FCC Test Report

Report No.: AGC00703190601FE05

FCC ID : 2AQQKWJ11

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION : 2.4G Camera

BRAND NAME : Howell

MODEL NAME : WJ11, WJ12, WJ13, WJ14, WJ15

APPLICANT : Shenzhen Howell Intelligent Technology Co.,Ltd.

DATE OF ISSUE : Jul. 05, 2019

STANDARD(S)

TEST PROCEDURE(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC00703190601FE05 Page 2 of 90

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jul. 05, 2019	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. IEEE 802.11N MODULATION SCHEME	7
2.4. RELATED SUBMITTAL(S) / GRANT (S)	7
2.5. TEST METHODOLOGY	7
2.6. SPECIAL ACCESSORIES	
2.7. EQUIPMENT MODIFICATIONS	7
3. MEASUREMENT UNCERTAINTY	8
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN EUT SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. OUTPUT POWER	12
7.1. MEASUREMENT PROCEDURE	12
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
7.3. LIMITS AND MEASUREMENT RESULT	13
8. 6 DB BANDWIDTH	15
8.1. MEASUREMENT PROCEDURE	15
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	24
9.1. MEASUREMENT PROCEDURE	24
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
9.3. MEASUREMENT EQUIPMENT USED	24
9.4. LIMITS AND MEASUREMENT RESULT	24
10 MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	43

10.1 MEASUREMENT PROCEDURE	43
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	43
10.3 MEASUREMENT EQUIPMENT USED	43
10.4 LIMITS AND MEASUREMENT RESULT	43
11. RADIATED EMISSION	51
11.1. MEASUREMENT PROCEDURE	51
11.2. TEST SETUP	52
11.3. LIMITS AND MEASUREMENT RESULT	53
11.4. TEST RESULT	53
12. BAND EDGE EMISSION	59
12.1. MEASUREMENT PROCEDURE	59
12.2. TEST SET-UP	59
12.3. TEST RESULT	60
13. FCC LINE CONDUCTED EMISSION TEST	76
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	76
13.2. BLOCK DIAGRAM OF TEST SETUP	76
13.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST	77
13.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	80
APPENDIX B: PHOTOGRAPHS OF EUT	82

Page 5 of 90

1. VERIFICATION OF CONFORMITY

Applicant	Shenzhen Howell Intelligent Technology Co.,Ltd.				
Address	5/F, No.13 Building, Nangang 2ndIndustrial Park, Songbai Road, Xili Town,				
71441000	NanShan District, Shenzhen, China 518055				
manufacturer	Shenzhen Howell Intelligent Technology Co.,Ltd.				
Address	5/F, No.13 Building, Nangang 2ndIndustrial Park, Songbai Road, Xili Town,				
Addicas	NanShan District, Shenzhen, China 518055				
Factory	Shenzhen Howell Intelligent Technology Co.,Ltd.				
Address	5/F, No.13 Building, Nangang 2ndIndustrial Park, Songbai Road, Xili Town,				
Audiess	NanShan District, Shenzhen, China 518055				
Product Designation	2.4G Camera				
Brand Name	Howell				
Test Model	WJ11				
Series Model	WJ12, WJ13, WJ14, WJ15				
Declaration of Difference	All the same except for the model name				
Date of test	Jun. 20, 2019 to Jul. 04, 2019				
Deviation	None				
Condition of Test Sample	Normal				
Test Result	Pass				
Report Template	AGCRT-US-BGN/RF				

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By	Calin Lin	
	Calvin Liu(Liu Junchen)	Jul. 04, 2019
Reviewed By	Max Zhang	
	Max Zhang(Zhang Yi)	Jul. 05, 2019
Approved By	Forrest 12	
	Forrest Lei(Lei Yonggang) Authorized Officer	Jul. 05, 2019

Page 6 of 90

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "2.4G Camera". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.412 GHz~2.462GHz		
Output Power(Average)	IEEE 802.11b:15.31dBm; IEEE 802.11g:14.72dBm; IEEE 802.11n(20):14.76dBm; IEEE 802.11n(40):13.98dBm		
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)		
Number of channels	11 channels for 802.11b/g/n20 7 channels for 802.11n40		
Hardware Version	XWL_WJ11_MainBoard_Rev1.5 2019.04.17		
Software Version	21.117.0.7.50		
Antenna Designation	Integrated antenna		
Antenna Gain	2dBi		
Power Supply	DC 5V by adapter or DC 3.7V by Battery		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11, For 40MHZ bandwidth system use Channel 3 to Channel 9

Page 7 of 90

2.3. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Modulation	R	NBPSC	DDC HOST TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE		NDBPS			ata Mbps) nsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2AQQKWJ11 filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

KDB 558074 D01 15.247 Meas Guidance v05: Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 8 of 90

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

Page 9 of 90

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

Note:

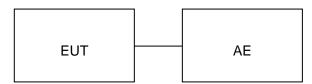
Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

