# FCC and ISED Test Report

## PervasID Limited Track Master, Model: RFID Reader 9316

# In accordance with FCC 47 CFR Part 15B and ICES-003

Prepared for: PervasID Limited St John's Innovation Centre Cowley Road Cambridge CB4 OWS UNITED KINGDOM

# FCC ID: 2AQQW1107 IC: 24482-2307 COMMERCIAL-IN-CONFIDENCE

Document 75961807-01 Issue 01

| SIGNATURE                   |                                                    |                                                |                 |
|-----------------------------|----------------------------------------------------|------------------------------------------------|-----------------|
| A.3. Cuwsen.                |                                                    |                                                |                 |
| NAME                        | JOB TITLE                                          | RESPONSIBLE FOR                                | ISSUE DATE      |
| Andrew Lawson               | Chief Engineer, EMC                                | Authorised Signatory                           | 08 October 2024 |
| Signatures in this approval | box have checked this document in line with the re | equirements of TÜV SÜD document control rules. | •               |

#### **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR                            | NAME                           |                                | DATE                             | SIGNATURE          |
|--------------------------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------|
| Testing                                    | Matthew Dawkins                |                                | 08 October 2024                  | Mal                |
| FCC Accreditation<br>492497/UK2010 Octagon | House, Fareham Test Laboratory | ISED Accredita<br>12669A/UK000 | ation<br>03 Octagon House, Fareh | am Test Laboratory |
|                                            | · · · · ·                      |                                |                                  | · · · · · ·        |

#### EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B and ICES-003: 2023 and Issue 7: 2020 for the tests detailed in section 1.3.



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited). Results of tests covered by our Flexible UKAS Accreditation Schedule are marked FS (Flexible Scope).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TÜV SÜD

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 <u>www.tuvsud.com/en</u> TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom







# Contents

| 1   | Report Summary                           | 2  |
|-----|------------------------------------------|----|
| 1.1 | Report Modification Record               | 2  |
| 1.2 | Introduction                             | 2  |
| 1.3 | Brief Summary of Results                 | 3  |
| 1.4 | Declaration of Build Status              | 4  |
| 1.5 | Deviations from the Standard             |    |
| 1.6 | EUT Modification Record                  |    |
| 1.7 | Test Location                            | 8  |
| 2   | Test Details                             | 9  |
| 2.1 | Conducted Disturbance at Mains Terminals | 9  |
| 2.2 | Radiated Disturbance, Magnetic Field     | 14 |
| 2.3 | Radiated Disturbance                     | 19 |
| 3   | Test Equipment Information               | 27 |
| 3.1 | General Test Equipment Used              | 27 |
| 4   | Incident Reports                         | 28 |
| 5   | Measurement Uncertainty                  | 29 |



## 1 Report Summary

#### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 08-Oct-2024   |

#### Table 1

#### 1.2 Introduction

| Applicant                     | PervasID Limited                                                                                      |
|-------------------------------|-------------------------------------------------------------------------------------------------------|
| Manufacturer                  | PervasID Limited                                                                                      |
| Model Number(s)               | RFID Reader 9316                                                                                      |
| Serial Number(s)              | 17502948-0094                                                                                         |
| Hardware Version(s)           | Original Reader V6.7.8<br>Modified Reader V6.7.10 (after return to TUV)<br>16-port Multiplexer V2.0.0 |
| Software Version(s)           | 4.2.2.12<br>Firmware V3.9.0.18                                                                        |
| Number of Samples Tested      | 1                                                                                                     |
| Test Specification/Issue/Date | FCC 47 CFR Part 15B and ICES-003: 2023 and Issue 7: 2020                                              |
| Test Plan/Issue/Date          | 902-023-TP 16-Port Track Master FCC/IC Type Approval<br>Test Procedure                                |
| Order Number                  | PO-1221                                                                                               |
| Date                          | 17-June-2024                                                                                          |
| Date of Receipt of EUT        | 02-July-2024                                                                                          |
| Start of Test                 | 24-July-2024                                                                                          |
| Finish of Test                | 24-July-2024                                                                                          |
| Name of Engineer(s)           | Matthew Dawkins                                                                                       |
| Related Document(s)           | ANSI C63.4: 2014                                                                                      |



#### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 is shown below.

| Section      | Specification Clause                      | Test Description                     | Result | Comments/Base Standard |
|--------------|-------------------------------------------|--------------------------------------|--------|------------------------|
| Configuratio | Configuration and Mode: AC Powered - Idle |                                      |        |                        |
| 2.2          | 15.109 and 3.2                            | Radiated Disturbance                 | Pass   | ANSI C63.4: 2014       |
| 2.3          | 15.109 and 3.2                            | Radiated Disturbance, Magnetic Field | Pass   | ANSI C63.4: 2014       |

