# TEST REPORT

### FCC ID: 2AQOO-N15I581T

Product: Notebook

Model No.: WWN15I5-8BK1T

Additional Model No.: WWN15I5-8WH1T, WWN15I5-8PK1T, WWN15I5-8SL1T, WWN15I5-8BL1T, WWN15I5-8T1T, WWN15I5-8GO1T, WWN15I5-4BK256

Trade Mark: THOMSON Report No.: TCT200928E029

Issued Date: Oct. 27, 2020

Issued for:

GROUPSFIT

80/84 route de la Liberation, PONTAULT COMBAULT 77340, France

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

**Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

# TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

|    |                        |               |                               |                |               | 2 |
|----|------------------------|---------------|-------------------------------|----------------|---------------|---|
| C) | Test Certification     | (             | $\langle \mathcal{O} \rangle$ |                |               |   |
| 2. | Test Result Summa      |               |                               |                |               |   |
| 3. | EUT Description        | -             |                               |                |               |   |
| 4. | General Information    |               |                               |                |               |   |
|    | 4.1. Test environment  |               |                               |                |               |   |
|    | 4.2. Description of Su |               |                               |                |               | Ś |
| 5. | Facilities and Accre   |               |                               |                |               |   |
| 0. | 5.1. Facilities        |               |                               |                |               |   |
|    | 5.2. Location          |               |                               |                | _             |   |
|    | 5.3. Measurement Unc   |               |                               |                |               |   |
| 6. | Test Results and M     |               |                               |                |               |   |
|    | 6.1. Antenna requirem  |               |                               |                |               | K |
|    | 6.2. Conducted Emiss   | ion           | <u> (</u> )                   | <u>(0)</u>     |               |   |
|    | 6.3. Maximum Conduc    | ted (Average) | Output Powe                   | er             | 15            |   |
|    | 6.4. Emission Bandwig  |               |                               |                |               |   |
|    | 6.5. Power Spectral De | ensity        | <u>k</u>                      | 2)             |               |   |
|    | 6.6. Conducted Band I  | Edge and Spu  | rious Emissio                 | on Measurement | 20            |   |
|    | 6.7. Radiated Spurious | s Emission Me | easurement                    |                | 22            | K |
|    | ppendix A: Test Res    | ult of Cond   | ucted Test                    |                |               |   |
| Α  | ppendix B: Photogra    | aphs of Test  | Setup                         |                |               |   |
| Α  | ppendix C: Photogra    | aphs of EUT   |                               |                |               |   |
|    |                        |               |                               |                |               |   |
|    |                        |               |                               |                |               | K |
|    |                        |               |                               |                |               | / |
|    |                        |               |                               |                |               |   |
|    |                        |               |                               |                |               |   |
|    |                        |               |                               |                |               | Ň |
|    |                        |               |                               |                |               | 1 |
|    |                        |               |                               |                | Page 2 of 114 |   |

# 1. Test Certification

| Product:                 | Notebook                                                                                                                | C.  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|
| Model No.:               | WWN15I5-8BK1T                                                                                                           | No. |
| Additional<br>Model:     | WWN15I5-8WH1T, WWN15I5-8PK1T, WWN15I5-8SL1T,<br>WWN15I5-8BL1T, WWN15I5-8T1T, WWN15I5-8GO1T,<br>WWN15I5-4BK256           |     |
| Trade Mark:              | THOMSON                                                                                                                 |     |
| Applicant:               | GROUPSFIT                                                                                                               |     |
| Address:                 | 80/84 route de la Liberation, PONTAULT COMBAULT 77340, France                                                           | K.  |
| Manufacturer:            | GROUPSFIT                                                                                                               |     |
| Address:                 | 80/84 route de la Liberation, PONTAULT COMBAULT 77340, France                                                           |     |
| Date of Test:            | Sep. 29, 2020 – Oct. 26, 2020                                                                                           |     |
| Applicable<br>Standards: | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2013 | Č.  |

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

vens Xu Tested By: Brews Xu

**Reviewed By:** 

Beryl Zhao

Approved By:

Tomsin

omsm

 Date:
 Oct. 26, 2020

 Date:
 Oct. 27, 2020

 Date:
 Oct. 27, 2020

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

### TCT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT200928E029

# 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result | No. |
|-------------------------------------|---------------------|--------|-----|
| Antenna requirement                 | §15.203/§15.247 (c) | PASS   |     |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |     |
| Conducted Peak Output<br>Power      | §15.247 (b)(3)      | PASS   | Ċ   |
| 6dB Emission Bandwidth              | §15.247 (a)(2)      | PASS   | K C |
| Power Spectral Density              | §15.247 (e)         | PASS   |     |
| Band Edge                           | §15.247(d)          | PASS   |     |
| Spurious Emission                   | §15.205/§15.209     | PASS   |     |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 114

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



# 3. EUT Description

| Product:                                         | Notebook                                                                                                                                                |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:                                       | WWN15I5-8BK1T                                                                                                                                           |
| Additional Model:                                | WWN15I5-8WH1T, WWN15I5-8PK1T, WWN15I5-8SL1T,<br>WWN15I5-8BL1T, WWN15I5-8T1T, WWN15I5-8GO1T,<br>WWN15I5-4BK256                                           |
| Trade Mark:                                      | THOMSON                                                                                                                                                 |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))<br>2422MHz~2452MHz (802.11n(HT40))                                                                      |
| Channel Separation:                              | 5MHz                                                                                                                                                    |
| Number of Channel:                               | 11 for 802.11b/802.11g/802.11n(HT20)<br>7 for 802.11n(HT40)                                                                                             |
| Modulation Technology: (IEEE 802.11b)            | Direct Sequence Spread Spectrum (DSSS)                                                                                                                  |
| Modulation Technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                                                                                                        |
| Data speed<br>(IEEE 802.11b):                    | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                                                                                           |
| Data speed<br>(IEEE 802.11g):                    | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                                                                                            |
| Data speed<br>(IEEE 802.11n):                    | Up to 300Mbps                                                                                                                                           |
| Antenna Type:                                    | Internal Antenna                                                                                                                                        |
| Antenna Gain:                                    | 2.2dBi                                                                                                                                                  |
| Power Supply:                                    | Rechargeable Li-polymer battery DC 7.6V                                                                                                                 |
| AC adapter:                                      | Adapter Information:<br>MODEL: JHD-AD065B-190300BA-A<br>INPUT: AC 100-240V, 50/60Hz, 1.5A<br>OUTPUT: DC 19.0V, 3.0A, 57.0W                              |
| Remark:                                          | All models above are identical in interior structure, electrical circuits and components, just model names are different for the marketing requirement. |

**Note:** The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Page 5 of 114

# TCT通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT200928E029

### **Operation Frequency each of channel For 802.11b/g/n(HT20)**

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 1       | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2       | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3       | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

### **Operation Frequency each of channel For 802.11n (HT40)**

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
|         |           | 4       | 2427MHz   | 7       | 2442MHz   |         |           |
|         | (         | 5       | 2432MHz   | 8       | 2447MHz   |         |           |
| 3       | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

#### 802.11b/802.11g/802.11n (HT20)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2412MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |

#### 802.11n (HT40)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2422MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2452MHz   |

# 4. General Information

# 4.1. Test environment and mode

| Condition             | Conducted Emission | Radiated Emission |  |
|-----------------------|--------------------|-------------------|--|
| Temperature:          | 25.0 °C            | 25.0 °C           |  |
| Humidity:             | 55 % RH            | 55 % RH           |  |
| Atmospheric Pressure: | 1010 mbar          | 1010 mbar         |  |

### Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode         | Data rate |
|--------------|-----------|
| 802.11b      | 1Mbps     |
| 802.11g      | 6Mbps     |
| 802.11n(H20) | 6.5Mbps   |
| 802.11n(H40) | 13.5Mbps  |
|              |           |

### **Final Test Mode:**

Operation mode:

Keep the EUT in continuous transmitting with modulation

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.46% with maximum power setting for all modulations.

Page 7 of 114

Page 8 of 114

# 4.2. Description of Support Units

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment            | Model No.           | Serial No. | FCC ID | Trade Name |
|----------------------|---------------------|------------|--------|------------|
| Notebook<br>Computer | XiaoXin<br>CHAO5000 | PF0WZYD9   | 1      | Lenovo     |

#### Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

# 5. Facilities and Accreditations

# 5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098
 Shenzhen Tongce Testing Lab
 The 3m Semi-anechoic chamber has with the (FCC) Federal Communication

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

# 5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

# 5.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Conna |                               |         |    |
|-------|-------------------------------|---------|----|
| No.   | Item                          | MU      |    |
| 1     | Conducted Emission            | ±2.56dB | 6  |
| 2     | RF power, conducted           | ±0.12dB |    |
| 3     | Spurious emissions, conducted | ±0.11dB |    |
| 4     | All emissions, radiated(<1G)  | ±3.92dB |    |
| 5     | All emissions, radiated(>1G)  | ±4.28dB |    |
| 6     | Temperature                   | ±0.1°C  |    |
| 7     | Humidity                      | ±1.0%   | N. |



Page 10 of 114

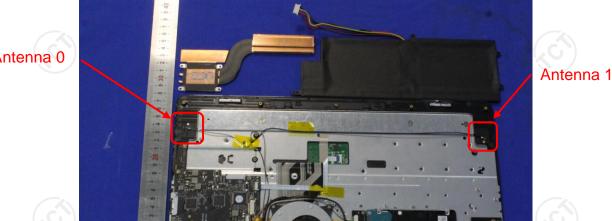
# 6. Test Results and Measurement Data

# 6.1. Antenna requirement

Standard requirement: FCC Part15 C

FCC Part15 C Section 15.203 /247(c)

### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The WIFI antennas are internal antennas, and the best case gains of the both antennas are 2.2dBi.

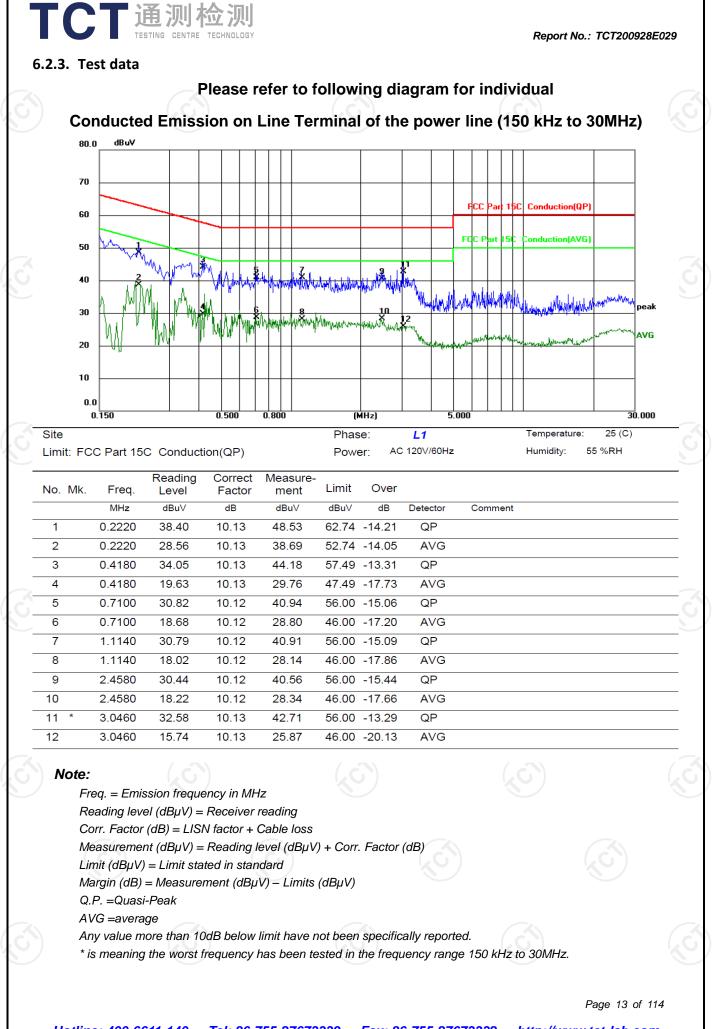


2 3 4 5 6 7 8=9 16 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

| 2. Conducted Emiss .1. Test Specification | lon                                                                                                                                                                                                                                                                                                                                                                     | (C)                                                                                                                                                                                                                 |                                                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:                         | FCC Part15 C Section                                                                                                                                                                                                                                                                                                                                                    | 15.207                                                                                                                                                                                                              |                                                                                                                                                                                           |
| Fest Method:                              | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                           |
| Frequency Range:                          | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                           |
| Receiver setup:                           | RBW=9 kHz, VBW=30                                                                                                                                                                                                                                                                                                                                                       | kHz, Sweep time                                                                                                                                                                                                     | =auto                                                                                                                                                                                     |
| _imits:                                   | Frequency range<br>(MHz)<br>0.15-0.5<br>0.5-5<br>5-30                                                                                                                                                                                                                                                                                                                   | Limit (c<br>Quasi-peak<br>66 to 56*<br>56<br>60                                                                                                                                                                     | dBuV)<br>Average<br>56 to 46*<br>46<br>50                                                                                                                                                 |
| Test Setup:                               | Reference         40cm         E.U.T       AC power         Test table/Insulation plane         Remark         E.U.T. Equipment Under Test         LISN: Line Impedence Stabilization Net         Test table height=0.8m                                                                                                                                                | 80cm<br>Filter<br>EMI<br>Receiver                                                                                                                                                                                   | — AC power                                                                                                                                                                                |
| Test Mode:                                | Charging + transmitting                                                                                                                                                                                                                                                                                                                                                 | g with modulation                                                                                                                                                                                                   |                                                                                                                                                                                           |
| Test Procedure:                           | <ol> <li>The E.U.T is connect<br/>line impedance state<br/>provides a 500hm/5<br/>measuring equipmer</li> <li>The peripheral devic<br/>power through a LI<br/>coupling impedance<br/>refer to the block<br/>photographs).</li> <li>Both sides of A.C.<br/>conducted interferent<br/>emission, the relative<br/>the interface cables<br/>ANSI C63.10: 2013 of</li> </ol> | bilization network<br>50uH coupling imp<br>nt.<br>ces are also conne<br>SN that provides<br>with 50ohm term<br>diagram of the<br>line are checke<br>nce. In order to fir<br>e positions of equi<br>s must be change | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>a 50ohm/50uH<br>hination. (Please<br>test setup and<br>d for maximum<br>d the maximum<br>ipment and all of<br>ed according to |
| Test Result:                              | PASS                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                           |

Page 11 of 114

# 6.2.2. Test Instruments


TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Conducted Emission Shielding Room Test Site (843) |                       |           |               |                 |  |  |  |
|---------------------------------------------------|-----------------------|-----------|---------------|-----------------|--|--|--|
| Equipment Manufacturer Model Serial Numb          |                       |           | Serial Number | Calibration Due |  |  |  |
| Test Receiver                                     | R&S                   | ESCI3     | 100898        | Jul. 27, 2021   |  |  |  |
| LISN-2                                            | Schwarzbeck           | NSLK 8126 | 8126453       | Sep. 11, 2021   |  |  |  |
| Line-5                                            | ТСТ                   | CE-05     | N/A           | Sep. 02, 2021   |  |  |  |
| EMI Test Software                                 | Shurple<br>Technology | EZ-EMC    | N/A           | N/A             |  |  |  |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 12 of 114