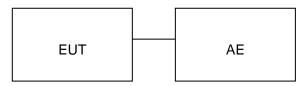
Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:


- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. The test software is the MT7601USB which can set the EUT into the individual test modes

Page 10 of 90


5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure:

Conducted Emission Configure :

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	2.4G Camera	WJ11	2AQQKWJ11	EUT
2	Adapter	JHD-AP006U-050100BB-2	DC 5V/1A	AE
3	USB-TTL	N/A	N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	AC Power Line Conduction Emission	Compliant

Page 11 of 90

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2019	Jun. 11, 2020
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

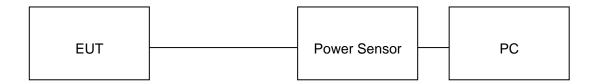
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
Power sensor	Aglient	U2021XA	MY54110007	Sep. 20, 2018	Sep. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2019	Jun. 11, 2020
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2019	Jun. 11, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 13, 2019	Jun. 12, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

Page 12 of 90

7. OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

AVERAGE POWER SETUP

Page 13 of 90

7.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	15.31	30	Pass
2.437	15.08	30	Pass
2.462	14.96	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	14.66	30	Pass
2.437	14.72	30	Pass
2.462	14.58	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

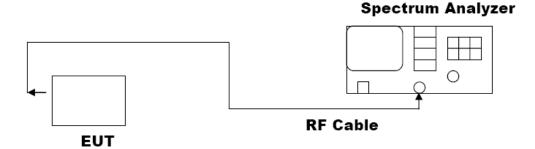
Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	14.76	30	Pass
2.437	14.31	30	Pass
2.462	14.55	30	Pass

Report No.: AGC00703190601FE05 Page 14 of 90

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 40 with data rate 13.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	13.98	30	Pass
2.437	13.77	30	Pass
2.452	13.69	30	Pass

Page 15 of 90


8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 16 of 90

8.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT			
Applicable Limite	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
>500KHZ	Low Channel	10.08	PASS
	Middle Channel	10.08	PASS
	High Channel	10.07	PASS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT			
Anniharkia Limita	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
>500KHZ	Low Channel	16.36	PASS
	Middle Channel	16.35	PASS
	High Channel	16.36	PASS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 20 with data rate 65

LIMITS AND MEASUREMENT RESULT			
A collection to the	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
	Low Channel	17.04	PASS
>500KHZ	Middle Channel	17.05	PASS
	High Channel	17.05	PASS

Report No.: AGC00703190601FE05 Page 17 of 90

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 40 with data rate 135

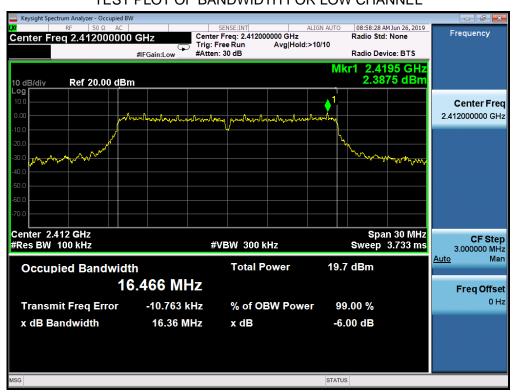

LIMITS AND MEASUREMENT RESULT			
Appliachle Limite	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
>500KHZ	Low Channel	35.15	PASS
	Middle Channel	35.17	PASS
	High Channel	35.20	PASS

Page 18 of 90

802.11b TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



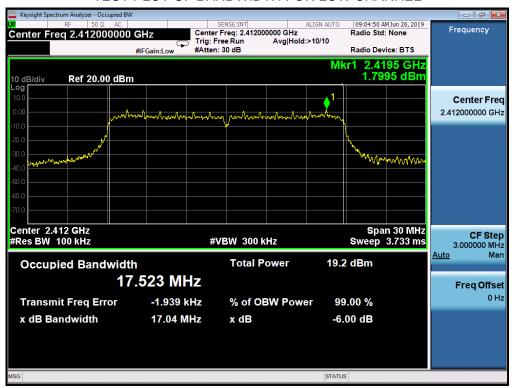
Page 19 of 90

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

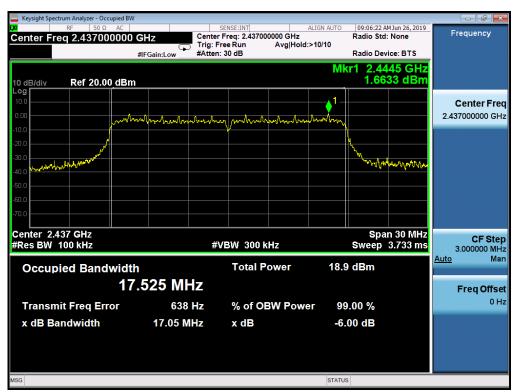
802.11g TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 20 of 90

