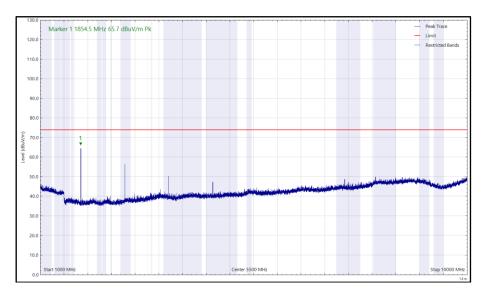


Figure 18 - FHSS, 927.25MHz, 1 GHz to 10 GHz, Vertical (Peak)

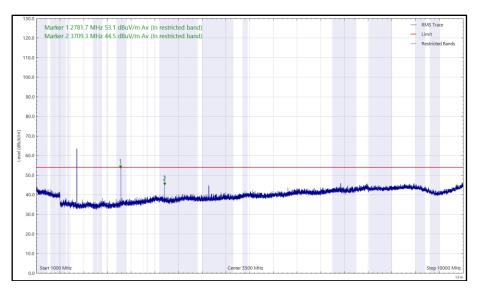


Figure 19 - FHSS, 927.25MHz, 1 GHz to 10 GHz, Vertical (rms)

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in RSS-GEN, clause 8.10, must also comply with the radiated emission limits specified in RSS-GEN clause 8.9.

2.1.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Screened Room (5)	Rainford	Rainford	1545	36	15-Apr-2024
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Antenna (DRG 1- 10.5GHz)	Schwarzbeck	BBHA9120B	4848	12	28-May-2023
High Pass filter	Wainwright	WHKX12-1290- 1500-18000-80SS	4962	12	19-May-2023
Emissions Software	TUV SUD	EmX V3.1.11	5125	-	Software
Pre-amplifier (30 dB, 1GHz to 18GHz)	Schwarzbeck	BBV 9718 C	5261	12	08-Apr-2023
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5476	12	06-Oct-2023
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	12-Apr-2023
Cable (SMA to SMA, 2 m)	Junkosha	MWX221- 02000AMSAMS/A	5517	12	12-Apr-2023
Cable (N to N 8m)	Junkosha	MWX221- 08000NMSNMS/B	5519	12	07-Mar-2023
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024
Attenuator 4dB	Pasternack	PE7074-4	6202	24	16-Jul-2024

Table 19

TU - Traceability Unscheduled

COMMERCIAL-IN-CONFIDENCE

2.2 Maximum Conducted Output Power

2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (b) ISED RSS-247, Clause 5.4 ISED RSS-GEN, Clause 6.12

2.2.2 Equipment Under Test and Modification State

SRM 9380 (8-port Master), S/N: 14051278-0046 - Modification State 0 SRS 9380 (8-port Slave), S/N: 14199633-0010 - Modification State 0

2.2.3 Date of Test

13-April-2023

2.2.4 Test Method

The test was performed in accordance with ANSI C63.10 clause 7.8.5 using a spectrum analyser.

2.2.5 Environmental Conditions

Ambient Temperature21.2 °CRelative Humidity38.4 %

2.2.6 Test Results

RFID Transceiver - RFID DAS 9380

Frequency (MHz)	Maximum Output Power		
	dBm	mW	
902.75	29.79	952.79	
914.75	29.79	952.79	
927.25	29.89	974.98	

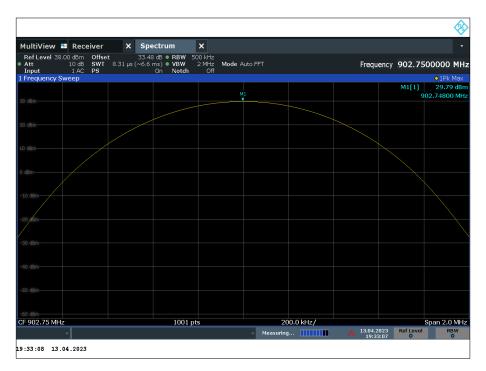


Figure 20 - 902.75

						suring		13.04.2 19:31	023 Ref Level	RBW
50 dBm F 914.75 MHz			1001	ots		200.0 k	Hz/			Span 2.0 Mł
0 d8m										
0 #6m										
					M1				M1[1] 9	29.79 dE 14.75000 M
Frequency Swe			on Noten	011						●1Pk Ma:
Ref Level 38.00 Att 1 Input	dBm Offset LOdB SWT 1 AC PS	: 3 8.31 µs (~	3.48 dB • RBW 6.6 ms) • VBW On Notch	500 kHz 2 MHz M Off	Mode Auto FFT			Freque	ency 914.7 5	00000 M
lultiView 🚥			Spectrum	×						