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Report No.: TCT200928E029 Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) dBuV 80.0 70 Conduction(QP) 1CC 60 nduction(AVG) FCC I 50 5 40 30 10 X AVG 20 10 0.0 0.150 0.500 0.800 (MHz) 5.000 30.000 Site Phase: Ν Temperature: 25 (C) AC 120V/60Hz Humidity: Limit: FCC Part 15C Conduction(QP) Power: 55 %RH Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dB MHz dBuV dBuV dBu∨ dB Detector Comment 1 0.1580 41.68 10.12 51.80 65.57 -13.77 QP 2 0.1580 22.11 10.12 32.23 55.57 -23.34 AVG 3 0.2340 35.36 10.13 45.49 62.31 -16.82 QP 0.2340 30.85 52.31 -21.46 4 20.72 10.13 AVG 5 0.3780 31.00 10.13 41.13 58.32 -17.19 QP 6 0.3780 21.58 10.13 31.71 48.32 -16.61 AVG 26.25 QP 7 1.4340 10.12 36.37 56.00 -19.63 8 1.4340 14.07 10.12 24.19 46.00 -21.81 AVG 9 2.4900 28.95 10.12 39.07 56.00 -16.93 QP 2.4900 15.58 25.70 46.00 -20.30 10 10.12 AVG 29.94 10.13 40.07 56.00 -15.93 QP 3.6140 11 12 3.6140 18.22 10.13 28.35 46.00 -17.65 AVG Note: Freq. = Emission frequency in MHz Reading level  $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit  $(dB\mu V) = Limit$  stated in standard Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V) Q.P. =Quasi-Peak AVG =average Any value more than 10dB below limit have not been specifically reported. \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 14 of 114



# 6.3. Maximum Conducted (Average) Output Power

#### 6.3.1. Test Specification **Test Requirement:** FCC Part15 C Section 15.247 (b)(3) **Test Method:** KDB 558074 D01 v05r02, KDB662911 D01 v02r01 Limit: 30dBm 0.0 **Test Setup:** EUT Spectrum Analyzer Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. **Test Procedure:** 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Measure the conducted output power and record the results in the test report. PASS Test Result:

### 6.3.2. Test Instruments

| RF Test Room               |              |        |               |                 |  |  |  |
|----------------------------|--------------|--------|---------------|-----------------|--|--|--|
| Equipment                  | Manufacturer | Model  | Serial Number | Calibration Due |  |  |  |
| Spectrum Analyzer          | Agilent      | N9020A | MY49100619    | Sep. 11, 2021   |  |  |  |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06  | N/A           | Sep. 11, 2021   |  |  |  |
| Antenna Connector          | тст          | RFC-01 | N/A           | Sep. 11, 2021   |  |  |  |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



#### 6.3.3. Test Data

| Configuration IEEE 802.11b/ Antenna 0+Antenna 1 |                           |           |             |        |  |  |
|-------------------------------------------------|---------------------------|-----------|-------------|--------|--|--|
| Test channel                                    | Maximum Cond<br>Output Po | · • • /   | Limit (dBm) | Result |  |  |
|                                                 | Antenna 0                 | Antenna 1 |             |        |  |  |
| Lowest                                          | 14.10                     | 13.33     | 30          | PASS   |  |  |
| Middle                                          | 14.20                     | 13.60     | 30          | PASS   |  |  |
| Highest                                         | 13.74                     | 13.83     | 30          | PASS   |  |  |

| Configuration IEEE 802.11g/ Antenna 0Maximum Conducted (Average)<br>Output Power (dBm)Limit (dBm)ResultAntenna 0Antenna 1Image: Antenna 1Image: Antenna 1Image: Antenna 1Lowest12.7911.9330PASSMiddle12.6612.6930PASS |                                                 |           |                                       |             |        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|---------------------------------------|-------------|--------|--|--|--|
| Test channelOutput Power (dBm)Limit (dBm)ResultAntenna 0Antenna 1Antenna 1Antenna 30PASSLowest12.7911.9330PASS                                                                                                        | Configuration IEEE 802.11g/ Antenna 0+Antenna 1 |           |                                       |             |        |  |  |  |
| Antenna 0Antenna 1Lowest12.7911.9330PASS                                                                                                                                                                              | Test channel                                    |           | · · · · · · · · · · · · · · · · · · · | Limit (dBm) | Result |  |  |  |
|                                                                                                                                                                                                                       |                                                 | Antenna 0 | Antenna 1                             |             |        |  |  |  |
| Middle         12.66         12.69         30         PASS                                                                                                                                                            | Lowest                                          | 12.79     | 11.93 🎺                               | 30          | PASS   |  |  |  |
|                                                                                                                                                                                                                       | Middle                                          | 12.66     | 12.69                                 | 30          | PASS   |  |  |  |
| Highest         12.32         12.23         30         PASS                                                                                                                                                           | Highest                                         | 12.32     | 12.23                                 | 30          | PASS   |  |  |  |

# Configuration IEEE 802.11n(H20)/ Antenna 0+Antenna 1

| Test channel |           | Conducted (A<br>ut Power (dB | Limit (dBm) | Result |      |  |
|--------------|-----------|------------------------------|-------------|--------|------|--|
|              | Antenna 0 | Antenna 1                    | Total       |        |      |  |
| Lowest       | 11.86     | 11.39                        | 14.64       | 30     | PASS |  |
| Middle       | 12.72     | 12.56                        | 15.65       | 30     | PASS |  |
| Highest      | 12.30     | 11.70                        | 15.02       | 30     | PASS |  |

| Configuration IEEE 802.11n(H40)/ Antenna 0+Antenna 1 |           |                              |       |             |        |  |
|------------------------------------------------------|-----------|------------------------------|-------|-------------|--------|--|
| Test channel                                         |           | Conducted (A<br>ut Power (dB |       | Limit (dBm) | Result |  |
|                                                      | Antenna 0 | Antenna 0 Antenna 1 Total    |       |             |        |  |
| Lowest                                               | 12.33     | 11.71                        | 15.04 | 30          | PASS   |  |
| Middle                                               | 12.35     | 13.12                        | 15.76 | 30          | PASS   |  |
| Highest                                              | 12.23     | 12.04                        | 15.15 | 30          | PASS   |  |

#### Note:

G<sub>ANT</sub> = 2.2dBi, Array Gain= 10log(NANT)= 3.01dBi

Directional Gain=G<sub>ANT</sub> + Array Gain= 5.21dBi < 6dBi, So limit=30dBm

**Refer to Appendix A: Test Result of Conducted Test** 

| 4. Emission Bandwi     | dth                                         |                                                                                                                       |                                                       |
|------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| .1. Test Specification |                                             |                                                                                                                       |                                                       |
| Test Requirement:      | FCC Part15 C Section 1                      | 15.247 (a)(2)                                                                                                         |                                                       |
| Fest Method:           | KDB 558074 D01 v05r0                        | 2                                                                                                                     | 3                                                     |
| Limit:                 | >500kHz                                     |                                                                                                                       | Ì                                                     |
| Fest Setup:            |                                             | EUT                                                                                                                   |                                                       |
| Test Mode:             | Spectrum Analyzer<br>Transmitting mode with |                                                                                                                       |                                                       |
| Test Procedure:        | Video bandwidth (VE                         | uously.<br>ent with the spectrum a<br>n (RBW) = 100 kHz. Se<br>BW) = 300 kHz. In orde<br>ement. The 6dB bandw<br>kHz. | nalyzer's<br>t the<br>r to make<br><i>r</i> idth must |
| Test Result:           | PASS                                        |                                                                                                                       |                                                       |

#### 6.4.2. Test Instruments

TCT通测检测

| RF Test Room               |              |        |               |                 |  |  |  |
|----------------------------|--------------|--------|---------------|-----------------|--|--|--|
| Equipment                  | Manufacturer | Model  | Serial Number | Calibration Due |  |  |  |
| Spectrum Analyzer          | Agilent      | N9020A | MY49100619    | Sep. 11, 2021   |  |  |  |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06  | N/A           | Sep. 11, 2021   |  |  |  |
| Antenna Connector          | ТСТ          | RFC-01 | N/A           | Sep. 11, 2021   |  |  |  |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



# 6.5. Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Limit:            | The average power spectral density shall not be greater<br>than 8dBm in any 3kHz band at any time interval of<br>continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Mode:        | Spectrum Analyzer         Europe           Transmitting mode with modulation         Image: Content of the second sec |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Make the measurement with the spectrum analyzer's<br/>resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100<br/>kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span<br/>to at least 1.5 times the OBW.</li> <li>Detector = RMS, Sweep time = auto couple.</li> <li>Employ trace averaging (RMS) mode over a minimum<br/>of 100 traces. Use the peak marker function to<br/>determine the maximum power level.</li> <li>Measure and record the results in the test report.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### 6.5.2. Test Instruments

| RF Test Room               |              |        |               |                 |  |  |  |
|----------------------------|--------------|--------|---------------|-----------------|--|--|--|
| Equipment                  | Manufacturer | Model  | Serial Number | Calibration Due |  |  |  |
| Spectrum Analyzer          | Agilent      | N9020A | MY49100619    | Sep. 11, 2021   |  |  |  |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06  | N/A           | Sep. 11, 2021   |  |  |  |
| Antenna Connector          | тст          | RFC-01 | N/A           | Sep. 11, 2021   |  |  |  |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).





6.5.3. Test data

| Configuration IEEE 802.11b/ Antenna 0, Antenna 1 |           |                             |            |        |  |  |  |  |
|--------------------------------------------------|-----------|-----------------------------|------------|--------|--|--|--|--|
| Test channel                                     |           | Spectral Density<br>n/3kHz) | Limit      | Result |  |  |  |  |
|                                                  | Antenna 0 | Antenna 1                   | (dBm/3kHz) |        |  |  |  |  |
| Lowest                                           | -18.67    | -18.93                      | 8          | PASS   |  |  |  |  |
| Middle                                           | -17.68    | -18.77                      | 8          | PASS   |  |  |  |  |
| Highest                                          | -18.4     | -18.71                      | 8          | PASS   |  |  |  |  |

| Configuration IEEE 80 | 02.11g/ Antenna | 0, Antenna 1                |            |        |
|-----------------------|-----------------|-----------------------------|------------|--------|
| Test channel          |                 | Spectral Density<br>n/3kHz) | Limit      | Result |
|                       | Antenna 0       | Antenna 1                   | (dBm/3kHz) |        |
| Lowest                | -20.93          | -21.79                      | 8          | PASS   |
| Middle                | -21.20          | -21.30                      | 8          | PASS   |
| Highest               | -21.55          | -21.63                      | 8          | PASS   |
|                       |                 |                             |            |        |

| Configuration IEEE 802.11n (HT20)/ Antenna 0, Antenna 1 |           |                            |         |            |        |  |  |
|---------------------------------------------------------|-----------|----------------------------|---------|------------|--------|--|--|
| Test channel                                            |           | er Spectral E<br>dBm/3kHz) | Density | Limit      | Result |  |  |
|                                                         | Antenna 0 | Antenna 1                  | Total   | (dBm/3kHz) |        |  |  |
| Lowest                                                  | -21.76    | -22.29                     | -19.01  | 8          | PASS   |  |  |
| Middle                                                  | -21.36    | -21.36                     | -18.35  | 8          | PASS   |  |  |
| Highest                                                 | -21.64    | -22.35                     | -18.97  | 8          | PASS   |  |  |

| Configuration IEEE 802.11n (HT40)/ Antenna 0, Antenna 1 |           |                             |         |            |        |  |  |  |
|---------------------------------------------------------|-----------|-----------------------------|---------|------------|--------|--|--|--|
| Test channel                                            |           | ver Spectral E<br>dBm/3kHz) | Density | Limit      | Result |  |  |  |
|                                                         | Antenna 0 | Antenna 1                   | Total   | (dBm/3kHz) | Result |  |  |  |
| Lowest                                                  | -24.62    | -25.29                      | -21.93  | 8          | PASS   |  |  |  |
| Middle                                                  | -24.84    | -23.79                      | -21.27  | 8          | PASS   |  |  |  |
| Highest                                                 | -24.83    | -24.83                      | -21.82  | 8          | PASS   |  |  |  |

#### Note:

G<sub>ANT</sub> = 2.2dBi, Array Gain= 10log(NANT)= 3.01dBi

Directional Gain=G<sub>ANT</sub> + Array Gain= 5.21dBi < 6dBi, So limit=8dBm/3kHz

**Refer to Appendix A: Test Result of Conducted Test** 

# 6.6. Conducted Band Edge and Spurious Emission Measurement

TCT 通测检测 TESTING CENTRE TECHNOLOGY

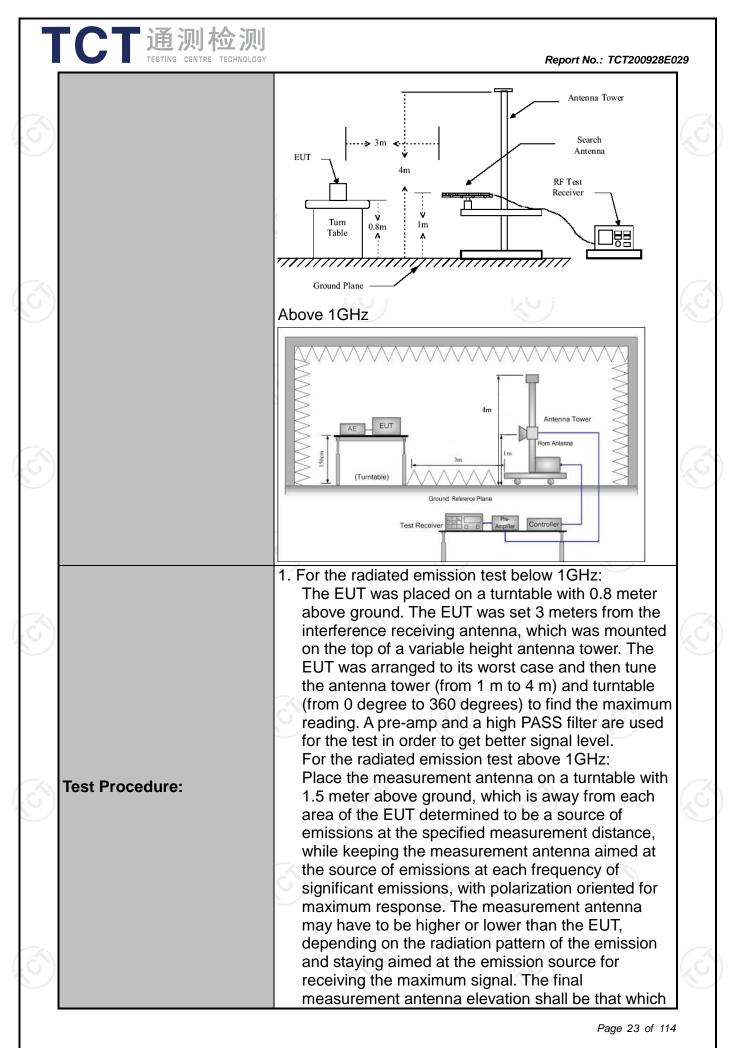
| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Limit:            | In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW=300 kHz, Peak Detector.<br/>Unwanted Emissions measured in any 100 kHz<br/>bandwidth outside of the authorized frequency band<br/>shall be attenuated by at least 20 dB relative to the<br/>maximum in-band peak PSD level in 100 kHz when<br/>maximum peak conducted output power procedure is<br/>used. If the transmitter complies with the conducted<br/>power limits based on the use of RMS averaging over<br/>a time interval, the attenuation required under this<br/>paragraph shall be 30 dB instead of 20 dB per<br/>15.247(d).</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Page 20 of 114