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

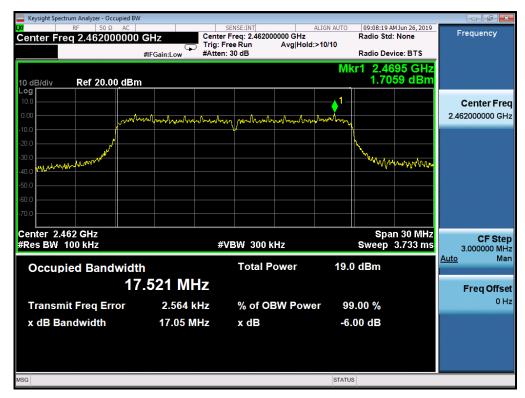


TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



Page 21 of 90

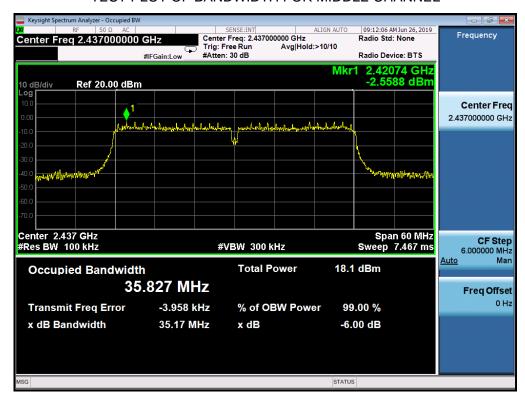
802.11n (20) TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL



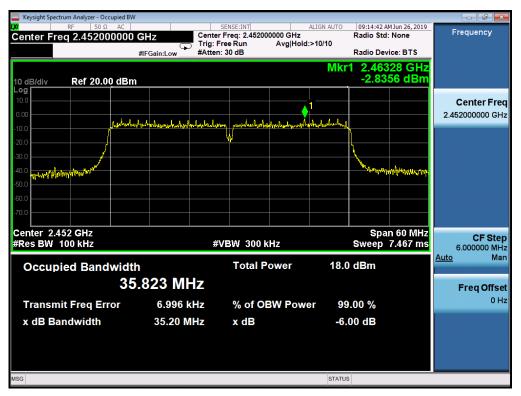
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 22 of 90

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



802.11n (40) TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



Page 23 of 90

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 24 of 90

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

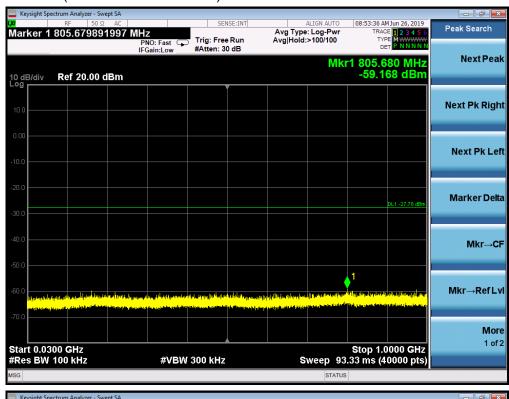
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

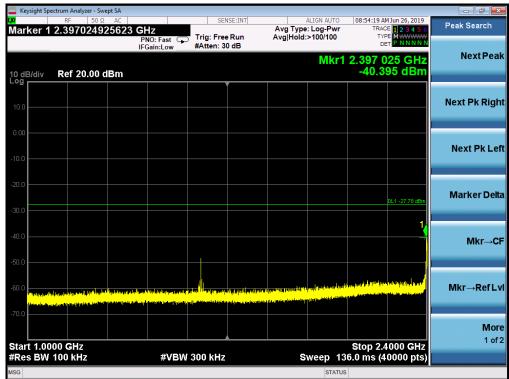
Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2.

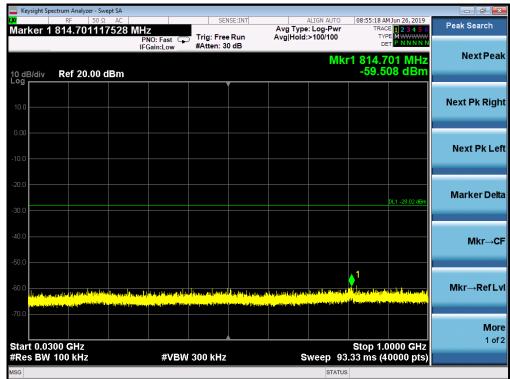
9.3. MEASUREMENT EQUIPMENT USEDJN

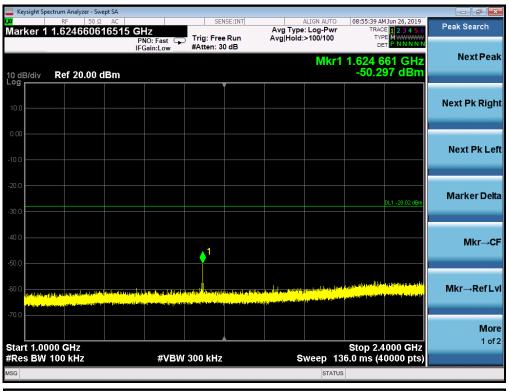

The same as described in section 6.