#### Table 2

| Section                                                                           | Specification Clause     Test Description     Result     Comments/Base Standard |                  | Comments/Base Standard |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|------------------------|--|--|
| Configuratio                                                                      | Configuration and Mode: AC Powered – RFiD Link                                  |                  |                        |  |  |
| 2.1 15.107 and 3.1 Conducted Disturbance at Mains Terminals Pass ANSI C63.4: 2014 |                                                                                 | ANSI C63.4: 2014 |                        |  |  |



#### 1.4 Declaration of Build Status

| MAIN EUT                                                          |                                                                  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| MANUFACTURING DESCRIPTION                                         | UHF RFID Distributed Antenna System                              |  |  |
| MANUFACTURER                                                      | PervasID Limited                                                 |  |  |
| MODEL                                                             | RFID Reader 9316 (16-Port FCC)                                   |  |  |
| MANUFACTURER DECLARED VARIANTS (IF<br>APPLICABLE)                 | N/A                                                              |  |  |
| PART NUMBER                                                       | N/A                                                              |  |  |
| SERIAL NUMBER (S/N)                                               | 17502948-0094                                                    |  |  |
| HARDWARE VERSION                                                  | Reader V6.7.10<br>16-port Multiplexer V2.0.0                     |  |  |
| SOFTWARE VERSION                                                  | Software 4.2.2.12<br>Firmware V3.9.0.18                          |  |  |
| PSU VOLTAGE/FREQUENCY/CURRENT                                     | 24V DC, 4A                                                       |  |  |
| Intended Operating Environment                                    | Commercial                                                       |  |  |
| Dimensions/Weight                                                 | 34 cm x 27 cm x 8 cm, 2.6 kg                                     |  |  |
| Typical Installation                                              | Ceiling Mounted                                                  |  |  |
| HIGHEST INTERNALLY GENERATED<br>FREQUENCY                         | 927.25MHz                                                        |  |  |
| FCC ID (if applicable)                                            | 2AQQW1107                                                        |  |  |
| INDUSTRY CANADA ID (if applicable)                                | 24482-2307                                                       |  |  |
| COUNTRY OF ORIGIN                                                 | UK                                                               |  |  |
|                                                                   | RACTERISTICS (if applicable)                                     |  |  |
| TRANSMITTER FREQUENCY OPERATING<br>RANGE (MHz)                    | 902-928MHz                                                       |  |  |
| RECEIVER FREQUENCY OPERATING<br>RANGE (MHz)                       | 902-928MHz                                                       |  |  |
| INTERMEDIATE FREQUENCIES                                          | N/A                                                              |  |  |
| EMISSION DESIGNATOR(S):<br>https://fccid.io/Emissions-Designator/ | 500KD1D                                                          |  |  |
| MODULATION TYPES: (i.e., GMSK, QPSK)                              | PR-ASK                                                           |  |  |
| OUTPUT POWER (W or dBm)                                           | 2W                                                               |  |  |
|                                                                   | TERY/POWER SUPPLY (if applicable)                                |  |  |
| MANUFACTURING DESCRIPTION                                         | AC/DC Power Supply                                               |  |  |
| MANUFACTUR                                                        | Generic (see "Power Supply Unit Specification for 93x0 Readers") |  |  |
| ТҮРЕ                                                              |                                                                  |  |  |
| PART NUMBER                                                       |                                                                  |  |  |
| PSU VOLTAGE/FREQUENCY/CURRENT                                     | 100 to 264 V AC, 47 – 63 Hz, ≥92 W                               |  |  |
| COUNTRY OF ORIGIN                                                 |                                                                  |  |  |
| MODULES (if applicable)                                           |                                                                  |  |  |

I hereby declare that the information supplied is correct and complete.

Name:Martin NeuhausPosition held:Chief EngineerDate08-Oct-2024

Note: No responsibility will be accepted by TÜV SÜD as to the accuracy of the information declared on this Build State Declaration by the manufacturer.



**Product Information** 

#### 1.4.1 Technical Description

The Equipment under test (EUT) was a PervasID Limited Track Master, Model: RFID Reader 9316.

The primary function of the EUT is as a Radio Frequency Identification (RFID) reader system for automating inventory and asset tracking.