### 6.6.2. Test Instruments

|                                         |         | RI                 | Test Roor        | n                          |                      |
|-----------------------------------------|---------|--------------------|------------------|----------------------------|----------------------|
| Equipme                                 | ent     | Manufacturer       | Model            | Serial Number              | Calibration Due      |
| Spectrum An                             |         | Agilent            | N9020A           | MY49100619                 | Sep. 11, 2021        |
| RF Cab<br>(9KHz-26.5                    |         | TCT RE-06 N/A Sep. | Sep. 11, 2021    |                            |                      |
| Antenna Con                             |         | ТСТ                | RFC-01           | N/A                        | Sep. 11, 2021        |
| <b>lote:</b> The calibra<br>internation |         |                    | truments is 12 r | nonths and the calibration | ns are traceable to  |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            |                      |
|                                         |         |                    |                  |                            | Page 21 of 1         |
| Hotline: 400-66                         | 511-140 | Tel: 86-755-27673  | 339 Fax: 8       | 6-755-27673332 ht          | tp://www.tct-lab.com |




# 6.7. Radiated Spurious Emission Measurement

### 6.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement:     | FCC Part15                                 | C Section                | 15.209                    |                                     |           |                          |
|-----------------------|--------------------------------------------|--------------------------|---------------------------|-------------------------------------|-----------|--------------------------|
| Test Method:          | ANSI C63.10                                | ): 2013                  |                           |                                     |           |                          |
| Frequency Range:      | 9 kHz to 25 (                              | GHz                      | 9                         |                                     | K         | 9                        |
| Measurement Distance: | 3 m                                        |                          |                           |                                     |           |                          |
| Antenna Polarization: | Horizontal &                               | Vertical                 |                           |                                     |           |                          |
| Operation mode:       | Transmitting                               | mode with                | n modulat                 | ion                                 |           |                          |
|                       | Frequency                                  | Detector                 | RBW                       | VBW                                 | R         | emark                    |
| Receiver Setup:       | 9kHz- 150kHz<br>150kHz-<br>30MHz           | Quasi-peak<br>Quasi-peak | 200Hz<br>9kHz             | 1kHz<br>30kHz                       |           | peak Value<br>peak Value |
|                       | 30MHz-1GHz                                 | Quasi-peak               | 120KHz                    | 300KHz                              | Quasi     | peak Value               |
|                       | Above 1GHz                                 | Peak                     | 1MHz                      | 3MHz                                | Pea       | ak Value                 |
|                       |                                            | Peak                     | 1MHz                      | 10Hz                                | Aver      | age Value                |
|                       | Frequen                                    |                          | Field Stre<br>(microvolts |                                     |           | surement<br>ce (meters)  |
|                       | 0.009-0.490                                |                          | 2400/F(ł                  |                                     |           | 300                      |
|                       | 0.490-1.705                                |                          | 24000/F(KHz)<br>30        |                                     | 30        |                          |
|                       | 30-88                                      |                          | 100                       |                                     | 30<br>3   |                          |
| Limit:                | 88-216                                     |                          | 150                       |                                     | 3         |                          |
|                       | 216-96                                     |                          | 200                       |                                     |           | 3                        |
|                       | Above 960 500 3                            |                          |                           |                                     |           | 3                        |
|                       | Frequency Field Strengt<br>(microvolts/met |                          | -                         | Measurement<br>Distance<br>(meters) |           | Detector                 |
|                       | Above 1GH                                  | 7                        | 500                       | 3                                   |           | Average                  |
|                       | For radiated                               |                          | 5000<br>below 30          | )MHz                                | Ć         | Peak                     |
|                       |                                            | stance = 3m              |                           |                                     | Compute   | 7                        |
|                       | +                                          |                          |                           | Pre-                                | Amplifier |                          |
| Test setup:           |                                            |                          | ר∕+ ר                     |                                     |           |                          |
| ēst setup:            | <b>₽</b>                                   |                          | 1m                        | _                                   |           |                          |
|                       | 0.8m                                       | Turn table               |                           | - 4                                 | teceiver  |                          |
|                       | 0.8m<br>30MHz to 10                        | Ground                   |                           | - 4                                 | Receiver  |                          |
|                       | <u>+</u>                                   | Ground                   |                           |                                     | teceiver  |                          |
|                       | <u>+</u>                                   | Ground                   |                           |                                     |           | age 22 of 11             |

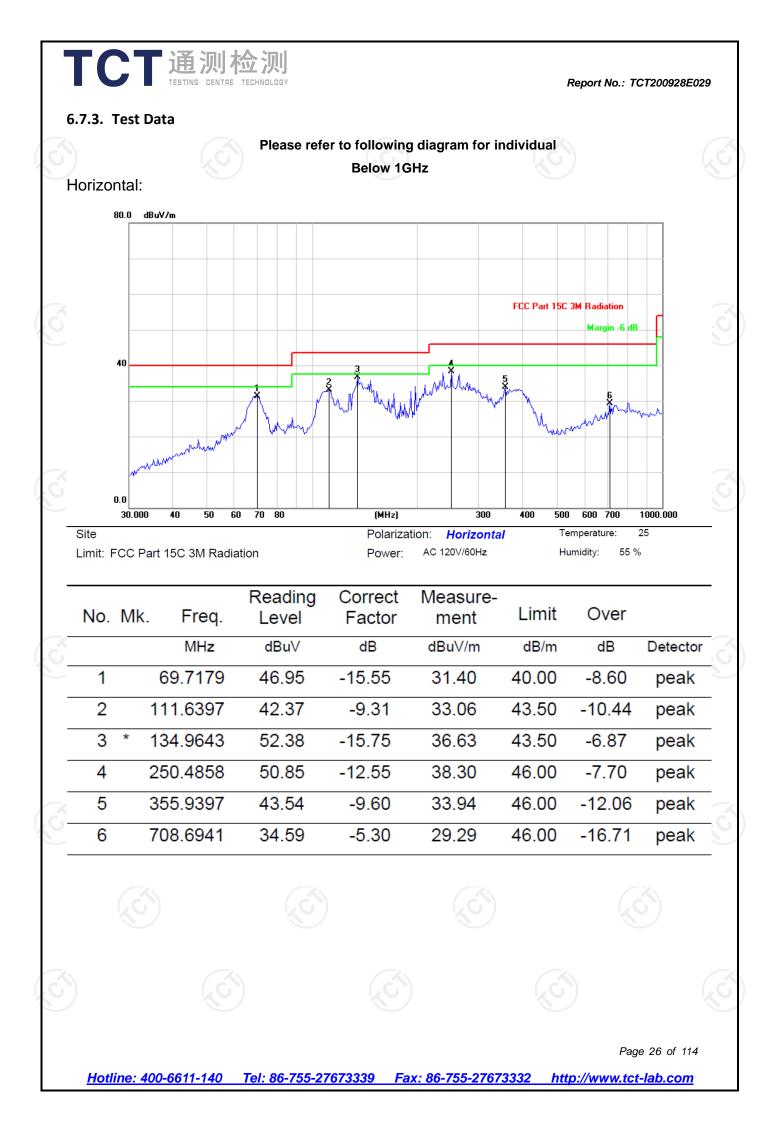


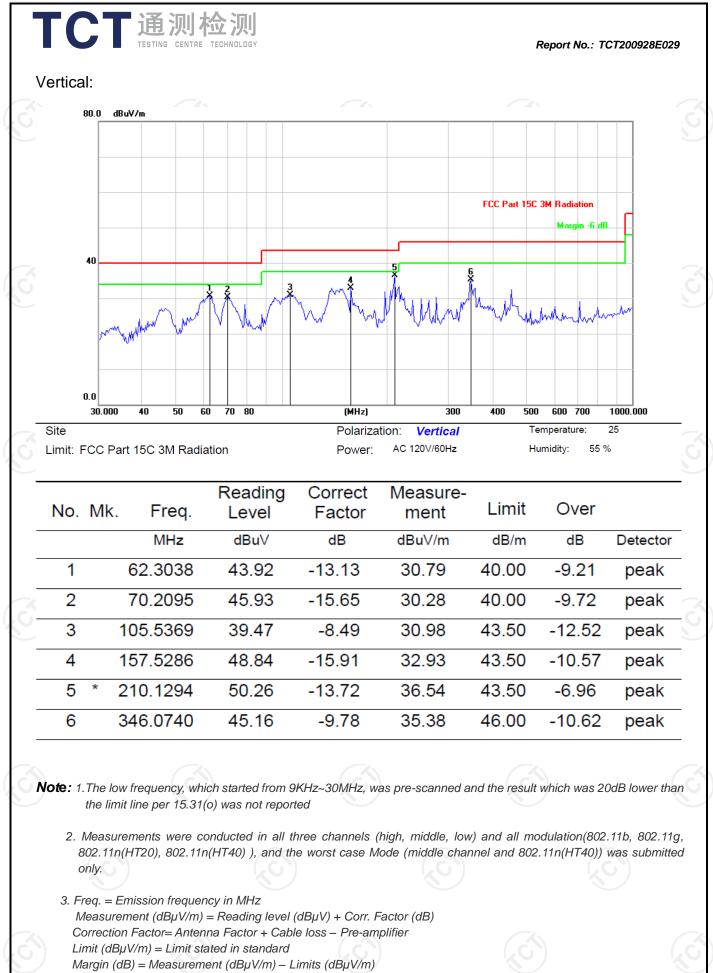
| 3           |    | antenna<br>restricte<br>above t<br>3. Correcte<br>Read L<br>4. For mea<br>of the E<br>lower th                                    | zes the emissions.<br>a elevation for maxi<br>ed to a range of hei-<br>the ground or refere<br>ed Reading: Antenn<br>evel - Preamp Fact<br>asurement below 10<br>EUT measured by the<br>nan the applicable hei-<br>ill be reported. Othe                                                                                           | The measure<br>mum emissi<br>ghts of from<br>ence ground<br>a Factor + C<br>or = Level<br>GHz, If the en<br>he peak dete<br>imit, the pea                    | ons shall be<br>1 m to 4 m<br>plane.<br>able Loss +<br>mission level<br>ctor is 3 dB<br>k emission                           | (°)     |
|-------------|----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|
| 3           |    | detector<br>5. Use the<br>(1) Spar<br>emis<br>(2) Set<br>Swe<br>max<br>(3) Set<br>peal<br>For ave<br>duty cy<br>when d<br>the min | rement will be repea<br>or and reported.<br>following spectrum<br>n shall wide enough<br>ssion being measur<br>RBW=120 kHz for f<br>eep = auto; Detector<br>c hold;<br>RBW = 1 MHz, VBW<br>k measurement.<br>erage measurement<br>cle is no less than s<br>luty cycle is less that<br>imum transmission<br>itter is on and is tran | analyzer set<br>to fully capt<br>ed;<br>< 1  GHz; VIfunction = p $W= 3MHz$ for<br>W= 3MHz for<br>W= 10<br>W= 10<br>W= 10<br>W= 10<br>W= 10<br>W= 10<br>W= 10 | ttings:<br>ture the<br>BW ≥ RBW;<br>beak; Trace =<br>r f >1 GHz fo<br>Hz, when<br>/BW ≥ 1/T,<br>t where T is<br>er which the | =<br>or |
|             |    |                                                                                                                                   | control level for the                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                                                                              |         |
| Test result | s: |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                              |         |
| Test result | s: | power                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                              |         |
| Test result | s: | power                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                              |         |
| Test result | s: | power                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                              |         |
| Test result | s: | power                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                              |         |