Figure 21 - 914.75

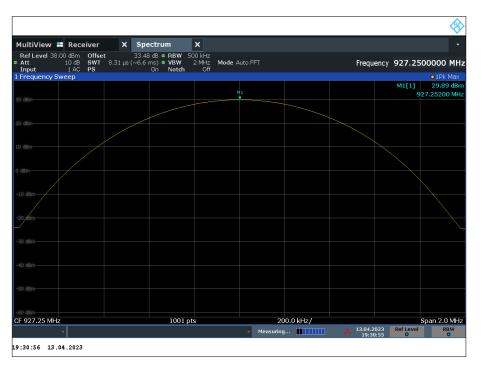


Figure 22 - 927.25

RFID Transceiver - Flow Ranger 9380

Frequency (MHz)	Maximum Output Power		
	dBm	mW	
902.75	29.73	939.72	
914.75	29.44	879.02	
927.25	29.42	874.98	

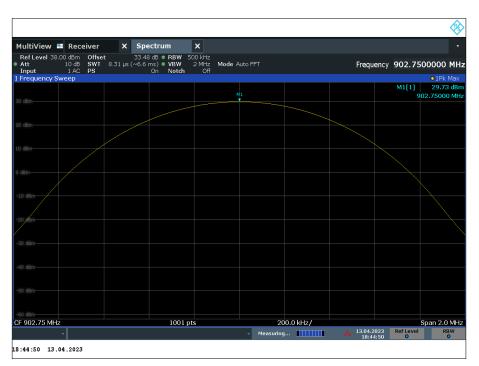


Figure 23 - 902.75

MultiView 🚦	Receiver	×	Spectrum	×					
Att	00 dBm Offse 10 dB SWT 1 AC PS		33.48 dB • RBW ~6.6 ms) • VBW On Notch	500 kHz 2 MHz Mo Off	ode Auto FFT		Freque	ncy 914.750	00000 MI
Frequency Sv									•1Pk Max
D dBm					MI			M1[1] 91	29.44 dE 4.75000 M
0 dBm									
0 dBm 914.75 MHz			1001	nts		200.0 kHz/		s	pan 2.0 M
			1001		v Meas	suring	13.04.20 18:46:-		RBW

Figure 24 - 914.75

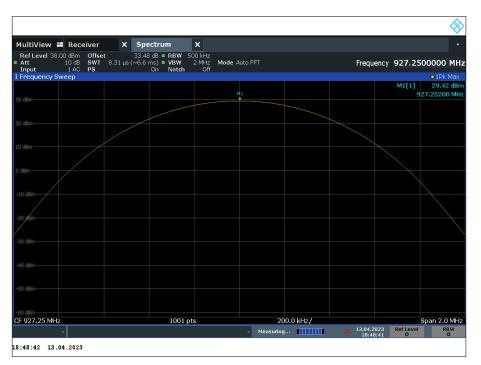


Figure 25 - 927.25

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(2)

For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels.

ISED RSS-247, Limit Clause 5.4 (a)

For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

2.2.7 Test Location and Test Equipment Used

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Screened Room (5)	Rainford	Rainford	1545	36	15-Apr-2024
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5476	12	06-Oct-2023
Attenuator 5W 10dB DC- 18GHz	Aaren	AT40A-4041-D18- 10	5495	12	13-Oct-2023
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5500	12	04-May-2023
Cable (K-Type to K-Type, 2 m)	Junkosha	MWX241- 02000KMSKMS/A	5524	12	24-Oct-2023
EMI Test Receiver	Rohde & Schwarz	ESW44	5527	12	28-Apr-2023

This test was carried out in EMC Chamber 5.

2.3 Authorised Band Edges

2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d), ISED RSS-247, Clause 5.5

2.3.2 Equipment Under Test and Modification State

SRM 9380 (8-port Master), S/N: 14051278-0046 - Modification State 0 SRS 9380 (8-port Slave), S/N: 14199633-0010 - Modification State 0

2.3.3 Date of Test

15-April-2023

2.3.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

2.3.5 Environmental Conditions

Ambient Temperature	21.2 °C
Relative Humidity	43.5 %

2.3.6 Test Results

RFID Transceiver - RFID DAS 9380

Mode	Frequency (MHz)	Band Edge Frequency (MHz)	Level (dBc)
FHSS	902.75	902	-53.39
FHSS	927.25	928	-52.81