Figure 1 – General View





Figure 2 – Rear View

| A | Serial<br>Number | 17502948-0094    |  |
|---|------------------|------------------|--|
|   | мас              | 00142D69AACB     |  |
|   | 915 MHz          | FCCID: 2AQQW9200 |  |
|   | Made in UK       |                  |  |

Figure 3 – Ratings Plate



#### 1.4.2 EUT Port/Cable Identification

| Port                                           | Max Cable Length specified | Usage  | Туре                                                 | Screened |
|------------------------------------------------|----------------------------|--------|------------------------------------------------------|----------|
| Configuration and Mode: AC Powered – RFiD Link |                            |        |                                                      |          |
| AC Power                                       | 1.5 m                      | Power  | IEC Kettle with AC to<br>DC converter power<br>brick | No       |
| Ethernet                                       | 1 m                        | Data   | Cat 6                                                | No       |
| RF Output x 15                                 | 50-ohm Load<br>Terminated  | Signal | Coaxal Connector C                                   | No       |
| RF Output 1                                    | 5 m                        | Signal | Coaxal Connector C                                   | No       |

#### Table 4

#### 1.4.3 Test Configuration

| Configuration | Description                                                                                       |  |
|---------------|---------------------------------------------------------------------------------------------------|--|
|               | The EUT was powered from a 120 V 60 Hz AC supply.<br>The EUT had the following other connections: |  |
| AC Powered    | • Fifteen 50-ohm loads were connected to fifteen RF output ports.                                 |  |
|               | One RF output port connected to an RFiD antenna.                                                  |  |
|               | • One ethernet port connected to a customer supplied support laptop.                              |  |

#### Table 5

#### 1.4.4 Modes of Operation

| Mode      | Description                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ldle      | The EUT was powered with all transmitters disabled.<br>The EUT was set up in accordance with the customer provided instructions in<br>document: 902-023-TP 16-Port Track Master FCC/IC Type Approval Test<br>Procedure |
| RFiD Link | The EUT was set up in accordance with the customer provided instructions in document: 902-023-TP 16-Port Track Master FCC/IC Type Approval Test Procedure                                                              |



#### 1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

#### 1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Description of Modification still fitted to EUT       | Modification Fitted By | Date Modification<br>Fitted |  |  |  |  |
|--------------------|-------------------------------------------------------|------------------------|-----------------------------|--|--|--|--|
| Model: RFID Reade  | Model: RFID Reader 9316, Serial Number: 17502948-0094 |                        |                             |  |  |  |  |
| 0                  | As supplied by the customer                           | Not Applicable         | Not Applicable              |  |  |  |  |

Table 7

#### 1.7 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

| Test Name                                 | Name of Engineer(s) | Accreditation |  |  |  |
|-------------------------------------------|---------------------|---------------|--|--|--|
| Configuration and Mode: AC Powered - Idle |                     |               |  |  |  |
| Radiated Disturbance                      | Matthew Dawkins     | UKAS          |  |  |  |
| Radiated Disturbance, Magnetic Field      | Matthew Dawkins     | UKAS          |  |  |  |

#### Table 8

| Test Name                                      | Name of Engineer(s) | Accreditation |
|------------------------------------------------|---------------------|---------------|
| Configuration and Mode: AC Powered – RFiD Link |                     |               |
| Conducted Disturbance at Mains Terminals       | Matthew Dawkins     | UKAS          |

#### Table 9

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



### 2 Test Details

#### 2.1 Conducted Disturbance at Mains Terminals

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15B and ICES-003, Clause 15.107 and 3.1

#### 2.1.2 Equipment Under Test and Modification State

Model: RFID Reader 9316, Serial Number: 17502948-0094

#### 2.1.3 Date of Test

24-July-2024

#### 2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

#### 2.1.5 Example Calculation

Quasi-Peak level ( $dB\mu V$ ) = Receiver level ( $dB\mu V$ ) + Correction Factor (dB) Margin (dB) = Quasi-Peak level ( $dB\mu V$ ) - Limit ( $dB\mu V$ )

CISPR Average level ( $dB\mu V$ ) = Receiver level ( $dB\mu V$ ) + Correction Factor (dB) Margin (dB) = CISPR Average level ( $dB\mu V$ ) - Limit ( $dB\mu V$ )