Page 25 of 114

http://www.tct-lab.com

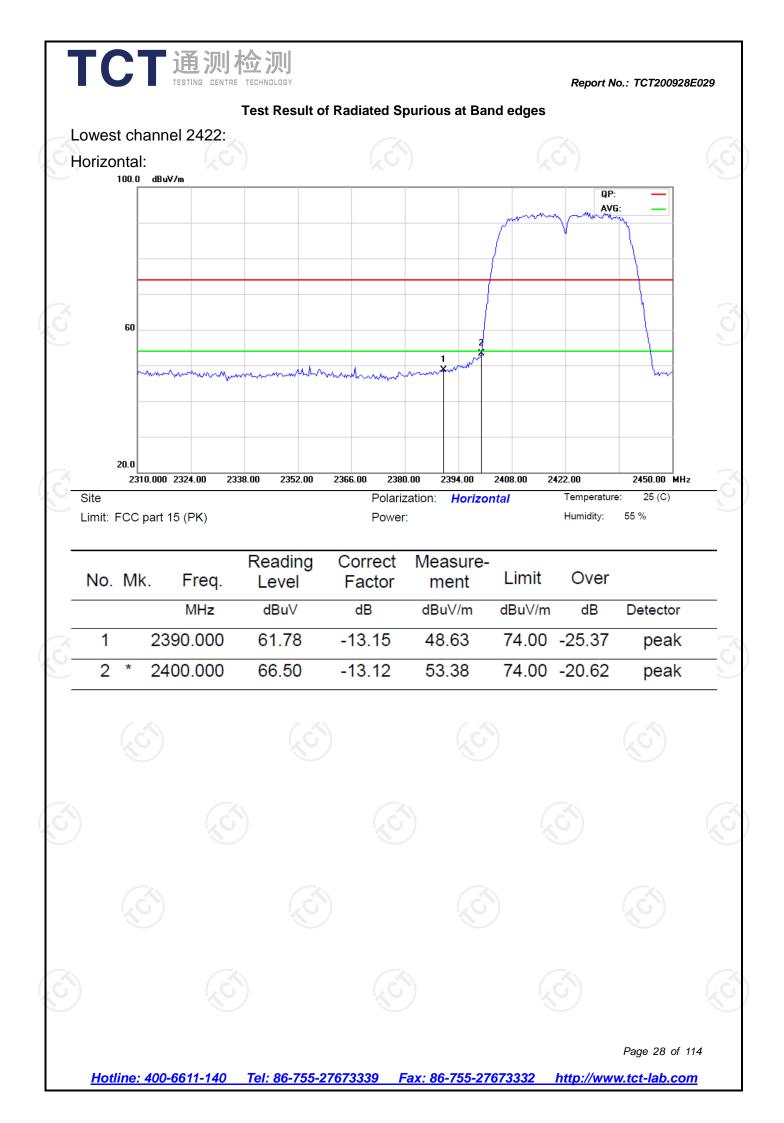

### 6.7.2. Test Instruments

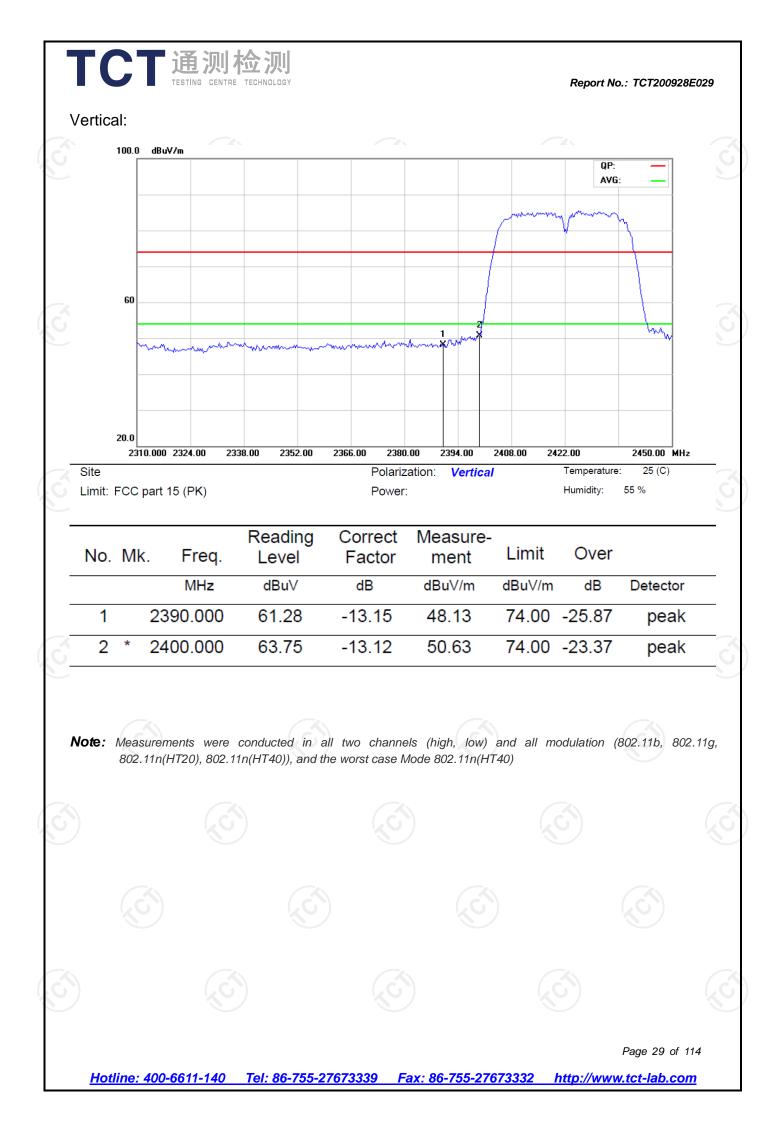

|                      | Radiated Em                              | ission Test Site | e (966)          |               |
|----------------------|------------------------------------------|------------------|------------------|---------------|
| Name of<br>Equipment | Manufacturer                             | Model            | Nodel Serial Cal |               |
| Test Receiver        | ROHDE&SCHW<br>ARZ                        | ESIB7            | 100197           | Jul. 27, 2021 |
| Spectrum Analyzer    | ROHDE&SCHW<br>ARZ                        | FSQ40            | 200061           | Sep. 11, 2021 |
| Pre-amplifier        | EM Electronics<br>Corporation<br>CO.,LTD | EM30265          | 07032613         | Sep. 02, 2021 |
| Pre-amplifier        | HP                                       | 8447D            | 2727A05017       | Sep. 02, 2021 |
| Loop antenna         | ZHINAN                                   | ZN30900A         | 12024            | Sep. 11, 2021 |
| Broadband Antenna    | Schwarzbeck                              | VULB9163         | 340              | Sep. 04, 2022 |
| Horn Antenna         | Schwarzbeck                              | BBHA 9120D       | 631              | Sep. 04, 2022 |
| Horn Antenna         | A-INFO                                   | LB-180400-KF     | J211020657       | Sep. 04, 2022 |
| Antenna Mast         | Keleto                                   | RE-AM            | N/A              | N/A           |
| Line-4               | тст                                      | RE-high-04       | N/A              | Sep. 02, 2021 |
| Line-8               | тст                                      | RE-01            | N/A              | Sep. 02, 2021 |
| EMI Test Software    | Shurple<br>Technology                    | EZ-EMC           | N/A              | N/A           |

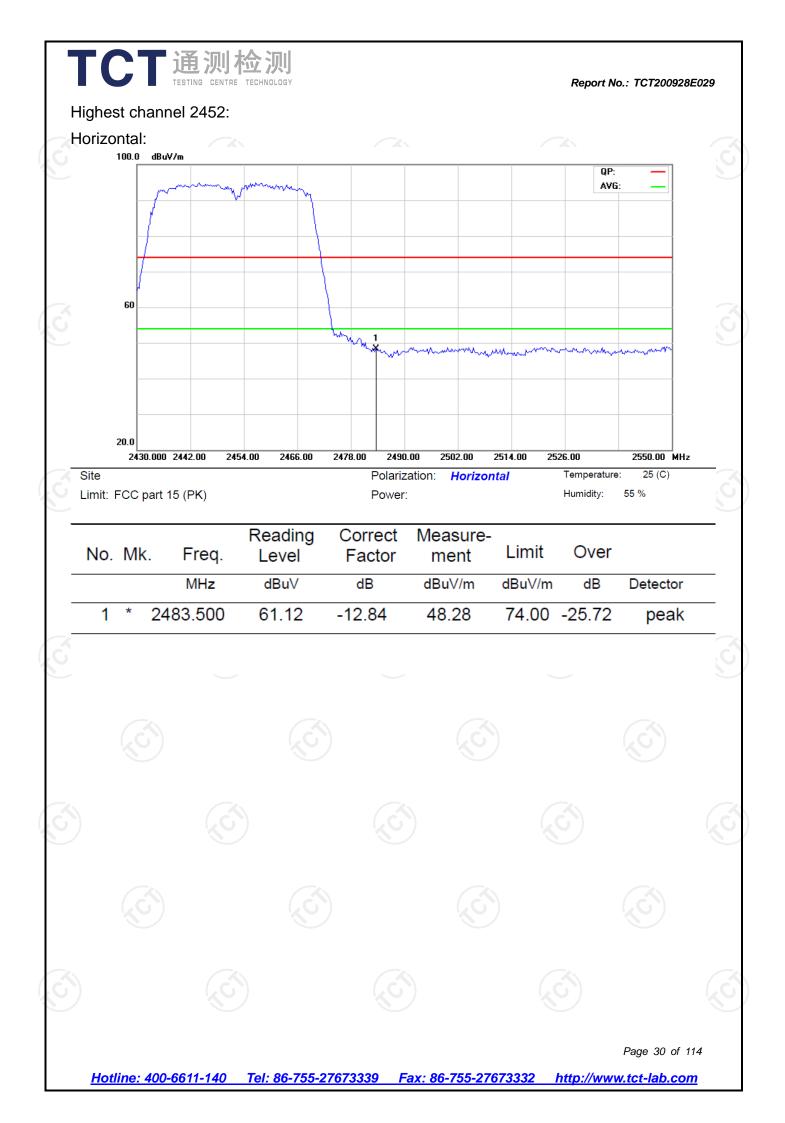
**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

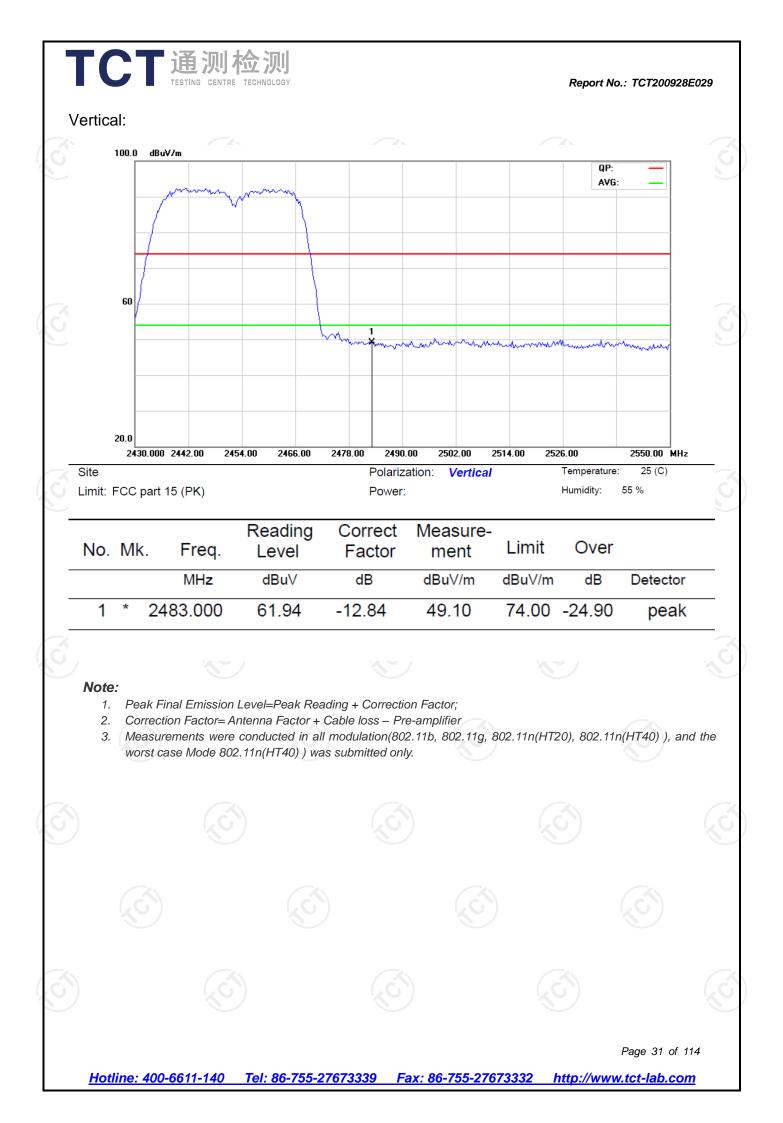
Fax: 86-755-27673332

Hotline: 400-6611-140 Tel: 86-755-27673339





Any value more than 10dB below limit have not been specifically reported.


\* is meaning the worst frequency has been tested in the test frequency range

Page 27 of 114









| Modulation Type: 802.11b |                                  |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Low channel: 2412 MHz    |                                  |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Frequency<br>(MHz)       | Ant. Pol.<br>H/V                 | Peak<br>reading<br>(dBµV)                                                                                                          | AV reading<br>(dBuV)                                                                                                                                            | Correction<br>Factor<br>(dB/m)                                                                                        | Emissic<br>Peak<br>(dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Level<br>AV<br>(dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4824                     | Н                                | 48.55                                                                                                                              |                                                                                                                                                                 | 0.75                                                                                                                  | 49.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7236                     | Н                                | 40.00                                                                                                                              |                                                                                                                                                                 | 9.87                                                                                                                  | 49.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| )                        | H                                |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (,                       | ·C`)                             |                                                                                                                                    | (JG)                                                                                                                                                            | )                                                                                                                     | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathcal{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\mathcal{O})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 4824                     | V                                | 48.37                                                                                                                              |                                                                                                                                                                 | 0.75                                                                                                                  | 49.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7236                     | V                                | 39.49                                                                                                                              |                                                                                                                                                                 | 9.87                                                                                                                  | 49.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                          | V                                |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                          | 4824<br>7236<br><br>4824<br>7236 | (MHz)         H/V           4824         H           7236         H            H           4824         V           7236         V | 4824         H         48.55           7236         H         40.00            H            4824         V         48.37           7236         V         39.49 | L<br>Frequency Ant. Pol. H/V Peak reading (dBµV)<br>4824 H 48.55<br>7236 H 40.00<br>H<br>4824 V 48.37<br>7236 V 39.49 | Frequency<br>(MHz)         Ant. Pol.<br>H/V         Peak<br>reading<br>(dBµV)         AV reading<br>(dBuV)         Correction<br>Factor<br>(dB/m)           4824         H         48.55          0.75           7236         H         40.00          9.87            H           0.75           7236         V         48.37          9.87            H          9.87            4824         V         48.37          9.87            Y         39.49          9.87 | Frequency<br>(MHz)         Ant. Pol.<br>H/V         Peak<br>reading<br>(dBμV)         AV reading<br>(dBuV)         Correction<br>Factor<br>(dBW)         Emission<br>Peak<br>(dBμV/m)           4824         H         48.55          0.75         49.30           7236         H         40.00          9.87         49.87            H               4824         V         48.37          9.87         49.12           7236         V         39.49          9.87         49.36 | Low channel: 2412 MHz           Frequency<br>(MHz)         Ant. Pol.<br>H/V         Peak<br>reading<br>(dBµV)         AV reading<br>(dBuV)         Correction<br>Factor<br>(dB/m)         Emission Level<br>Peak<br>(dBµV/m)           4824         H         48.55          0.75         49.30            7236         H         40.00          9.87         49.87             H                4824         V         48.37          0.75         49.12            4824         V         39.49          9.87         49.36 | Low channel:         2412 MHz           Frequency<br>(MHz)         Ant. Pol.<br>H/V         Peak<br>reading<br>(dBµV)         AV reading<br>(dBµV)         Correction<br>(dB/m)         Emission Level<br>(dBµV/m)         Peak limit<br>(dBµV/m)           4824         H         48.55          0.75         49.30          74           7236         H         40.00          9.87         49.87          74            H          0.75         49.12          74           4824         V         48.37          0.75         49.12          74           7236         V         39.49          9.87         49.36          74 | Low channel:         2412 MHz           Frequency<br>(MHz)         Ant. Pol.<br>H/V         Peak<br>reading<br>(dBµV)         AV reading<br>(dBuV)         Correction<br>Factor<br>(dB/m)         Emission Level<br>Peak         Peak limit<br>(dBµV/m)         AV limit<br>(dBµV/m)           4824         H         48.55          0.75         49.30          74         54           7236         H         40.00          9.87         49.87          74         54            H          0.75         49.12          74         54           7236         H         40.00          9.87         49.87          74         54            H           0.75         49.12          74         54           7236         V         39.49          9.87         49.36          74         54 |  |

Above 1GHz

|                    | Middle channel: 2437MHz |                           |                      |                                |                             |                           |                        |                      |                |  |  |
|--------------------|-------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|--|--|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V        | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 4874               | Н                       | 48.50                     |                      | 0.97                           | 49.47                       |                           | 74                     | 54                   | -4.53          |  |  |
| 7311               | Н                       | 41.14                     |                      | 9.83                           | 50.97                       | ł                         | 74                     | 54                   | -3.03          |  |  |
|                    | C H                     |                           |                      |                                |                             | $\frac{1}{2}$             |                        |                      |                |  |  |
|                    |                         |                           |                      |                                |                             |                           |                        |                      |                |  |  |
| 4874               | V                       | 48.07                     |                      | 0.97                           | 49.04                       |                           | 74                     | 54                   | -4.96          |  |  |
| 7311               | V                       | 41.36                     |                      | 9.83                           | 51.19                       |                           | 74                     | 54                   | -2.81          |  |  |
|                    | V                       |                           |                      |                                |                             |                           |                        |                      | (              |  |  |

|                    | High channel: 2462 MHz |                           |                      |                                |                             |                           |                        |                      |                |  |
|--------------------|------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|--|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V       | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 4924               | H                      | 48.97                     |                      | 1.18                           | 50.15                       |                           | 74                     | 54                   | -3.85          |  |
| 7386               | Ч                      | 38.50                     | ×                    | 10.07                          | 48.57                       |                           | 74                     | 54                   | -5.43          |  |
|                    | Н                      |                           | )                    |                                |                             | )                         |                        |                      |                |  |
| 4924               | V                      | 48.70                     |                      | 1.18                           | 49.88                       |                           | 74                     | 54                   | -4.12          |  |
| 7386               | V                      | 37.95                     |                      | 10.07                          | 48.02                       |                           | 74                     | 54                   | -5.98          |  |
| 2 /                | V                      | Ku)                       |                      | 🔨                              | · )                         |                           |                        |                      | X              |  |

#### Note:

TCT通测检测 TCT通测检测

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. 802.11b is SISO mode and the worst case Antenna (ANT0) was submitted only.