9.4. LIMITS AND MEASUREMENT RESULT

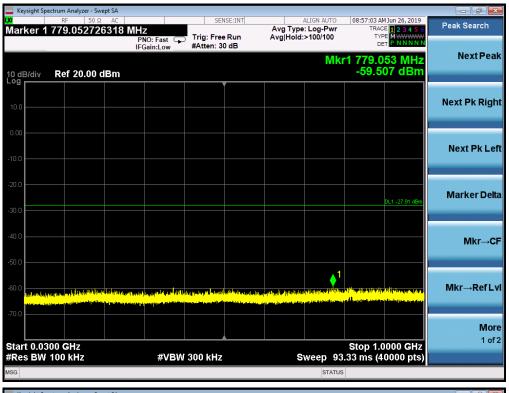
LIMITS AND MEASUREMENT RESULT			
Applicable Limite	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit		
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS	
intentional radiator is operating, the radio frequency	Channel		
power that is produce by the intentional radiator			
shall be at least 30 dB below that in 100KHz			
bandwidth within the band that contains the highest			
level of the desired power.	At least -30dBc than the limit	PASS	
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS	
restricted bands, as defined in §15.205(a), must also			
comply with the radiated emission limits specified			
in§15.209(a))			

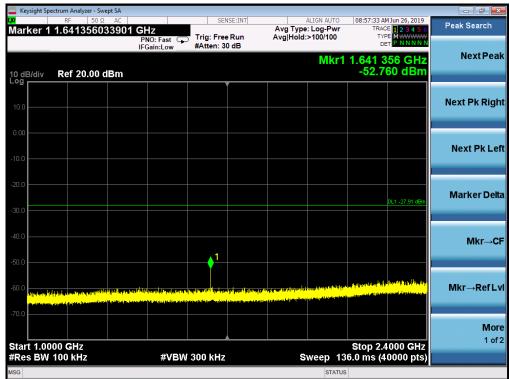
Page 25 of 90


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF (802.11b with data rate 1) FOR MODULATION IN LOW CHANNEL



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF(802.11b with data rate 1) FOR MODULATION IN MIDDLE CHANNEL

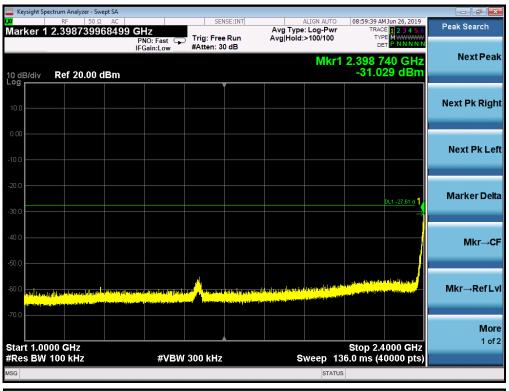




Page 28 of 90

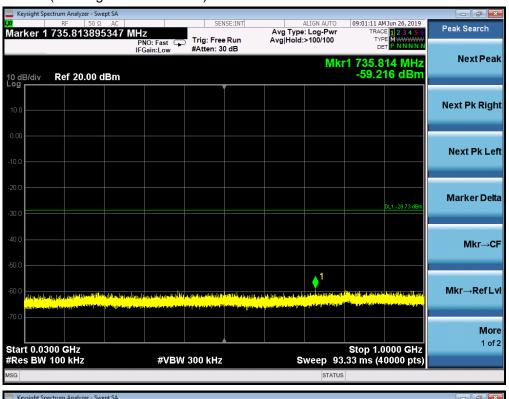
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF(802.11b with data rate 1) FOR MODULATION IN HIGH CHANNEL

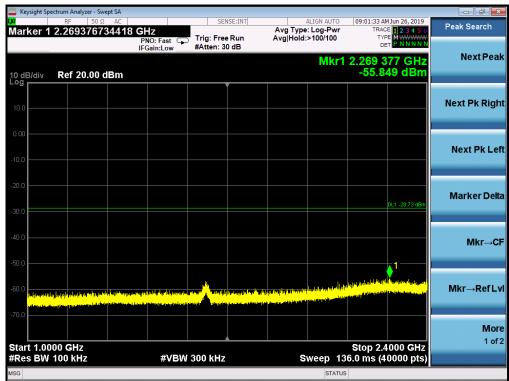




Report No.: AGC00703190601FE05 Page 29 of 90

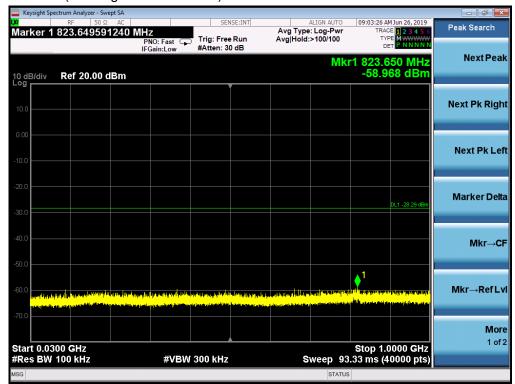
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF (802.11g with data rate 6) FOR MODULATION IN LOW CHANNEL