#### 2.1.6 Example Test Setup Diagram

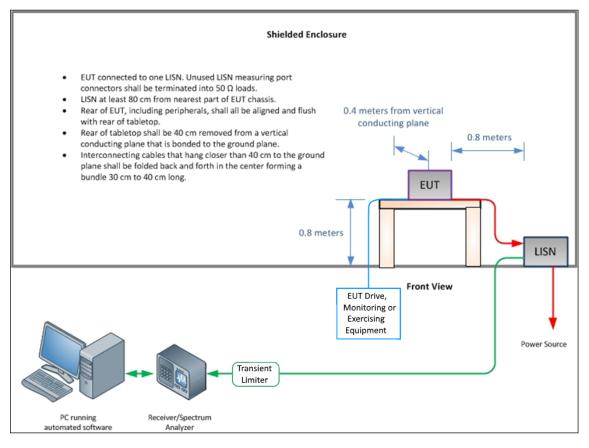



Figure 4 - Conducted Disturbance

#### 2.1.7 Environmental Conditions

| Ambient Temperature  | 18.8 °C     |
|----------------------|-------------|
| Relative Humidity    | 54.5 %      |
| Atmospheric Pressure | 1014.0 mbar |

#### 2.1.8 Specification Limits

| Required Specification Limits - Class A |                          |                                 |                                    |  |  |  |  |
|-----------------------------------------|--------------------------|---------------------------------|------------------------------------|--|--|--|--|
| Line Under Test                         | Frequency Range<br>(MHz) | Quasi-Peak Test Limit<br>(dBµV) | CISPR Average Test Limit<br>(dBµV) |  |  |  |  |
| AC Power Port                           | 0.15 to 0.5              | 79                              | 66                                 |  |  |  |  |
|                                         | 0.5 to 30                | 73                              | 60                                 |  |  |  |  |
| Supplementary information:<br>None      |                          |                                 |                                    |  |  |  |  |



#### 2.1.9 Test Results

#### Results for Configuration and Mode: AC Powered – RFiD Link

This test was performed to the requirements of the Class A limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Applied Supply Voltage:120 V ACApplied Supply Frequency:60 Hz

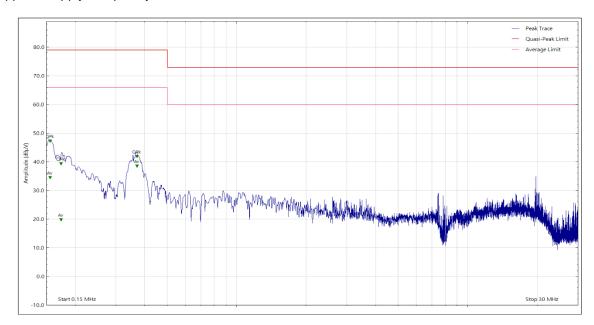



Figure 5 - Graphical Results - Live Line

| Frequency (MHz) | Level (dBµV) | Limit (dBµV) | Margin (dB) | Detector  |
|-----------------|--------------|--------------|-------------|-----------|
| 0.156           | 46.42        | 79           | -32.58      | Q-Peak    |
| 0.156           | 33.66        | 66           | -32.34      | CISPR Avg |
| 0.174           | 38.45        | 79           | -40.55      | Q-Peak    |
| 0.174           | 18.88        | 66           | -47.12      | CISPR Avg |
| 0.370           | 40.94        | 79           | -38.06      | Q-Peak    |
| 0.370           | 37.69        | 66           | -28.31      | CISPR Avg |

#### Table 11



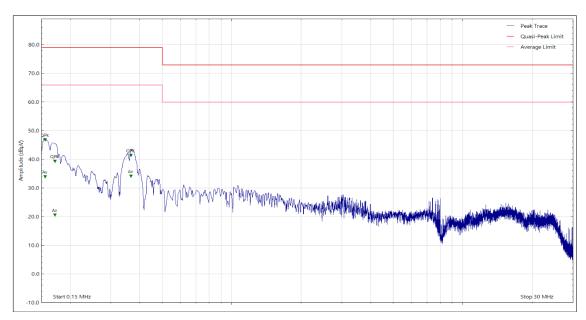



Figure 6 - Graphical Results - Neutral Line

| Frequency (MHz) | Level (dBµV) | Limit (dBµV) | Margin (dB) | Detector  |
|-----------------|--------------|--------------|-------------|-----------|
| 0.156           | 45.91        | 79           | -33.09      | Q-Peak    |
| 0.156           | 33.02        | 66           | -32.98      | CISPR Avg |
| 0.172           | 38.44        | 79           | -40.56      | Q-Peak    |
| 0.172           | 19.69        | 66           | -46.31      | CISPR Avg |
| 0.367           | 40.57        | 79           | -38.43      | Q-Peak    |
| 0.367           | 33.25        | 66           | -32.75      | CISPR Avg |