Page 32 of 114

|                   | LOIN             | NG CENTRE TE              |                      |                                |                             |                           | Керс                     | ort No.: TCT20       | 09202029       |
|-------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|--------------------------|----------------------|----------------|
|                   |                  |                           |                      |                                | ype: 802.11                 |                           |                          |                      |                |
|                   |                  |                           | L                    |                                | I: 2412 MH                  |                           |                          |                      |                |
| requency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m)   | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4824              | Н                | 48.11                     |                      | 0.75                           | 48.86                       |                           | 74                       | 54                   | -5.14          |
| 7236              | Н                | 39.88                     |                      | 9.87                           | 49.75                       |                           | 74                       | 54                   | -4.25          |
|                   | Н                |                           |                      |                                |                             |                           |                          |                      |                |
|                   |                  |                           |                      |                                |                             |                           |                          |                      |                |
| 4824              | GV               | 48.33                     | G                    | 0.75                           | 49.08                       | $\mathcal{O}^{2}$         | 74                       | 54                   | -4.92          |
| 7236              | V                | 40.19                     | <u>.</u>             | 9.87                           | 50.06                       |                           | 74                       | 54                   | -3.94          |
|                   | V                |                           |                      |                                |                             |                           |                          |                      |                |
|                   |                  |                           |                      |                                |                             |                           |                          |                      |                |
|                   |                  |                           | M                    | ddle chanr                     | nel: 2437MF                 | Ηz                        |                          |                      |                |
| requency          | Ant. Pol.        | Peak                      | AV reading           | Correction                     | Emissic                     |                           | Peak limit               | AV limit             | Margin         |
| (MHz)             | H/V              | reading<br>(dBµV)         | (dBµV)               | Factor<br>(dB/m)               | Peak<br>(dBµV/m)            | AV<br>(dBµV/m)            | (dBµV/m)                 | (dBµV/m)             | (dB)           |
| 4874              | Н                | 47.90                     |                      | 0.97                           | 48.87                       |                           | 74                       | 54                   | -5.13          |
| 7311              | Н                | 40.87                     |                      | 9.83                           | 50.70                       |                           | 74                       | 54                   | -3.30          |
|                   | Н                |                           |                      |                                | /                           |                           |                          |                      |                |
|                   |                  |                           | k C                  |                                |                             |                           |                          | ku ku                |                |
| 4874              | V                | 48.16                     |                      | 0.97                           | 49.13                       |                           | 74                       | 54                   | -4.87          |
| 7311              | V                | 41.43                     |                      | 9.83                           | 51.26                       |                           | 74                       | 54                   | -2.74          |
|                   | V                |                           |                      |                                |                             |                           |                          |                      |                |
|                   |                  |                           |                      |                                |                             |                           |                          |                      |                |
| ·)                |                  |                           |                      |                                | el: 2462 MH                 |                           | $(\mathbf{x}\mathbf{G})$ |                      |                |
| requency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m)   | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4924              | Н                | 48.54                     |                      | 1.18                           | 49.72                       |                           | 74                       | 54                   | -4.28          |
| 7386              | H                | 37.82                     |                      | 10.07                          | 47.89                       |                           | 74                       | 54                   | -6.11          |
|                   | H                |                           |                      |                                |                             |                           |                          |                      |                |
| 4924              | V                | 10.06                     |                      | 1.18                           | 50.04                       |                           | 74                       | ΕΛ                   | 2.06           |
| 4924<br>7386      | V                | 48.86<br>37.78            |                      |                                | 50.04                       |                           | 74                       | 54                   | -3.96          |
|                   | V                |                           |                      | 10.07                          | 47.85                       |                           | 74                       | 54                   | -6.15          |
| <br>Note:         | V                |                           |                      | (                              |                             |                           |                          |                      | (              |

Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier 1.

Margin (dB) = Emission Level (Peak) ( $dB\mu V/m$ )-Average limit ( $dB\mu V/m$ ) 8.

9. The emission levels of other frequencies are very lower than the limit and not show in test report.

10. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

11. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

12. 802.11b is SISO mode and the worst case Antenna (ANT0) was submitted only.

Page 33 of 114

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

| TC        | TESTI                            | NG CENTRE TE      | CHNOLOGY         |                           |                  |                | Rep                      | ort No.: TCT2        | 00928E029 |
|-----------|----------------------------------|-------------------|------------------|---------------------------|------------------|----------------|--------------------------|----------------------|-----------|
|           |                                  |                   | Modu             | lation Type               | : 802.11n (l     | HT20)          |                          |                      |           |
|           |                                  |                   | L                | ow channe                 | el: 2412 MH      | Z              |                          |                      |           |
| Frequency | Ant. Pol.                        | Peak              | AV reading       | Correction                | Emissio          | on Level       | Peak limit               | AV limit             | Margin    |
| (MHz)     | H/V                              | reading<br>(dBµV) | (dBuV)           | Factor<br>(dB/m)          | Peak<br>(dBµV/m) | AV<br>(dBµV/m) | (dBµV/m)                 | (dBµV/m)             | (dB)      |
| 4824      | Н                                | 48.69             |                  | 0.75                      | 49.44            |                | 74                       | 54                   | -4.56     |
| 7236      | Н                                | 39.48             |                  | 9.87                      | 49.35            |                | 74                       | 54                   | -4.65     |
|           | Н                                |                   |                  |                           |                  |                |                          |                      |           |
|           | -                                |                   |                  |                           |                  |                |                          |                      |           |
| 4824      | S V                              | 48.65             |                  | 0.75                      | 49.40            | $G^{+}$        | 74                       | 54                   | -4.60     |
| 7236      | V                                | 40.00             |                  | 9.87                      | 49.87            |                | 74                       | 54                   | -4.13     |
|           | V                                |                   |                  |                           |                  |                |                          |                      |           |
|           |                                  |                   |                  |                           |                  |                |                          |                      |           |
|           |                                  |                   |                  |                           | nel: 2437MF      |                |                          |                      |           |
| Frequency | Ant. Pol.                        | Peak Peak         | AV reading       | Correction                |                  |                | Peak limit<br>(dBµV/m)   | AV limit<br>(dBµV/m) | Margin    |
| (MHz)     |                                  | (dBµV)            | Factor<br>(dB/m) | Peak<br>(dBµV/m)          | AV<br>(dBµV/m)   | (dB)           |                          |                      |           |
| 4874      | Н                                | 48.25             |                  | 0.97                      | 49.22            |                | 74                       | 54                   | -4.78     |
| 7311      | Н                                | 40.95             |                  | 9.83                      | 50.78            |                | 74                       | 54                   | -3.22     |
| /         | Н                                |                   |                  |                           |                  |                |                          |                      |           |
|           |                                  |                   |                  |                           |                  |                |                          |                      |           |
| 4874      | V                                | 48.36             |                  | 0.97                      | 49.33            |                | 74                       | 54                   | -4.67     |
| 7311      | V                                | 41.07             |                  | 9.83                      | 50.90            |                | 74                       | 54                   | -3.10     |
|           | V                                |                   |                  |                           |                  |                |                          |                      |           |
|           |                                  |                   |                  |                           |                  |                |                          |                      |           |
| ) )       |                                  |                   |                  |                           | el: 2462 MH      | Z              | $(\mathbf{x}\mathbf{O})$ |                      |           |
| Frequency | Frequency Ant. Pol. Peak AV read |                   | AV reading       | Correction Emission Level |                  |                | Peak limit               | AV limit             | Margin    |
| (MHz)     | H/V                              | reading<br>(dBµV) | (dBµV)           | Factor<br>(dB/m)          | Peak<br>(dBµV/m) | AV<br>(dBµV/m) | (dBµV/m)                 | (dBµV/m)             | (dB)      |
| 4924      | H                                | 49.28             |                  | 1.18                      | 50.46            |                | 74                       | 54                   | -3.54     |
| 7386      | Н                                | 38.32             | f                | 10.07                     | 48.39            |                | 74                       | 54                   | -5.61     |
|           | Н                                |                   | X                |                           | '                |                |                          | ×                    |           |
| 4924      | V                                | 48.90             |                  | 1.18                      | 50.08            |                | 74                       | 54                   | -3.92     |
| 7386      | V                                | 38.23             |                  | 10.07                     | 48.30            |                | 74                       | 54                   | -5.70     |
| 7300      | V                                |                   |                  | 10.07                     | 40.30            |                |                          |                      | -5.70     |

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report. 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB 5. below the limits or the field strength is too small to be measured.

6. 802.11n(HT20) is MIMO mode.

Page 34 of 114

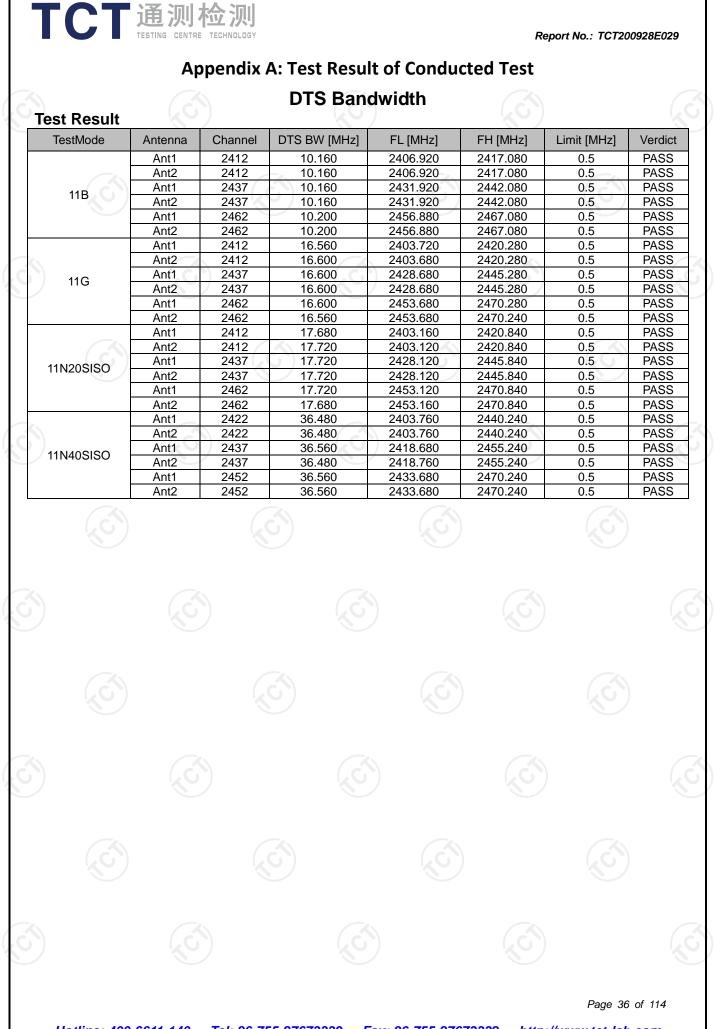
Hotline: 400-6611-140 Tel: 86-755-27673339 http://www.tct-lab.com Fax: 86-755-27673332

|                    |                              |                           |                      |                                | : 802.11n (l                |                           |                        |                      |                |
|--------------------|------------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
|                    |                              |                           |                      |                                | I: 2422 MH                  |                           |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V             | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4844               | Н                            | 45.00                     |                      | 0.75                           | 45.75                       |                           | 74                     | 54                   | -8.25          |
| 7266               | Н                            | 38.15                     |                      | 9.87                           | 48.02                       |                           | 74                     | 54                   | -5.98          |
|                    | Н                            |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                              |                           |                      |                                |                             |                           |                        |                      |                |
| 4824               | S V                          | 44.94                     |                      | 0.75                           | 45.69                       | C<br>T                    | 74                     | 54                   | -8.31          |
| 7236               | V                            | 38.56                     |                      | 9.87                           | 48.43                       |                           | 74                     | 54                   | -5.57          |
|                    | V                            |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                              |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                              |                           | М                    | iddle chanr                    | nel: 2437MF                 | Ιz                        |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V             | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4874               | Н                            | 41.96                     |                      | 0.97                           | 42.93                       |                           | 74                     | 54                   | -11.07         |
| 7311               | Н                            | 34.25                     |                      | 9.83                           | 44.08                       |                           | 74                     | 54                   | -9.92          |
| /                  | Н                            |                           |                      |                                |                             |                           |                        |                      |                |
|                    | $\langle \mathbf{O} \rangle$ |                           | KO .                 | )                              |                             |                           |                        |                      |                |
| 4874               | V                            | 43.72                     |                      | 0.97                           | 44.69                       |                           | 74                     | 54                   | -9.31          |
| 7311               | V                            | 36.97                     |                      | 9.83                           | 46.80                       |                           | 74                     | 54                   | -7.20          |
|                    | V                            |                           |                      |                                |                             |                           |                        |                      |                |
| X                  |                              |                           |                      |                                | X                           |                           |                        |                      |                |
| )                  |                              |                           | Н                    | ligh channe                    | el: 2452 MH                 | Z                         |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V             | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4904               | Н                            | 45.17                     |                      | 1.18                           | 46.35                       |                           | 74                     | 54                   | -7.65          |
| 7356               | H                            | 35.87                     |                      | 10.07                          | 45.94                       |                           | 74                     | 54                   | -8.06          |
|                    | Н                            |                           |                      |                                |                             | -                         |                        | X                    |                |
| 400.4              |                              | 44 47                     |                      | 4.40                           | 45.05                       |                           | 74                     | 54                   | 0.05           |
| 4904               | V                            | 44.47                     |                      | 1.18                           | 45.65                       |                           | 74                     | 54<br>54             | -8.35          |
| 7356               | V<br>V                       | 36.22                     |                      | 10.07                          | 46.29                       |                           | 74                     | 54                   | -7.71          |
|                    | V                            |                           |                      |                                |                             |                           |                        |                      |                |