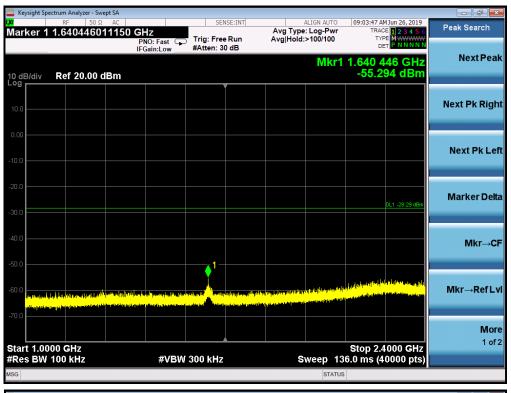





Page 31 of 90

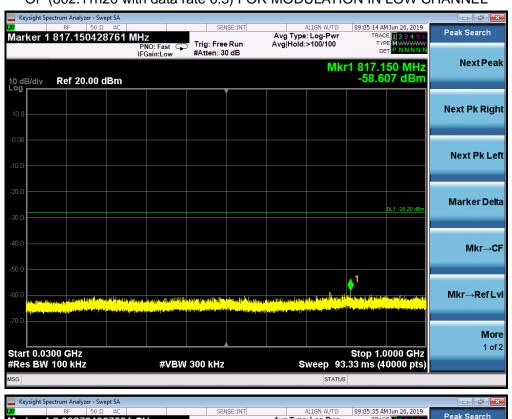
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF (802.11g with data rate 6) FOR MODULATION IN MIDDLE CHANNEL

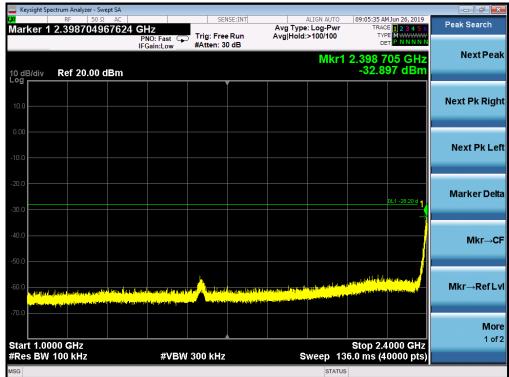


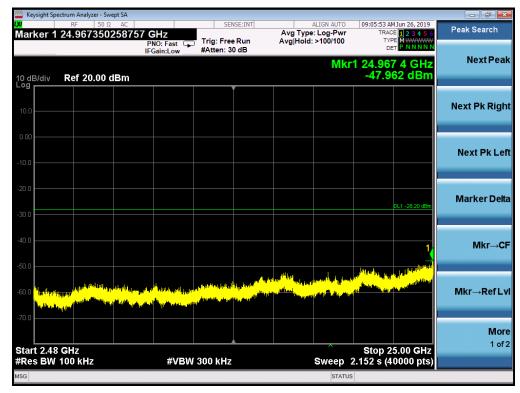


Report No.: AGC00703190601FE05 Page 32 of 90

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF (802.11g with data rate 6) FOR MODULATION IN HIGH CHANNEL

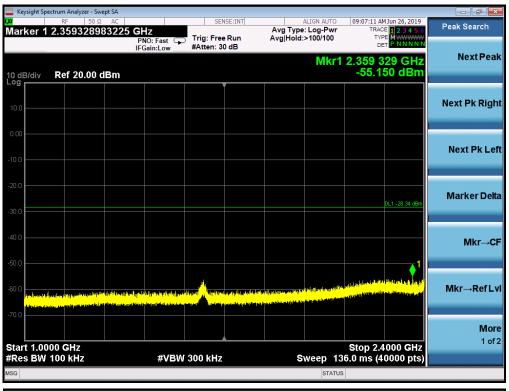





Page 34 of 90

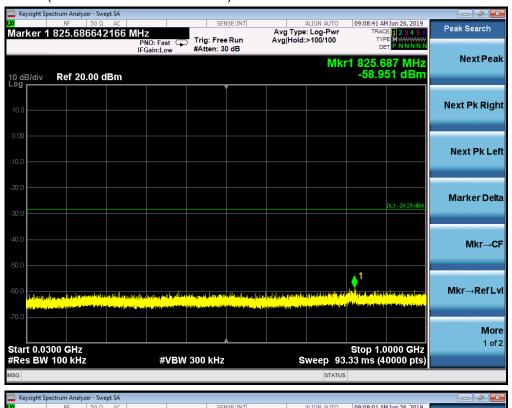
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF (802.11n20 with data rate 6.5) FOR MODULATION IN LOW CHANNEL