#### Table 12





Figure 7 - Test Setup

#### 2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                       | Manufacturer    | Туре No                  | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|----------------------------------|-----------------|--------------------------|-------|-----------------------------------|------------------------|
| 3m Semi-Anechoic<br>Chamber      | MVG             | EMC Chamber 12           | 5621  | 36                                | 7-Aug-2026             |
| Emissions Software               | TUV SUD         | EmX V3.2.0               | 5125  | -                                 | N/A - Software         |
| Test Receiver                    | Rohde & Schwarz | ESU40                    | 3506  | 12                                | 17-Apr-2025            |
| Transient Limiter                | Hewlett Packard | 11947A                   | 15    | 12                                | 24-Oct-2024            |
| Cable (N-Type to N-Type, 2 m)    | Junkosha        | MWX221-<br>02000AMSAMS/B | 5726  | 6                                 | 17-Aug-2024            |
| Cable (N-Type to N-Type,<br>8 m) | Junkosha        | MWX221-<br>08000NMSNMS/B | 6321  | 12                                | 4-Feb-2025             |
| LISN (CISPR 16, Single<br>Phase) | Rohde & Schwarz | ESH3-Z5                  | 1390  | 12                                | 1-Feb-2025             |

Table 13



#### 2.2 Radiated Disturbance, Magnetic Field

#### 2.2.1 Specification Reference

FCC 47 CFR Part 15B and ICES-003, Clause 15.109 and 3.2

#### 2.2.2 Equipment Under Test and Modification State

Model: RFID Reader 9316, Serial Number: 17502948-0094

#### 2.2.3 Date of Test

24-July-2024

#### 2.2.4 Test Method

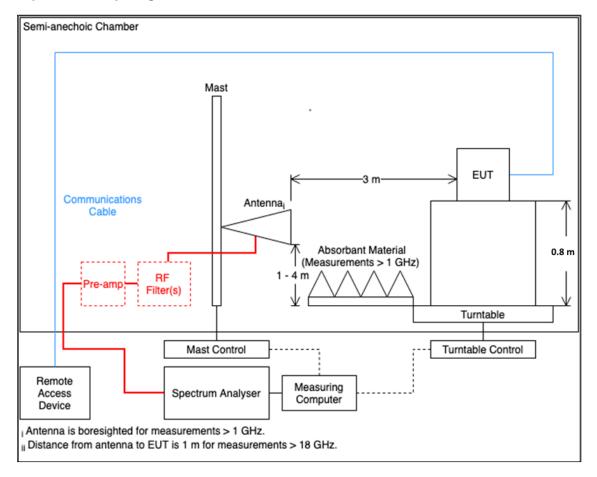
The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semianechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.


#### 2.2.5 Example Calculation

9 kHz to 30 MHz:

Quasi-Peak level (dB $\mu$ V/m) = Receiver level (dB $\mu$ V) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level (dB $\mu$ V/m) - Limit (dB $\mu$ V/m)



#### 2.2.6 Example Test Setup Diagram



#### Figure 8 - Radiated Disturbance Example Test Setup

#### 2.2.7 Environmental Conditions

| Ambient Temperature  | 18.8 °C     |
|----------------------|-------------|
| Relative Humidity    | 59.4 %      |
| Atmospheric Pressure | 1013.0 mbar |

#### 2.2.8 Specification Limits

| Required Specification Limits, Magnetic Field Strength<br>FCC CFR 15.209 at a 3 m Measurement Distance |                   |                   |                 |                                              |                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------|----------------------------------------------|------------------------------------|--|--|--|
| Frequency<br>(MHz)                                                                                     | Test Limit (µV/m) | Test Limit (µV/m) | Distance<br>(m) | 3 m<br>Measurement<br>Distance<br>Correction | Quasi-Peak<br>Test Limit<br>At 3 m |  |  |  |
| 0.009                                                                                                  | 266.67            | 48.52             | 300.00          | 40.00                                        | 88.52                              |  |  |  |
| 0.49                                                                                                   | 4.90              | 13.80             | 300.00          | 40.00                                        | 53.80                              |  |  |  |
| 0.49                                                                                                   | 4.90              | 13.80             | 30.00           | 20.00                                        | 53.80                              |  |  |  |
| 1.705                                                                                                  | 1.41              | 2.97              | 30.00           | 20.00                                        | 42.97                              |  |  |  |
| 1.705                                                                                                  | 30.00             | 29.54             | 30.00           | 20.00                                        | 49.54                              |  |  |  |
| 30                                                                                                     | 30.00             | 29.54             | 30.00           | 20.00                                        | 49.54                              |  |  |  |