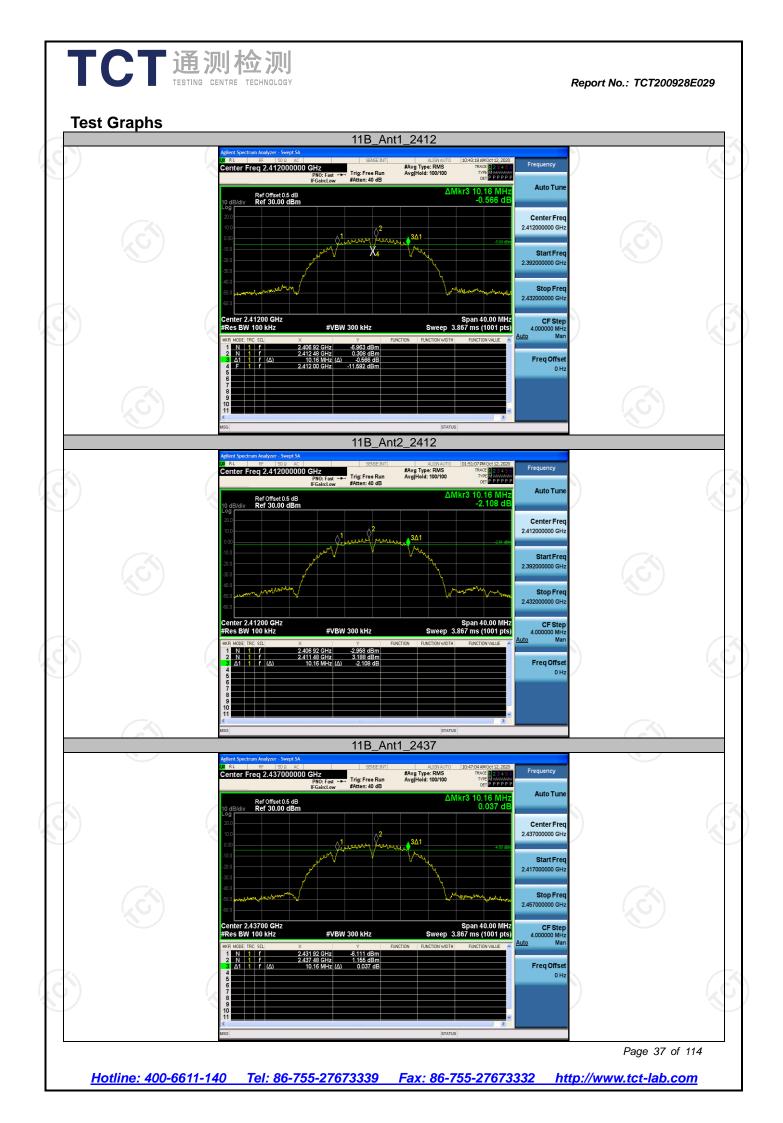
2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

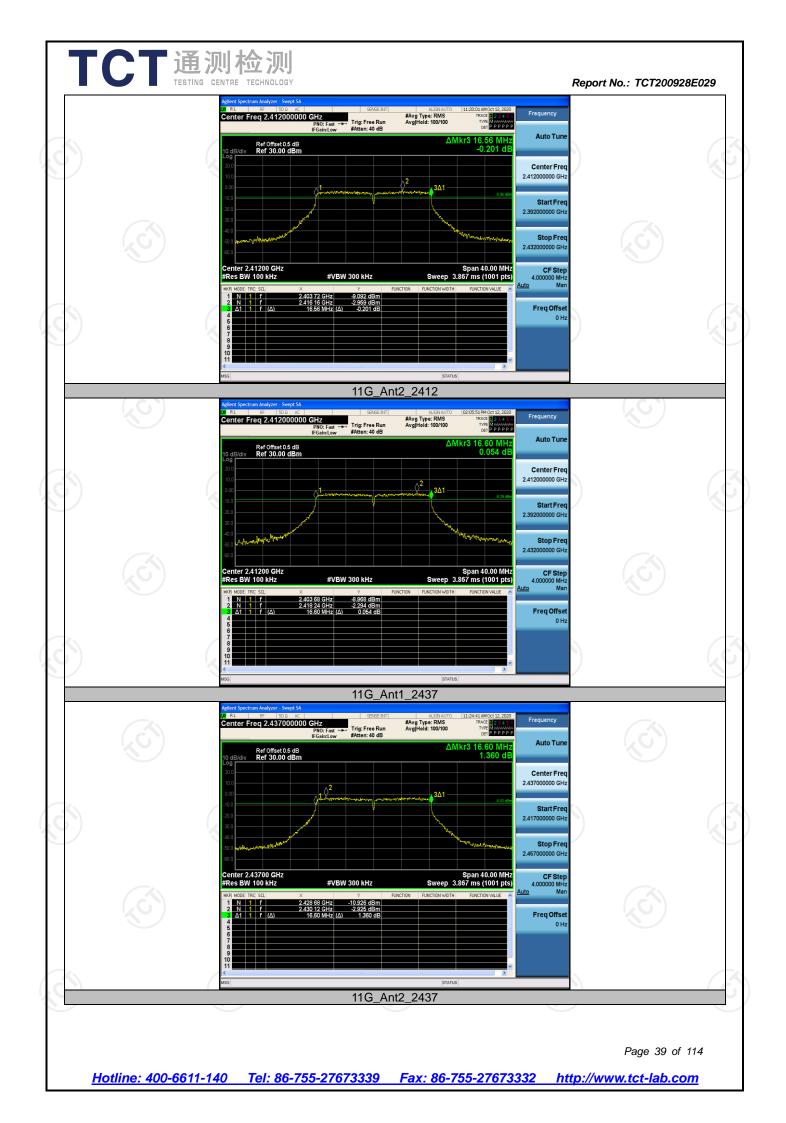
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

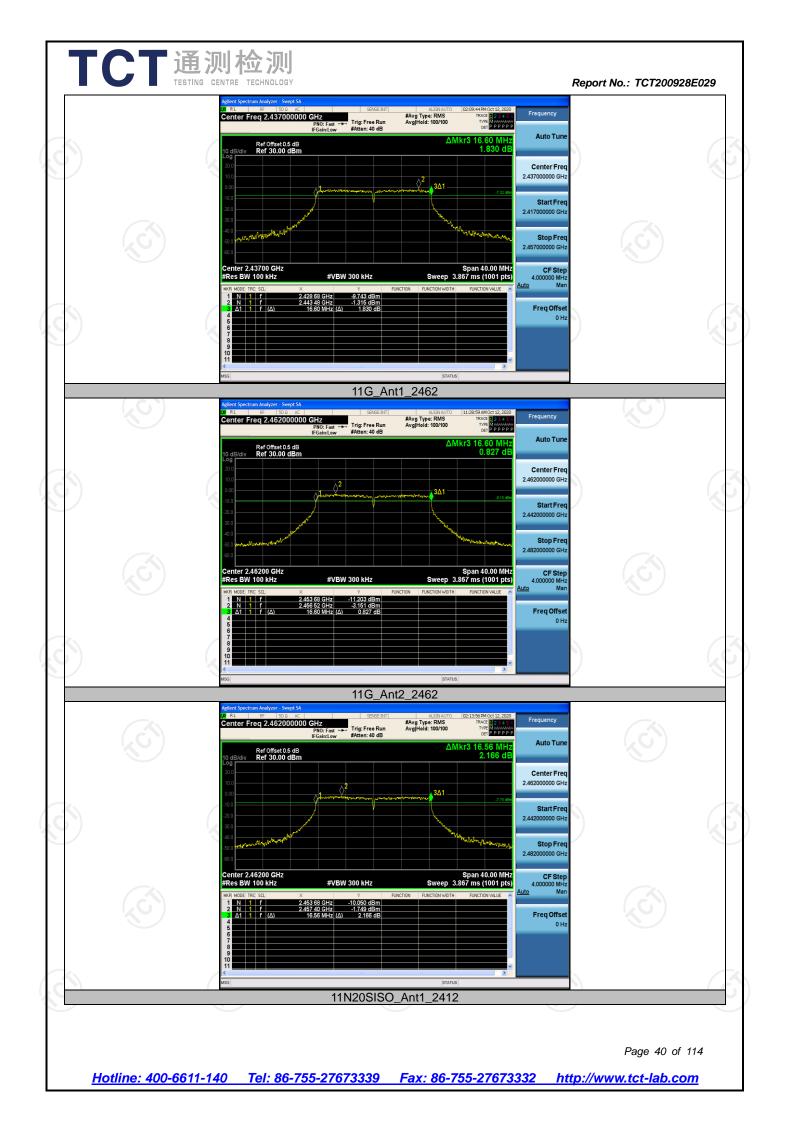

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

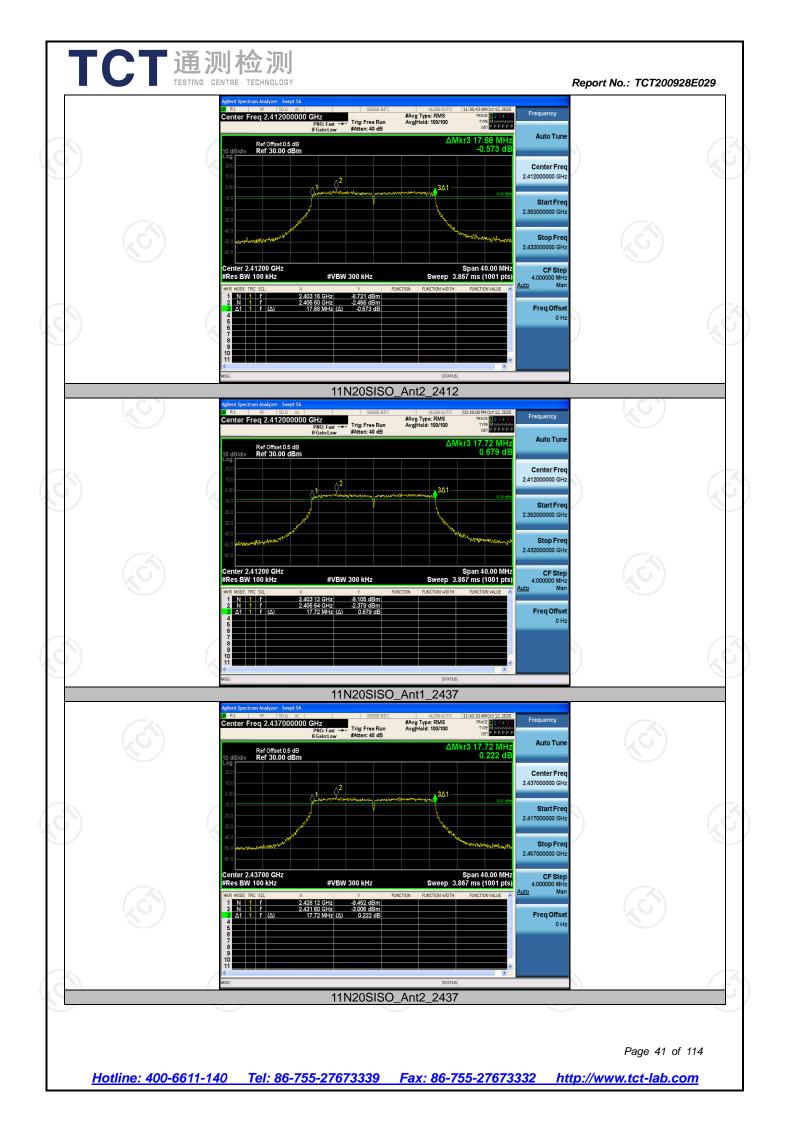
6. 802.11n(HT40) is MIMO mode.

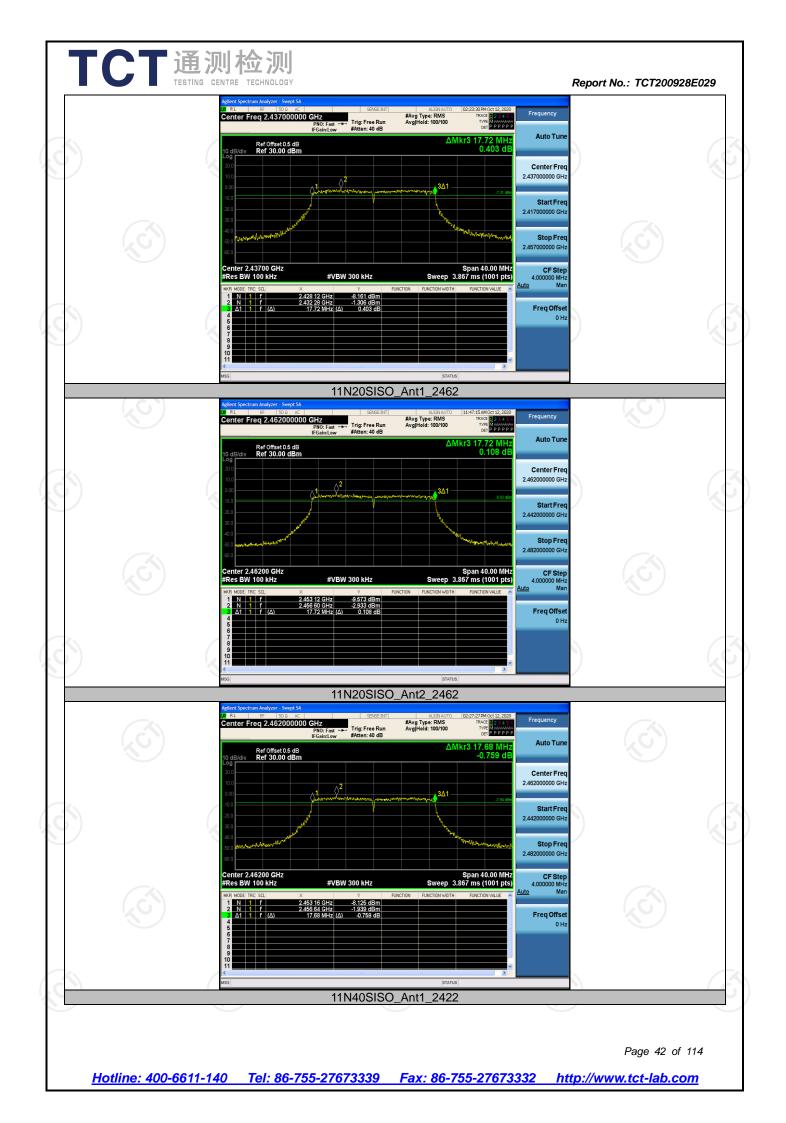

Page 35 of 114

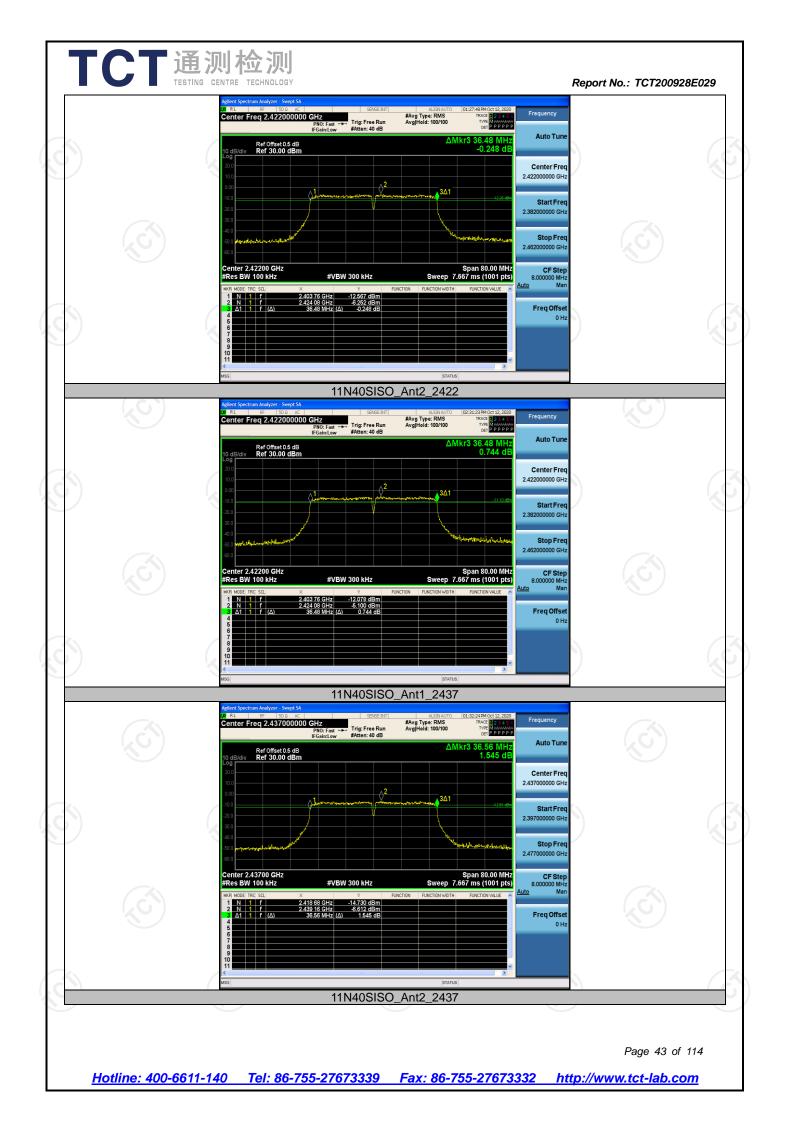
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