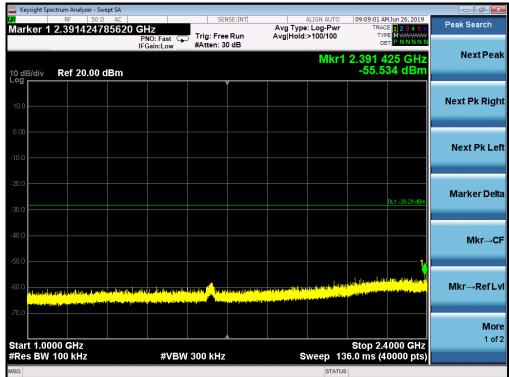




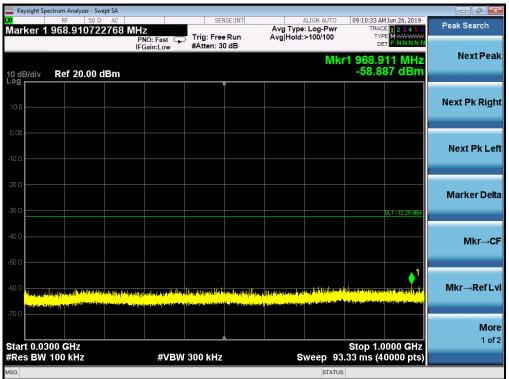
Report No.: AGC00703190601FE05 Page 35 of 90

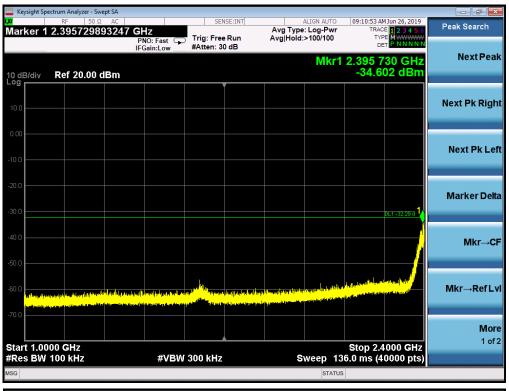
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF (802.11n20 with data rate 6.5) FOR MODULATION IN MIDDLE CHANNEL



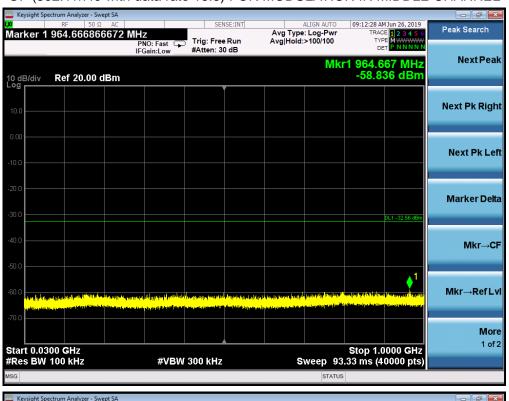


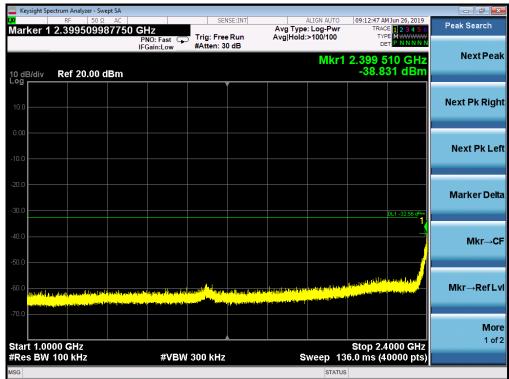
Page 37 of 90


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF (802.11n20 with data rate 6.5) FOR MODULATION IN HIGH CHANNEL



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF (802.11n40 with data rate 13.5) FOR MODULATION IN LOW CHANNEL





Page 40 of 90


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF (802.11n40 with data rate 13.5) FOR MODULATION IN MIDDLE CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF (802.11n40 with data rate 13.5) FOR MODULATION IN HIGH CHANNEL

Page 43 of 90

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER SPECTRAL DENSITY		
TEST MODE	802.11b with data rate 1		

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	2.035	8	Pass
Middle Channel	1.757	8	Pass
High Channel	1.740	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY	
TEST MODE	802.11g with data rate 6	

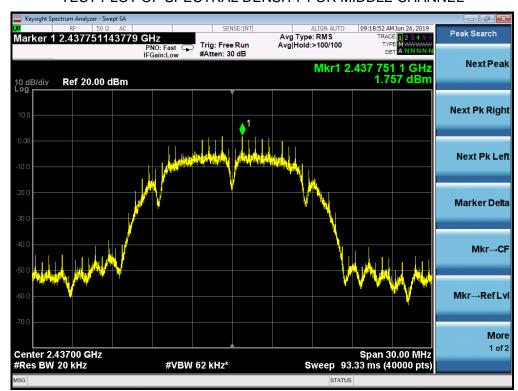
Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-4.660	8	Pass
Middle Channel	-4.220	8	Pass
High Channel	-3.797	8	Pass