#### 2.2.9 Test Results

#### Results for Configuration and Mode: AC Powered - Idle.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

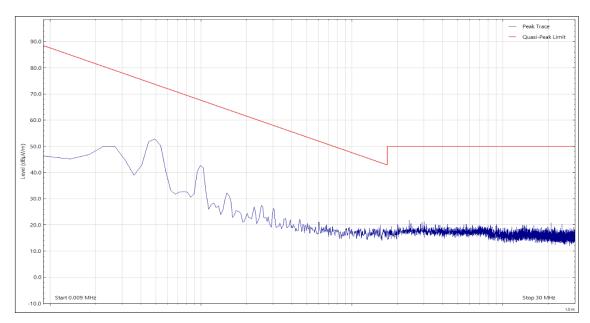



Figure 9 - Face On

| Frequency (MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *               |                   |                   |             |          |           |             |              |

#### Table 15



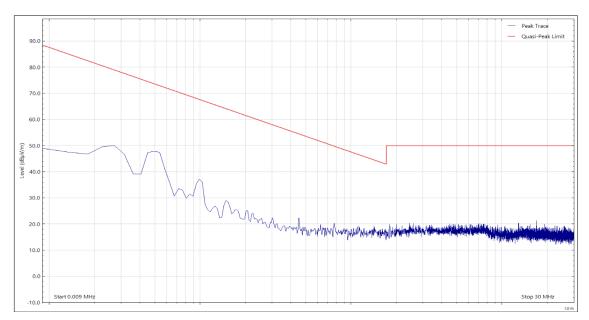



Figure 10 - Side On

| Frequency (MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *               |                   |                   |             |          |           |             |              |

#### Table 16





Figure 11 - Test Setup

#### 2.2.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                         | Manufacturer    | Туре No                  | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|------------------------------------|-----------------|--------------------------|-------|-----------------------------------|------------------------|
| 3m Semi-Anechoic<br>Chamber        | MVG             | Screened Room            | 5621  | 36                                | 07-Aug-2026            |
| Emissions Software                 | TUV SUD         | EmX V3.2.0               | 5125  | -                                 | Software               |
| Test Receiver                      | Rohde & Schwarz | ESU40                    | 3506  | 12                                | 17-Apr-2025            |
| Turntable & Mast<br>Controller     | Maturo Gmbh     | NCD/498/2799.01          | 5612  | -                                 | TU                     |
| Cable Assembly - 18GHz<br>2m       | Junkosha        | MWX221-<br>02000AMSAMS/B | 5728  | 12                                | 11-Aug-2024            |
| Antenna (Loop, 9 kHz to<br>30 MHz) | Teseq           | HLA                      | 5616  | 24                                | 27-Jul-2024            |
| Power Injector                     | Teseq           | PI 6121                  | 5620  | 24                                | 27-Jul-2024            |

Table 17

TU - Traceability Unscheduled



#### 2.3 Radiated Disturbance

#### 2.3.1 Specification Reference

FCC 47 CFR Part 15B and ICES-003, Clause 15.109 and 3.2

#### 2.3.2 Equipment Under Test and Modification State

Model: 902-023-TP, Serial Number: 17502948-0094

#### 2.3.3 Date of Test

24-July-2024

#### 2.3.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semianechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

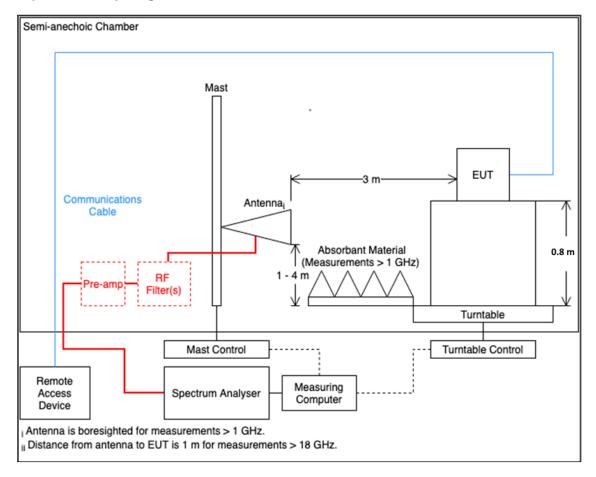
Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

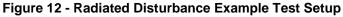
The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

#### 2.3.5 Example Calculation

Below 1 GHz:

Quasi-Peak level (dB $\mu$ V/m) = Receiver level (dB $\mu$ V) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level (dB $\mu$ V/m) - Limit (dB $\mu$ V/m)


Above 1 GHz:


CISPR Average level ( $dB\mu V/m$ ) = Receiver level ( $dB\mu V$ ) + Correction Factor (dB/m) Margin (dB) = CISPR Average level ( $dB\mu V/m$ ) - Limit ( $dB\mu V/m$ )

 $\begin{array}{l} \mbox{Peak level } (dB\mu V/m) = \mbox{Receiver level } (dB\mu V) + \mbox{Correction Factor } (dB/m) \\ \mbox{Margin } (dB) = \mbox{Peak level } (dB\mu V/m) - \mbox{Limit } (dB\mu V/m) \end{array}$ 



#### 2.3.6 Example Test Setup Diagram





#### 2.3.7 Environmental Conditions

| Ambient Temperature  | 18.8 °C     |
|----------------------|-------------|
| Relative Humidity    | 58.4 %      |
| Atmospheric Pressure | 1013.0 mbar |

#### 2.3.8 Specification Limits

| Frequency Range (MHz) | Test Limit<br>(μV/m) | Test Limit<br>(dBµV/m) |  |
|-----------------------|----------------------|------------------------|--|
| 30 to 88              | 90                   | 39.1                   |  |
| 88 to 216             | 150                  | 43.5                   |  |
| 216 to 960            | 210                  | 46.4                   |  |
| Above 960 300 49.5    |                      |                        |  |

Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.

Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.



#### 2.3.9 Test Results

Results for Configuration and Mode: AC Powered - Idle.

#### This test was performed to the requirements of the Class A limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT:927.25 MHzWhich necessitates an upper frequency test limit of:10 GHz

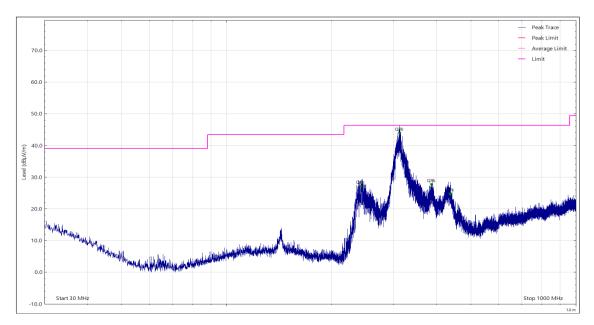



Figure 13 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 241.920            | 26.24             | 46.40             | -20.16      | Q-Peak   | 256       | 124         | Horizontal   |
| 312.886            | 42.93             | 46.40             | -3.47       | Q-Peak   | 249       | 100         | Horizontal   |
| 386.599            | 26.78             | 46.40             | -19.62      | Q-Peak   | 287       | 100         | Horizontal   |
| 436.177            | 23.83             | 46.40             | -22.57      | Q-Peak   | 354       | 100         | Horizontal   |

#### Table 19



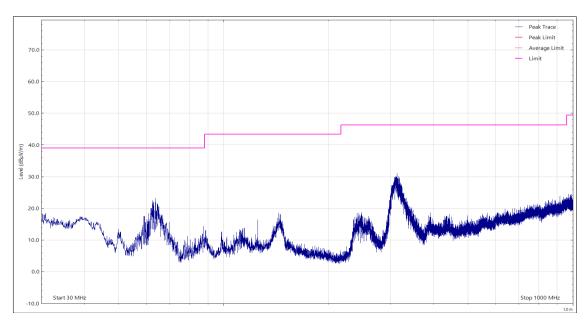
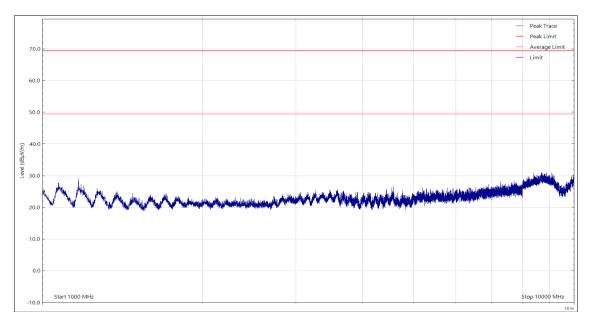
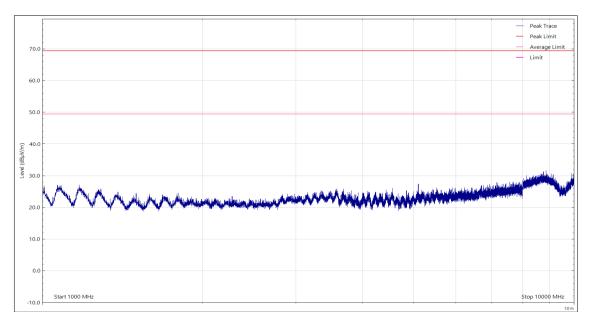




