

Global United Technology Services Co., Ltd.

Report No.: GTS201911000112F01

TEST REPORT

Applicant: Shenzhen Longtour Photology Co., Ltd.

Address of Applicant: 202, Ying'an Building, Shangtang Intersection Minzhi Ave.,

Minzhi St., Longhua New Dist., Shenzhen, China

Manufacturer: Shenzhen Longtour Photology Co., Ltd.

Address of 202, Ying'an Building, Shangtang Intersection Minzhi Ave.,

Minzhi St., Longhua New Dist., Shenzhen, China Manufacturer:

Equipment Under Test (EUT)

Product Name: Controller(Smart Light Strip)

Model No.: SL02, SL07, SL08, SL09, SL10

Trade Mark:

TECKIN

FCC ID: 2AQNX-SL02

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: 2019-10-15

Date of Test: 2019-10-15 to 2019-10-21

Date of report issued: 2019-11-20

Test Result: PASS *

Robinson Lo Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	2019-11-20	Original

Prepared By:	Joseph Cly	Date:	2019-11-20
	Project Engineer	_	
Check By:	Reviewer	Date:	2019-11-20

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	9
_			
3	CON	TENTS	3
4	TES1	Γ SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	7
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES1	TINSTRUMENTS LIST	8
7	TES1	Γ RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED PEAK OUTPUT POWER	14
		CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	-	POWER SPECTRAL DENSITY	_
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
		Spurious Emission	
	7.7.1	Conducted Emission Method	34
8	TES1	F SETUP PHOTO	36
9	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Controller(Smart Light Strip)
Model No.:	SL02
Serial No.:	SL07, SL08, SL09, SL10
Hardware Version:	V1.0
Software Version:	V1.0
Test sample(s) ID:	GTS201911000112-1
Sample(s) Status:	Engineer sample
Sample(s) Status:	Engineer sample
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	2dBi
Power supply:	Input: 100V-240V~50/60Hz, 0.6A Max
	Output:12V= 1.5A

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel					Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)
Data rate	1Mbps	6Mbps	6.5Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software Version	ESP Series Modules FCC & CE Test Tool V2.2.2
Power Setting	Power Setting: not applicable, test used software
	default power level.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020	

RF C	RF Conducted Test:									
Item	Test Equipment Manufacturer Model No. Seri		Test Equipment Manufacturer Model No. Se		Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020				
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020				

Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020				
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

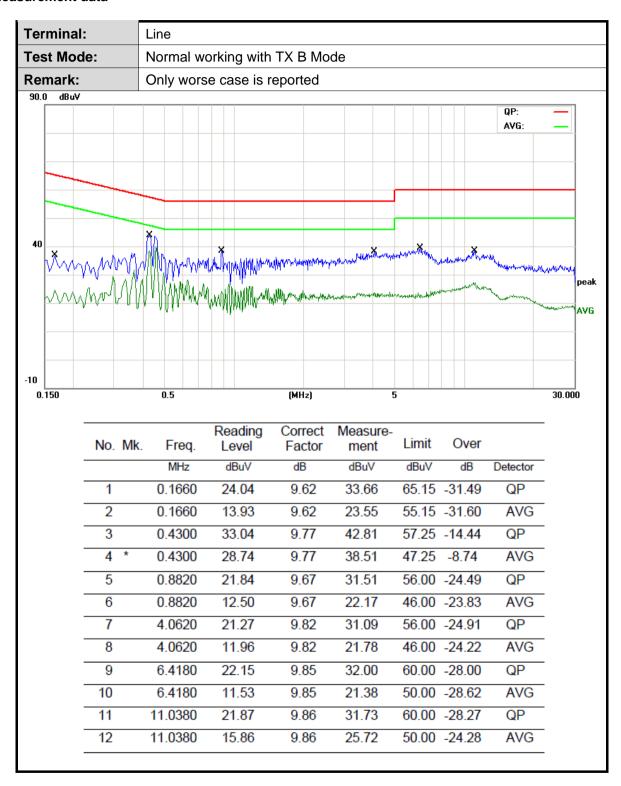
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

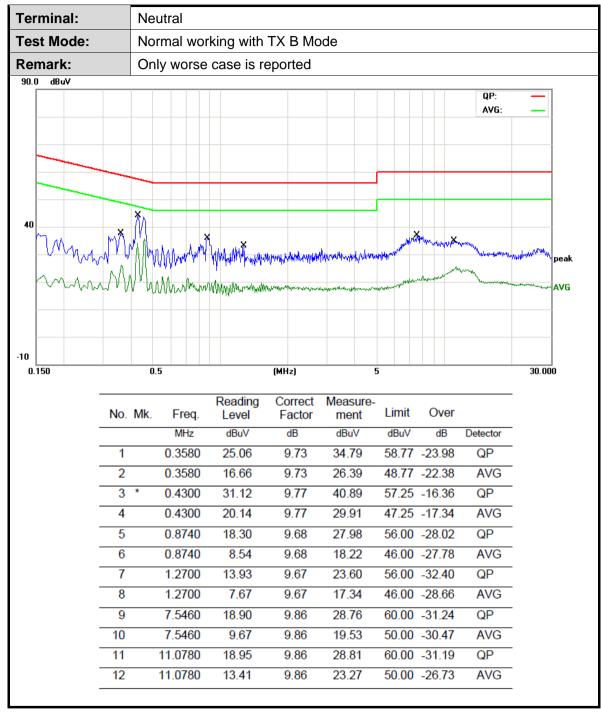
EUT Antenna:

The antennas are integral antenna, the best case gain of the antennas are 2dBi, reference to the appendix II for details

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 36

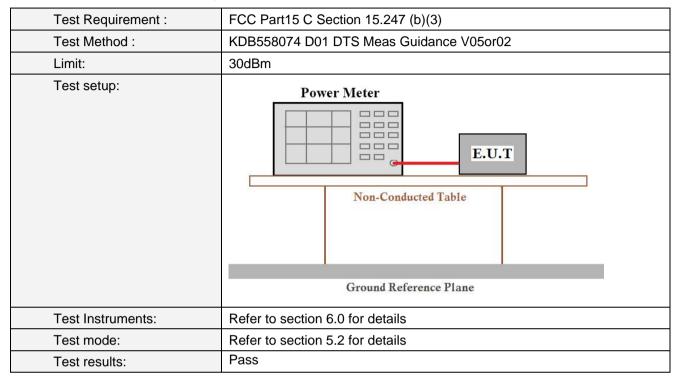

7.2 Conducted Emissions

Quasi-peak 0.15-0.5 66 to 56*	(dBuV) Average				
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56*	Average				
Limit: Frequency range (MHz) Limit Quasi-peak 0.15-0.5 66 to 56*	Average				
Prequency range (MHZ) Quasi-peak	Average				
0.15-0.5 G6 to 56*					
	56 to 46*				
0.5-5 56 5-30 60	46				
* Decreases with the logarithm of the frequency.	50				
Test setup: Reference Plane					
Remark E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line impedence Stabilization Network				
Test procedure: 1. The E.U.T and simulators are connected to the line impedance stabilization network (L.I.S.N.). 50ohm/50uH coupling impedance for the meas	This provides a uring equipment.				
2. The peripheral devices are also connected to the LISN that provides a 50ohm/50uH coupling imperature termination. (Please refer to the block diagram photographs).	edance with 50ohm				
interference. In order to find the maximum emis positions of equipment and all of the interface of	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments: Refer to section 6.0 for details					
Test mode: Refer to section 5.2 for details					
Test environment: Temp.: 25 °C Humid.: 55%	Press.: 1001mbar				
Test voltage: AC 120V, 60Hz	1				
Test results: Pass					



Measurement data

Report No.: GTS201911000112F01



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Emission Level= Read Level+ Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

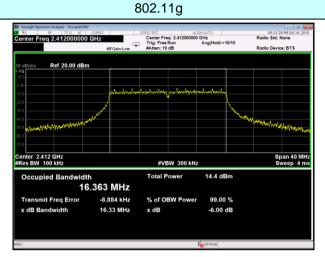
Test CH		Limit(dBm)	Result		
	802.11b	LITIIL(UDITI)	Result		
Lowest	15.895	17.267	17.073		
Middle	15.297	18.024	17.843	30.00	Pass
Highest	15.079	18.217	18.235		

7.4 Channel Bandwidth & 99% Occupy Bandwidth

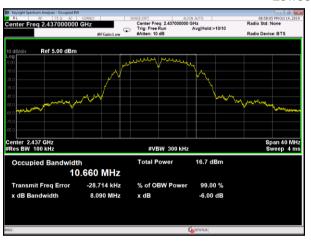
Test Requirement :	FCC Part15 C Section 15.247 (a)(2)
Test Method :	KDB558074 D01 DTS Meas Guidance V05or02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

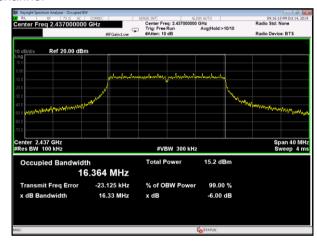
Measurement Data

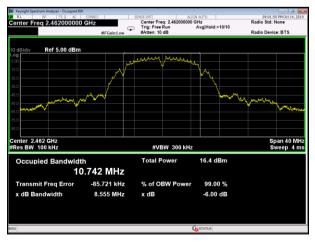

Test CH		Channel Bandwidth (M	Hz)	Limit(KHz)	Result	
Test CIT	802.11b	802.11g	802.11n(HT20)	Limit(IXI IZ)	Nesuit	
Lowest	8.051	16.329	16.701			
Middle	8.090	16.333	16.962	>500	Pass	
Highest	8.555	16.324	16.824			