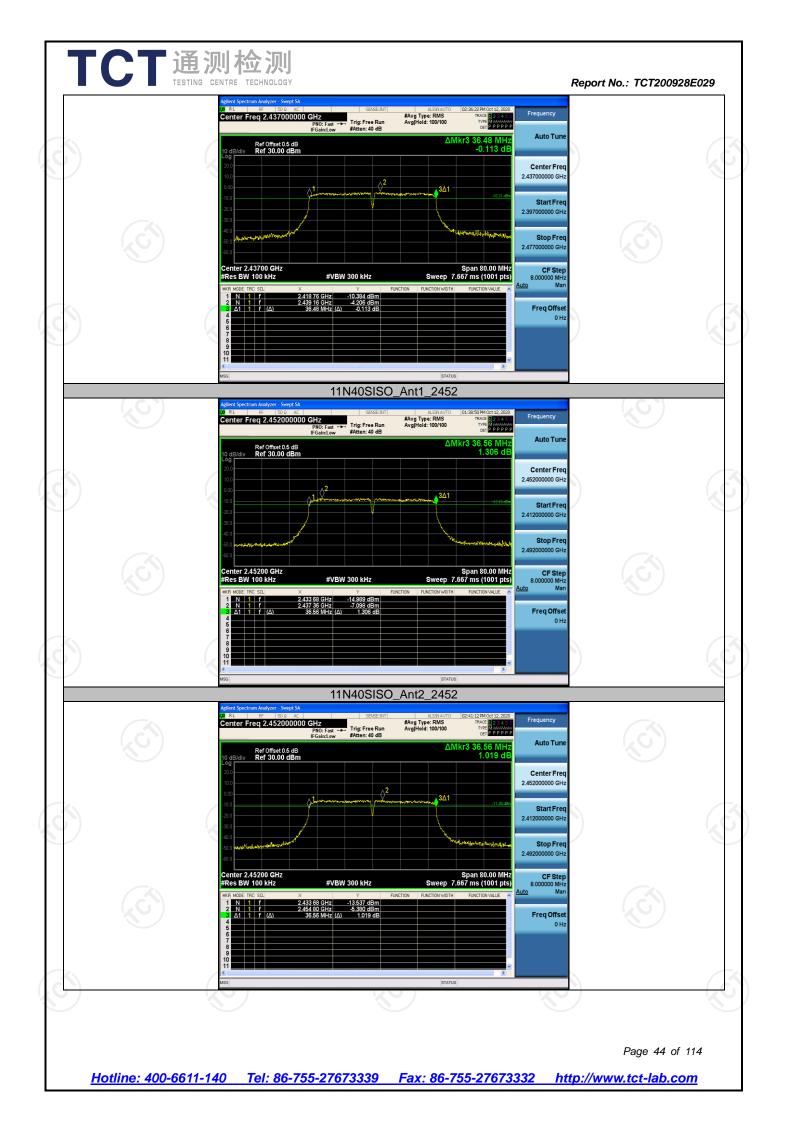

| Report No. | : TCT200928E029 |
|------------|-----------------|
|------------|-----------------|





Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



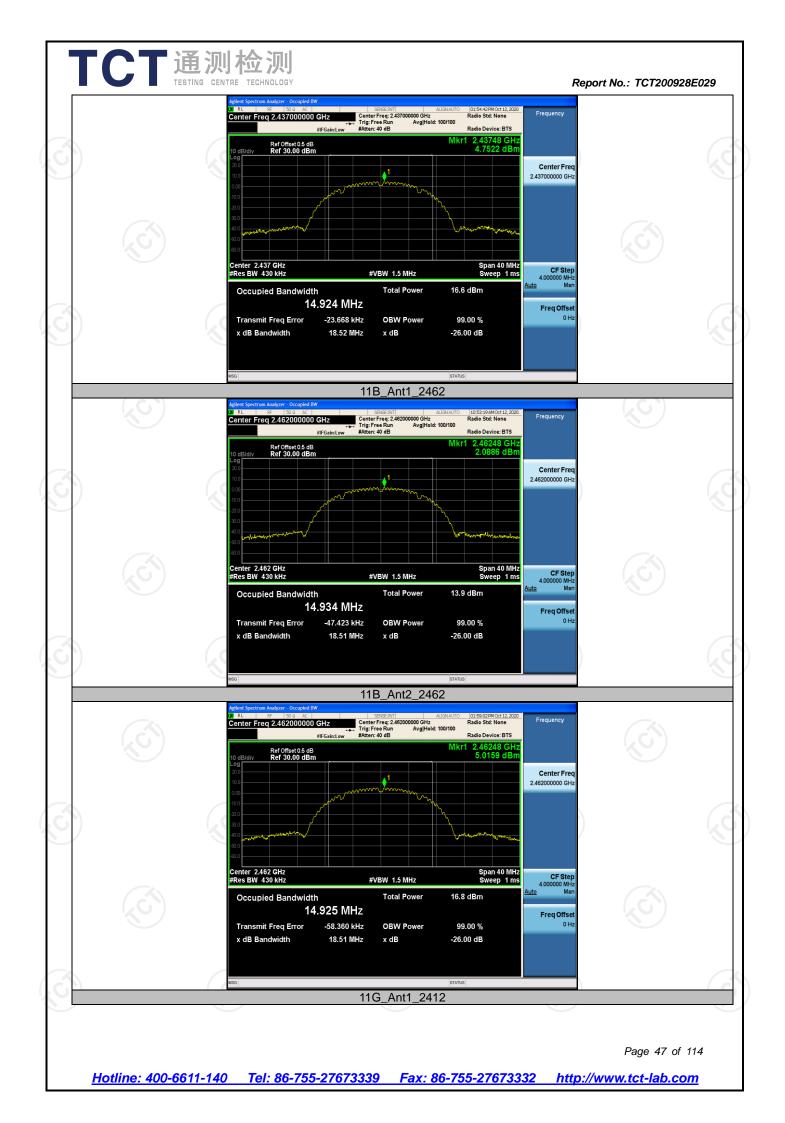


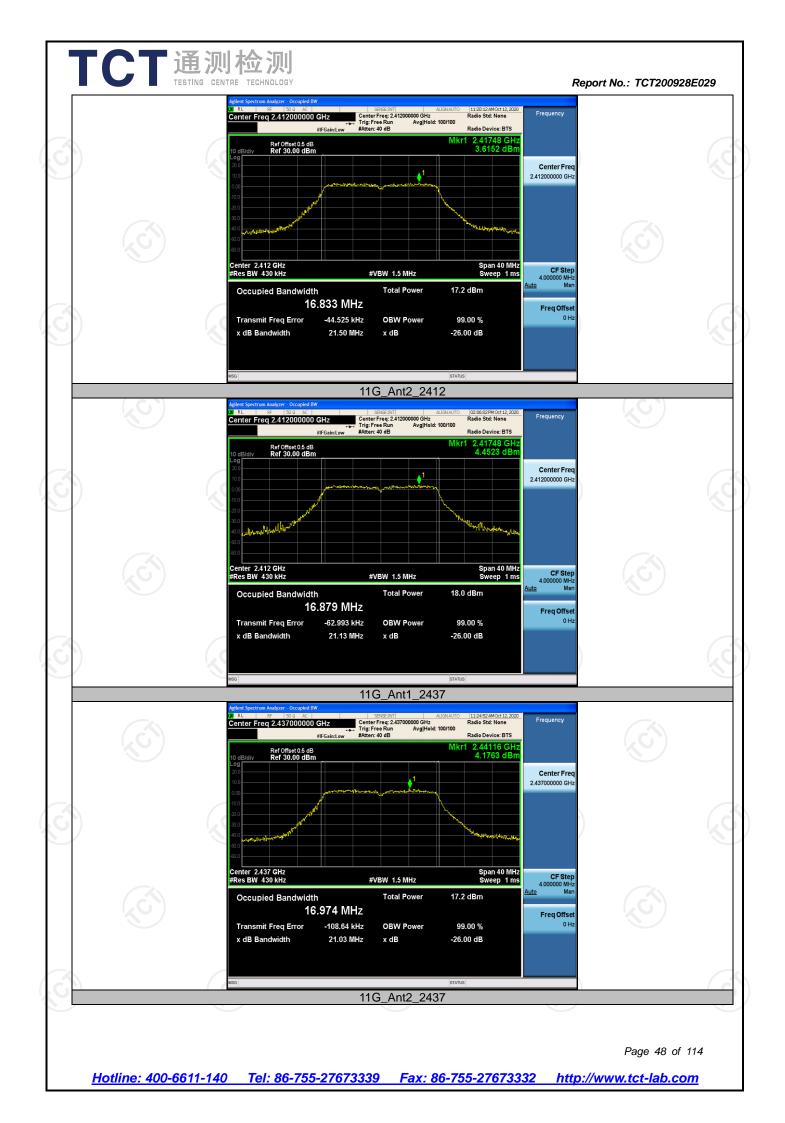


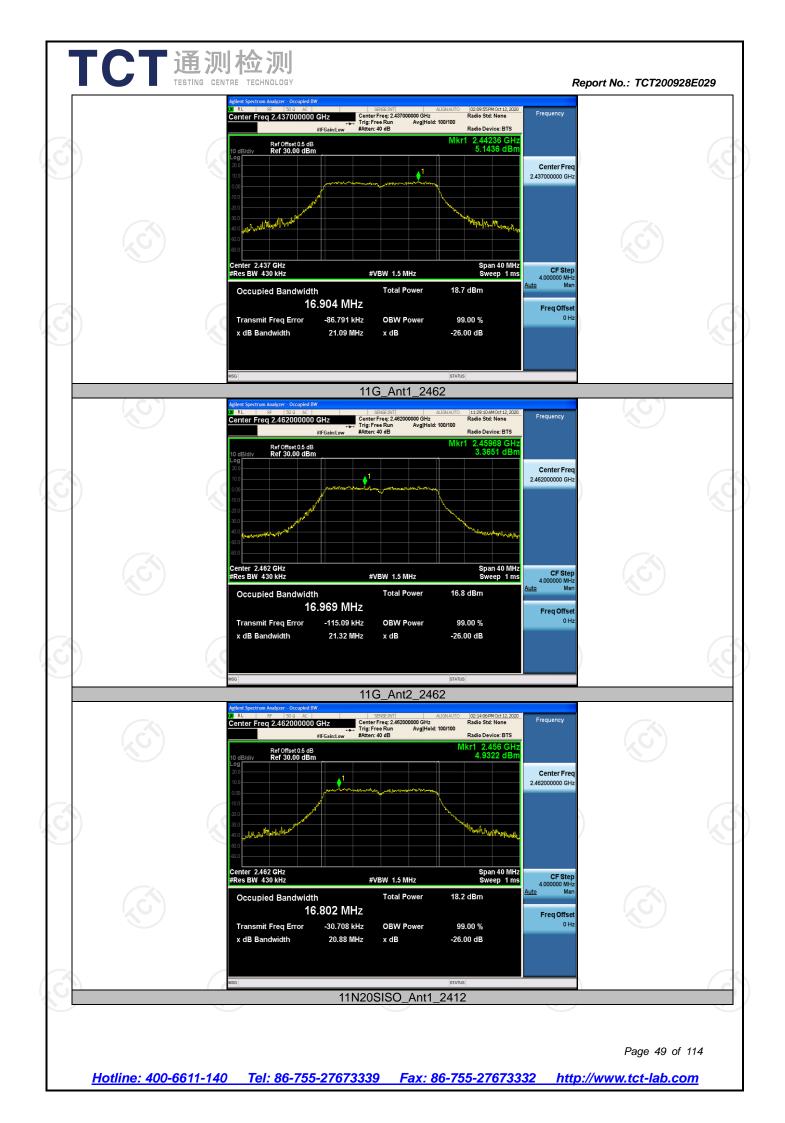




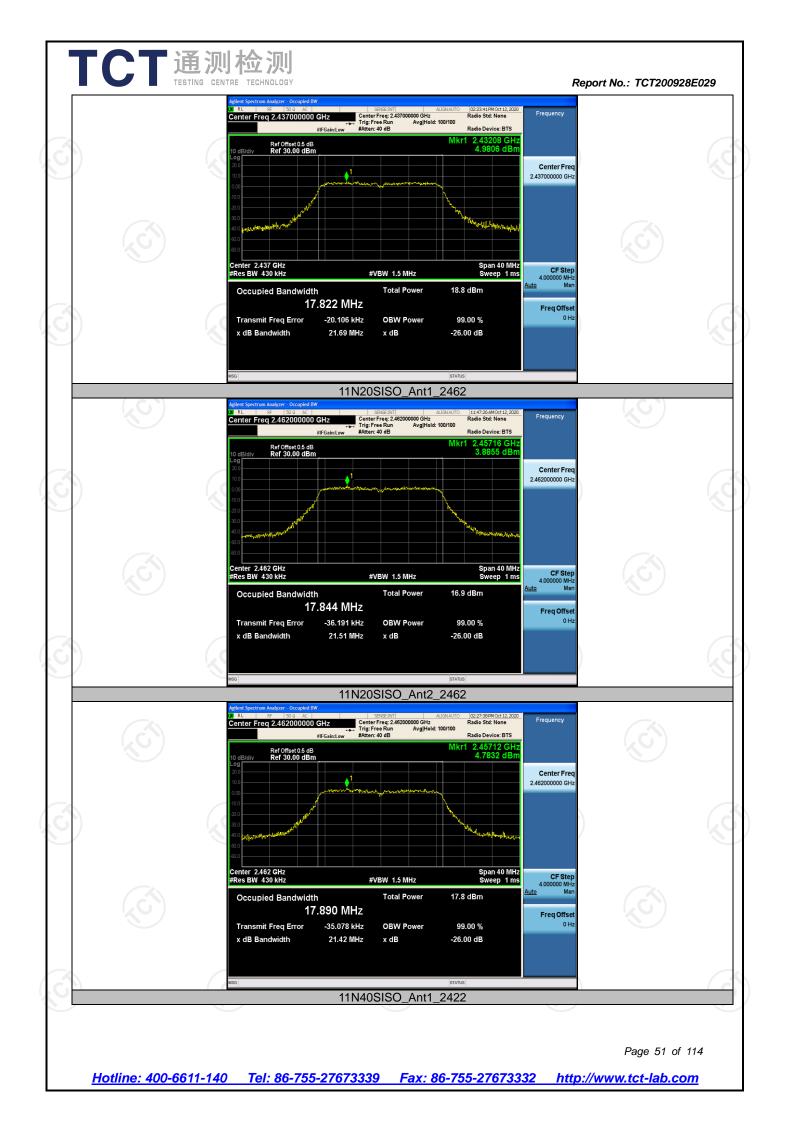


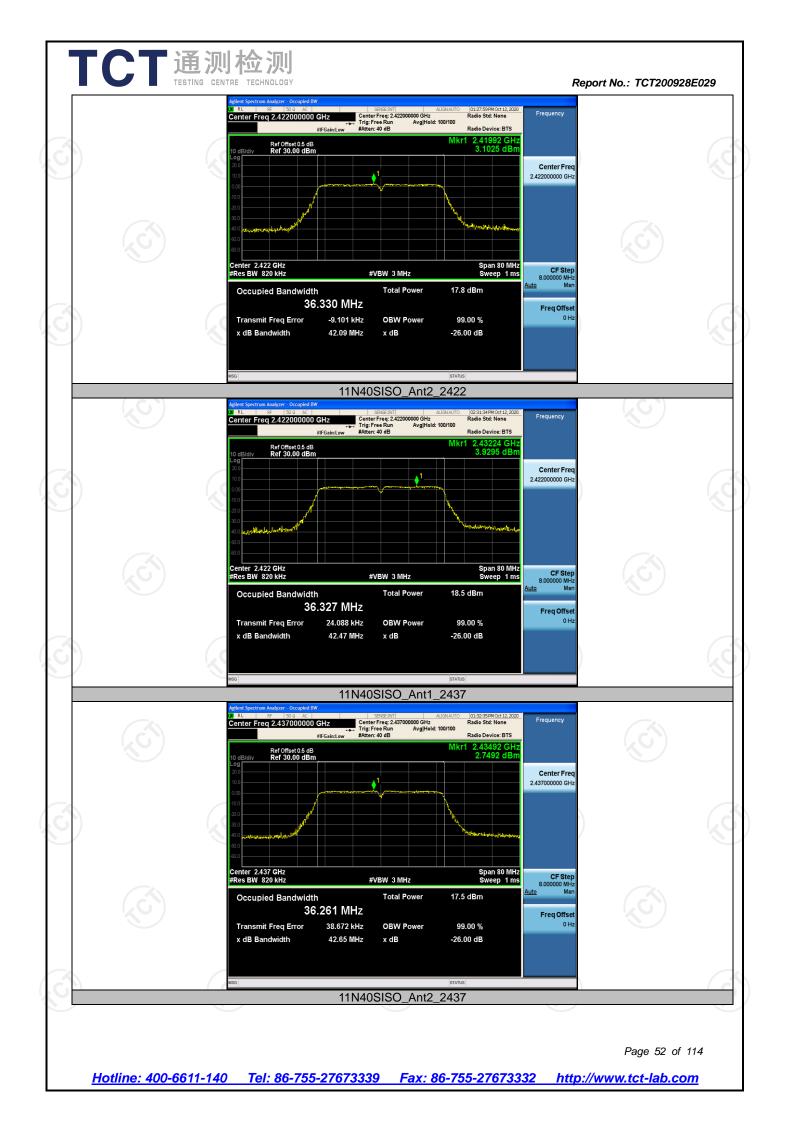



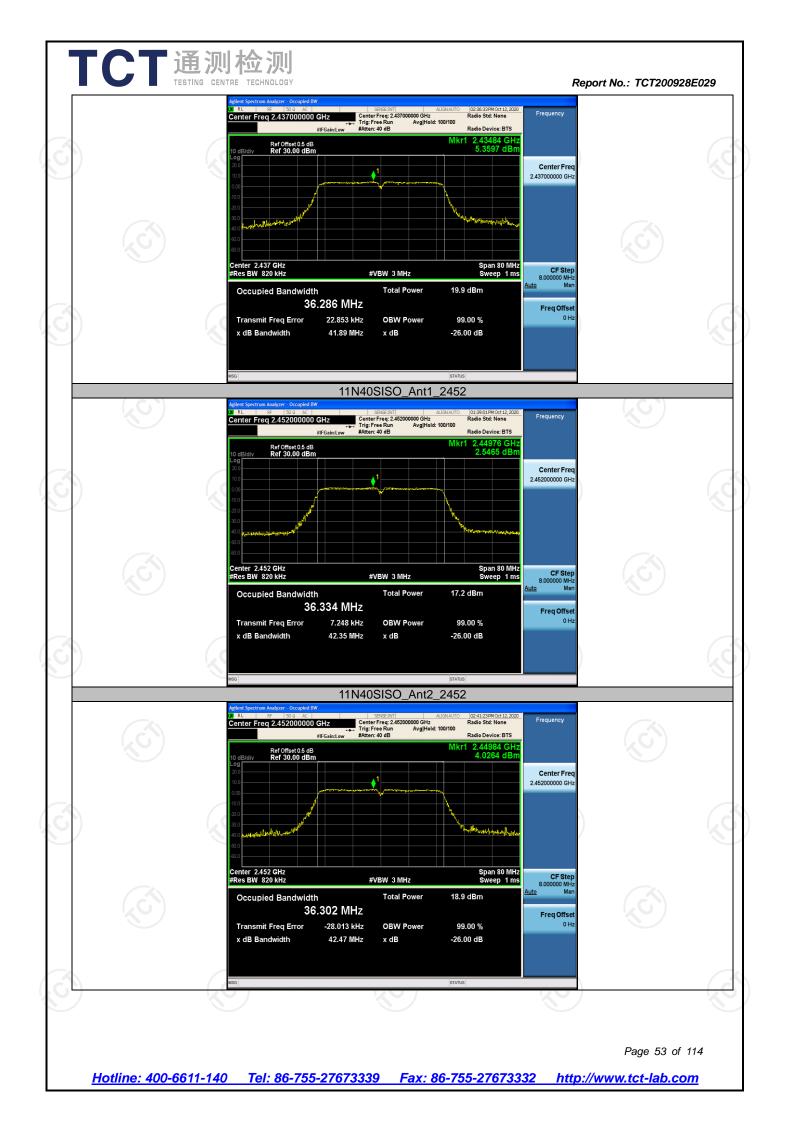


## Test Result

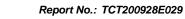

## **Occupied Channel Bandwidth**

| TestMode  | Antenna      | Channel | OCB [MHz] | FL [MHz] | FH [MHz] | Limit [MHz] | Verdict  |
|-----------|--------------|---------|-----------|----------|----------|-------------|----------|
| /         | Ant1         | 2412    | 14.953    | 2404.494 | 2419.447 |             | PASS     |
|           | Ant2         | 2412    | 14.946    | 2404.519 | 2419.465 |             | PASS     |
| 11B       | Ant1         | 2437    | 14.921    | 2429.520 | 2444.441 |             | PASS     |
| טוו       | Ant2         | 2437    | 14.924    | 2429.514 | 2444.438 |             | PASS     |
|           | Ant1         | 2462    | 14.934    | 2454.486 | 2469.420 |             | PASS     |
|           | Ant2         | 2462    | 14.925    | 2454.479 | 2469.404 | - to        | PASS     |
|           | Ant1         | 2412    | 16.833    | 2403.539 | 2420.372 |             | PASS     |
|           | Ant2         | 2412    | 16.879    | 2403.498 | 2420.377 |             | PASS     |
| 11G       | Ant1         | 2437    | 16.974    | 2428.404 | 2445.378 |             | PASS     |
| 110       | Ant2         | 2437    | 16.904    | 2428.461 | 2445.365 |             | PASS     |
|           | Ant1         | 2462    | 16.969    | 2453.400 | 2470.369 |             | PASS     |
| 2         | Ant2         | 2462    | 16.802    | 2453.568 | 2470.370 |             | PASS     |
|           | Ant1         | 2412    | 17.912    | 2403.002 | 2420.914 |             | PASS     |
|           | Ant2         | 2412    | 17.861    | 2403.068 | 2420.929 |             | PASS     |
| 111000000 | Ant1         | 2437    | 17.855    | 2428.042 | 2445.897 |             | PASS     |
| 11N20SISO | Ant2         | 2437    | 17.822    | 2428.069 | 2445.891 |             | PASS     |
|           | Ant1         | 2462    | 17.844    | 2453.042 | 2470.886 |             | PASS     |
|           | Ant2         | 2462    | 17.890    | 2453.020 | 2470.910 |             | PASS     |
|           | Ant1         | 2422    | 36.330    | 2403.826 | 2440.156 |             | PASS     |
|           | Ant2         | 2422    | 36.327    | 2403.861 | 2440.188 |             | PASS     |
|           | Ant1         | 2437    | 36.261    | 2418.908 | 2455.169 |             | PASS     |
| 11N40SISO | Ant2         | 2437    | 36.286    | 2418.880 | 2455.166 |             | PASS     |
|           | Ant2<br>Ant1 | 2452    | 36.334    | 2433.840 | 2470.174 |             | PASS     |
|           | Ant2         | 2452    | 36.302    | 2433.821 | 2470.123 |             | PASS     |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          |             |          |
|           |              |         |           |          |          | Page 45     | 5 of 114 |



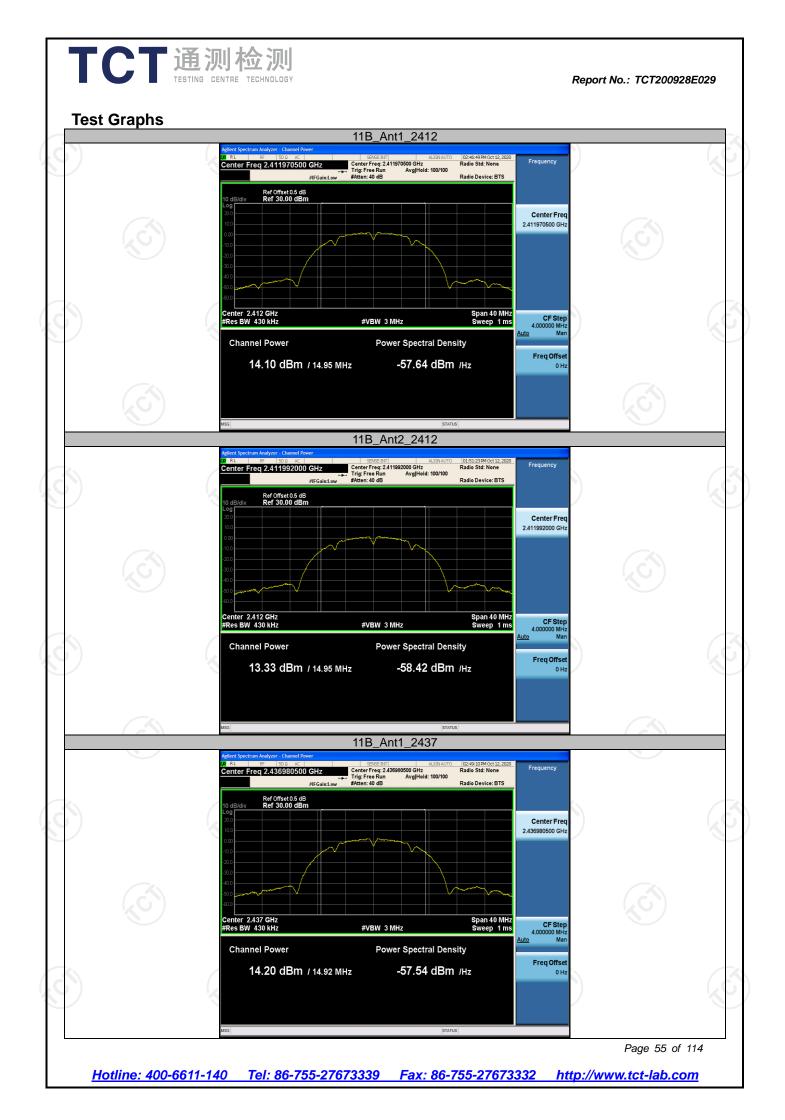












## 

## Maximum conducted output power

| TestMode   | Antenna | Channel | Result [dBm] | Limit [dBm] | Verdict   |
|------------|---------|---------|--------------|-------------|-----------|
|            | Ant1    | 2412    | 14.10        | <=30        | PASS      |
|            | Ant2    | 2412    | 13.33        | <=30        | PASS      |
| 11B        | Ant1    | 2437    | 14.20        | <=30        | PASS      |
|            | Ant2    | 2437    | 13.60        | <=30        | PASS      |
|            | Ant1    | 2462    | 13.74        | <=30        | PASS      |
|            | Ant2    | 2462    | 13.83        | <=30        | PASS      |
|            | Ant1    | 2412    | 12.79        | <=30        | PASS      |
|            | Ant2    | 2412    | 11.93        | <=30        | PASS      |
| 11G        | Ant1    | 2437    | 12.66        | <=30        | PASS      |
|            | Ant2    | 2437    | 12.69        | <=30        | PASS      |
|            | Ant1    | 2462    | 12.32        | <=30        | PASS      |
|            | Ant2    | 2462    | 12.23        | <=30        | PASS      |
|            | Ant1    | 2412    | 11.86        | <=30        | PASS      |
|            | Ant2    | 2412    | 11.39        | <=30        | PASS      |
| 11N20SISO  | Ant1    | 2437    | 12.72        | <=30        | PASS      |
| 1111205150 | Ant2    | 2437    | 12.56        | <=30        | PASS      |
|            | Ant1    | 2462    | 12.30        | <=30        | PASS      |
|            | Ant2    | 2462    | 11.70        | <=30        | PASS      |
|            | Ant1    | 2422    | 12.33        | <=30        | PASS      |
|            | Ant2    | 2422    | 11.71        | <=30        | PASS      |
| X          | Ant1    | 2437    | 12.35        | <=30        | PASS      |
| 11N40SISO  | Ant2    | 2437    | 13.12        | <=30        | PASS      |
|            | Ant1    | 2452    | 12.23        | <=30        | PASS      |
|            | Ant2    | 2452    | 12.04        | <=30        | PASS      |
|            |         |         |              |             |           |
|            |         |         |              |             |           |
|            |         |         |              |             |           |
|            |         |         |              |             |           |
|            |         |         |              | 5           |           |
|            |         |         |              | Page        | 54 of 114 |