Figure 14 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

#### Table 20






#### Figure 15 - 1 GHz to 10 GHz, Horizontal

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

#### Table 21





#### Figure 16 - 1 GHz to 10 GHz, Vertical

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

#### Table 22





Figure 17 - Test Setup - 30 MHz to 1 GHz

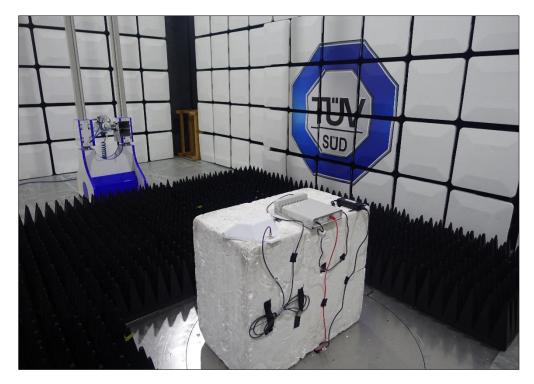



Figure 18 - Test Setup - 1 GHz to 10 GHz



#### 2.3.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                           | Manufacturer    | Туре No                  | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|--------------------------------------|-----------------|--------------------------|-------|-----------------------------------|------------------------|
| 3m Semi-Anechoic<br>Chamber          | MVG             | Screened Room            | 5621  | 36                                | 07-Aug-2026            |
| Test Receiver                        | Rohde & Schwarz | ESU40                    | 3506  | 12                                | 17-Apr-2025            |
| Emissions Software                   | TUV SUD         | EmX V3.2.0               | 5125  | -                                 | Software               |
| Turntable & Mast<br>Controller       | Maturo Gmbh     | NCD/498/2799.01          | 5612  | -                                 | TU                     |
| Tilt Antenna Mast                    | Maturo Gmbh     | TAM 4.0-P                | 5613  | -                                 | TU                     |
| Cable (K-Type to K-Type, 2 m)        | Junkosha        | MWX221-<br>02000AMSAMS/B | 5728  | 12                                | 11-Aug-2024            |
| Cable (N-Type to N-Type, 2 m)        | Junkosha        | MWX221/B                 | 5998  | 6                                 | 24-Oct-2024            |
| Cable (N-Type to N-Type,<br>8 m)     | Junkosha        | MWX221-<br>08000NMSNMS/B | 6321  | 12                                | 04-Feb-2025            |
| Pre-Amplifier (1 GHz to 18<br>GHz)   | Schwarzbeck     | BBV 9718 C               | 5350  | 12                                | 01-Dec-2024            |
| Antenna (Bi-Log, 30 MHz<br>to 1 GHz) | Teseq           | CBL6111D                 | 5615  | 24                                | 15-Mar-2025            |
| Antenna (DRG, 1 GHz to<br>10.5 GHz)  | Schwarzbeck     | BBHA9120B                | 5611  | 12                                | 15-Oct-2024            |

Table 23

TU - Traceability Unscheduled



# 3 Test Equipment Information

#### 3.1 General Test Equipment Used

| Instrument             | Manufacturer    | Туре No    | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|------------------------|-----------------|------------|-------|-----------------------------------|------------------------|
| Thermo-Hygro-Barometer | PCE Instruments | PCE-THB-40 | 5478  | 12                                | 13-May-2025            |



# 4 Incident Reports

No incidents reports were raised.



### 5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                                | Measurement Uncertainty                                                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Radiated Disturbance                     | 30 MHz to 1 GHz, Bilog Antenna, SAC, ±5.2 dB<br>1 GHz to 6 GHz, Horn Antenna, SAC, ±5.1 dB<br>6 GHz to 18 GHz, Horn Antenna, SAC, ±4.9 dB |
| Radiated Disturbance, Magnetic Field     | 9 kHz to 30 MHz, Active Loop Antenna, SAC, ±3.3 dB                                                                                        |
| Conducted Disturbance at Mains Terminals | 150 kHz to 30 MHz, LISN, ±3.7 dB                                                                                                          |

#### Table 25

Worst case error for both Time and Frequency measurement 12 parts in 10<sup>6</sup>.

#### Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.