Report No.: AGC00703190601FE05 Page 44 of 90

TEST ITEM	POWER SPECTRAL DENSITY	
TEST MODE	802.11n 20 with data rate 6.5	

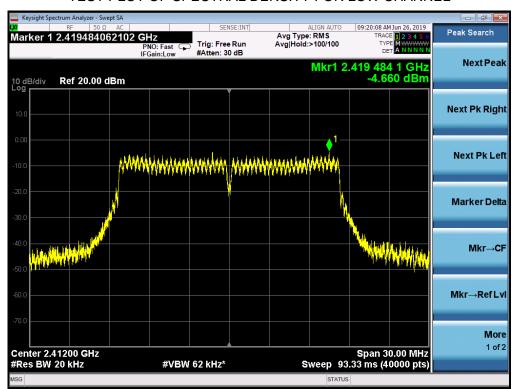
Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-3.706	8	Pass
Middle Channel	-3.996	8	Pass
High Channel	-3.969	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY	
TEST MODE	802.11n 40 with data rate 13.5	

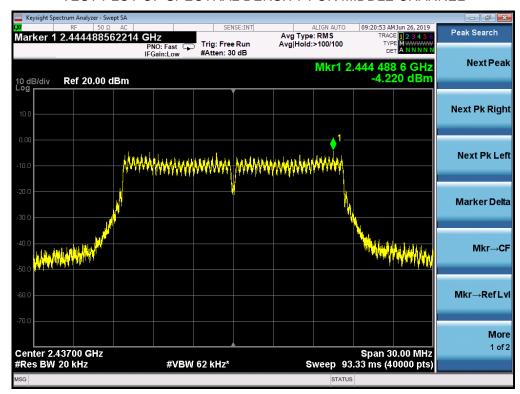

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-7.346	8	Pass
Middle Channel	-7.364	8	Pass
High Channel	-7.487	8	Pass