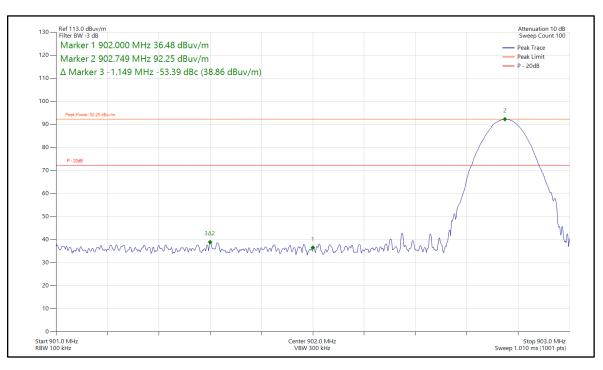


Figure 26 - FHSS, 902.75MHz, Band Edge Frequency 902 MHz

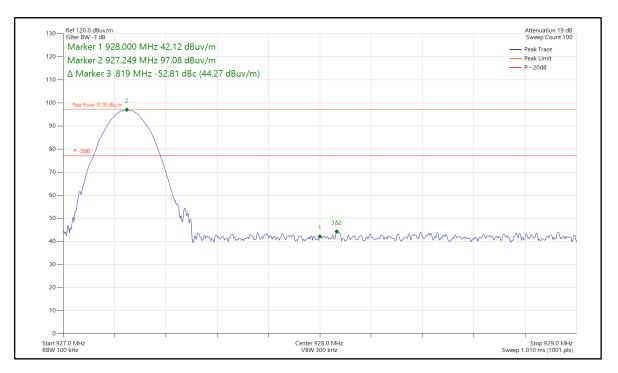


Figure 27 - FHSS, 927.25MHz, Band Edge Frequency 928 MHz

RFID Transceiver - Flow Ranger 9380

Mode	Frequency (MHz)	Band Edge Frequency (MHz)	Level (dBc)
FHSS	902.75	902	-53.04
FHSS	927.25	928	-48.84

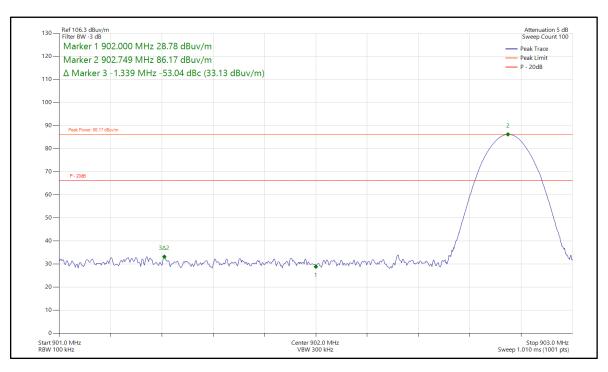


Figure 28 - FHSS, 902.75MHz, Band Edge Frequency 902 MHz

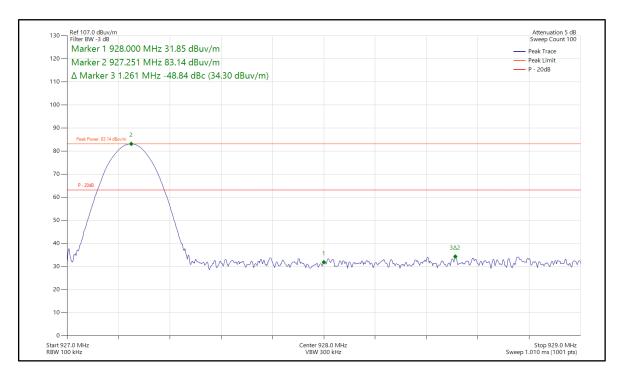


Figure 29 - FHSS, 927.25MHz, Band Edge Frequency 928 MHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.3.7 Test Location and Test Equipment Used

This test was carried out in EMC Laboratory 5 and EMC Chamber 5.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Screened Room (5)	Rainford	Rainford	1545	36	15-Apr-2024
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Cable (18 GHz)	Rosenberger	LU7-071-2000	5107	12	18-Dec-2023
Emissions Software	TUV SUD	EmX V3.1.11	5125	-	Software
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5476	12	06-Oct-2023
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024
Attenuator 4dB	Pasternack	PE7074-4	6202	24	16-Jul-2024
Cable (N to N 8m)	Junkosha	MWX221- 08000NMSNMS/B	6330	12	16-Feb-2024

Table 25

TU - Traceability Unscheduled

3 Photographs

3.1 Test Setup Photographs

Figure 30 - Test Setup - 30 MHz to 1 GHz

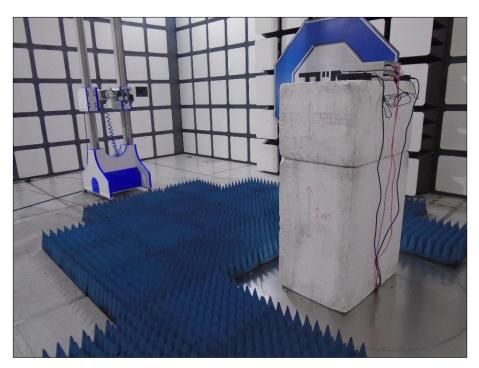


Figure 31 - Test Setup - 1 GHz to 10 GHz

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Maximum Conducted Output Power	± 1.38 dB
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB

Table 26

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.