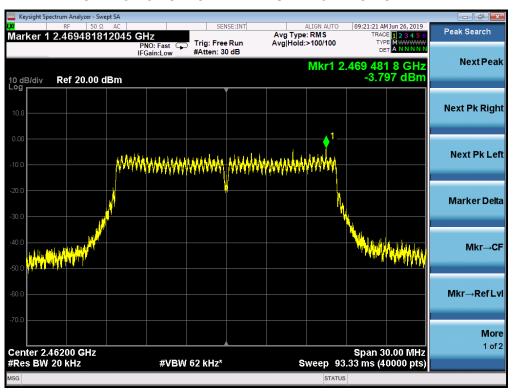
Page 45 of 90

802.11b TEST RESULTTEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

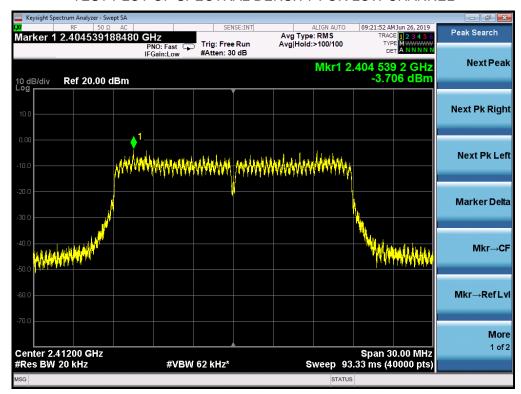

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Page 46 of 90

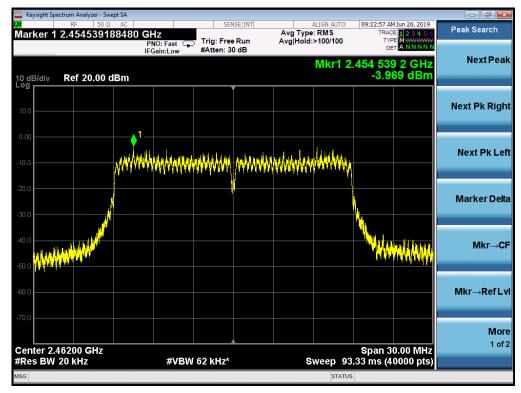


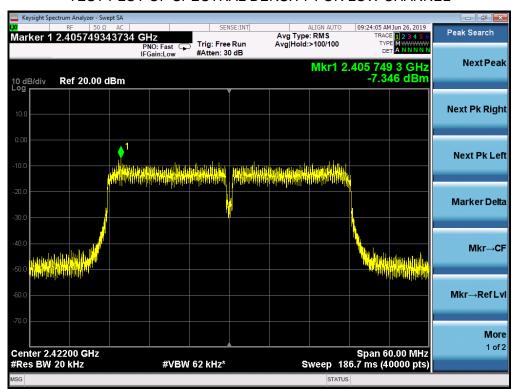

802.11g TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Page 47 of 90

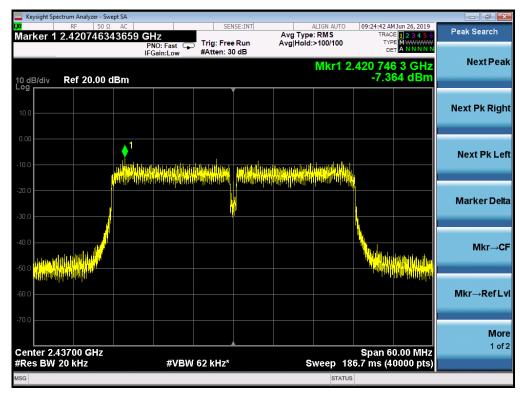

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

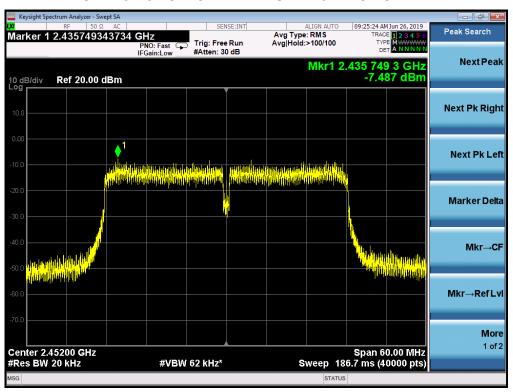
Page 48 of 90


802.11n 20 TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Page 49 of 90




802.11n 40 TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

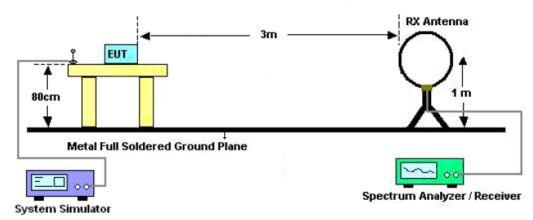
Page 50 of 90

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

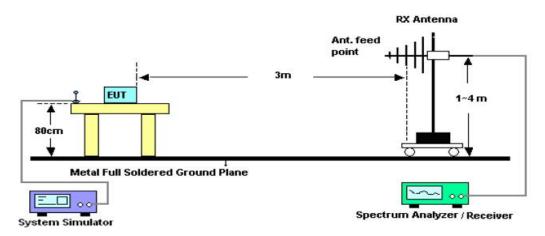
Page 51 of 90

11. RADIATED EMISSION

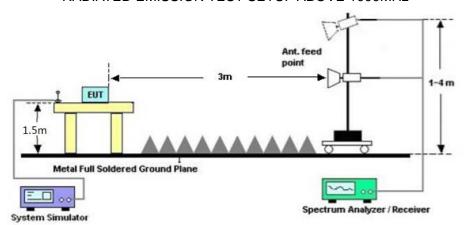
11.1. MEASUREMENT PROCEDURE


1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.


Page 52 of 90

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 53 of 90

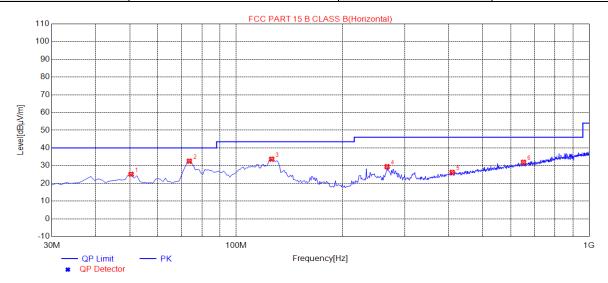
11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

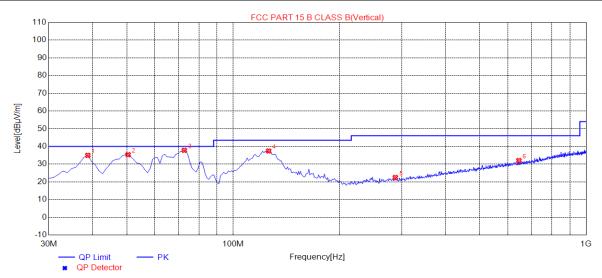

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

EUT	2.4G Camera	Model Name	WJ11
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal



NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	50.3700	25.14	14.64	40.00	14.86	100	279	Horizontal
2	73.6500	32.54	11.47	40.00	7.46	200	224	Horizontal
3	126.0300	33.69	13.88	43.50	9.81	150	219	Horizontal
4	267.6500	29.43	15.21	46.00	16.57	100	286	Horizontal
5	409.2700	26.21	20.01	46.00	19.79	100	84	Horizontal
6	651.7700	31.93	25.19	46.00	14.07	100	346	Horizontal

RESULT: PASS

Page 55 of 90

EUT	2.4G Camera	Model Name	WJ11
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	38.7300	34.95	14.63	40.00	5.05	100	226	Vertical
2	50.3700	35.34	14.64	40.00	4.66	100	230	Vertical
3	72.6800	37.82	11.67	40.00	2.18	100	291	Vertical
4	126.0300	37.43	13.88	43.50	6.07	100	183	Vertical
5	288.0200	22.49	16.16	46.00	23.51	200	208	Vertical
6	644.9800	32.03	25.05	46.00	13.97	100	298	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.