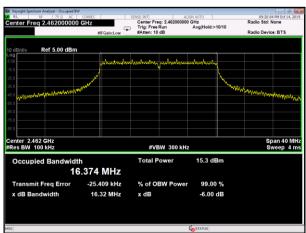

Test CH	99	% Occupy Bandwidth	(MHz)	Result
Test CH	802.11b	802.11g	802.11n(HT20)	Result
Lowest	10.550	16.362	17.525	
Middle	10.661	16.363	17.533	Pass
Highest	10.748	16.372	17.531	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

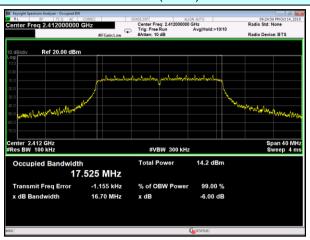


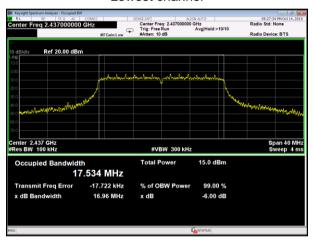

Test plot as follows:

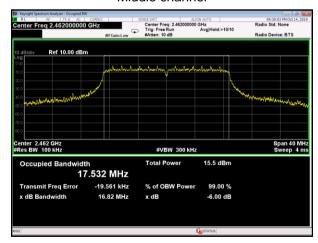



Lowest channel

Middle channel




Highest channel


802.11n(HT20)

Lowest channel

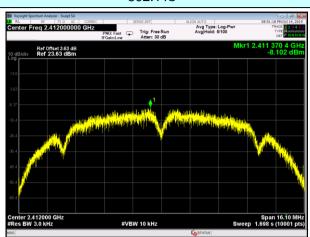
Middle channel

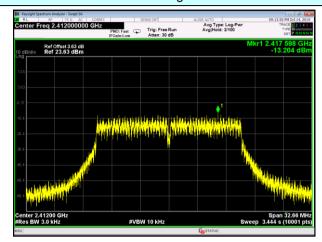
Highest channel

7.5 Power Spectral Density

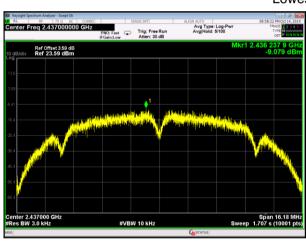
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

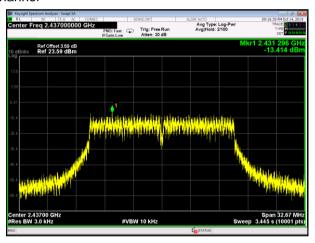
Measurement Data


Test CH	Pow	er Spectral Density (dE	Bm/3kHz)	Limit	Result
1621 011	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Nesuit
Lowest	-8.102	-13.204	-14.493		
Middle	-9.079	-13.414	-13.696	8.00	Pass
Highest	-9.190	-13.073	-12.916		


Test plot as follows:

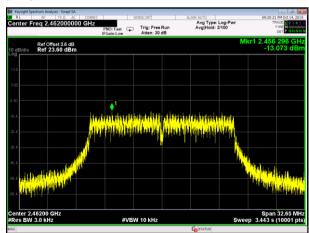
Report No.: GTS201911000112F01



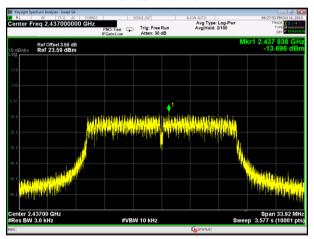


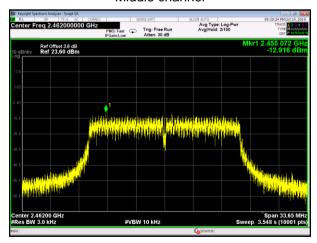
802.11g




Lowest channel

Middle channel


Highest channel


802.11n(HT20)

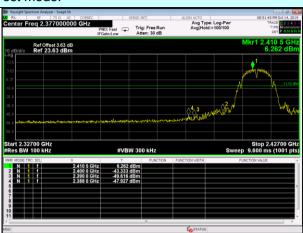
Lowest channel

Middle channel

Highest channel

7.6 Band edges

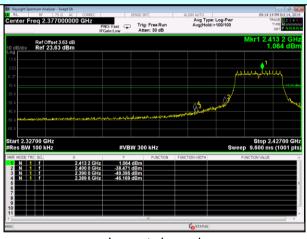
7.6.1 Conducted Emission Method

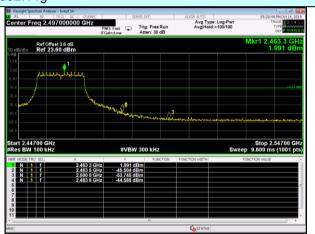

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Report No.: GTS201911000112F01

Test mode:


802.11b


Highest channel

Lowest channel

802.11g

Lowest channel

Highest channel

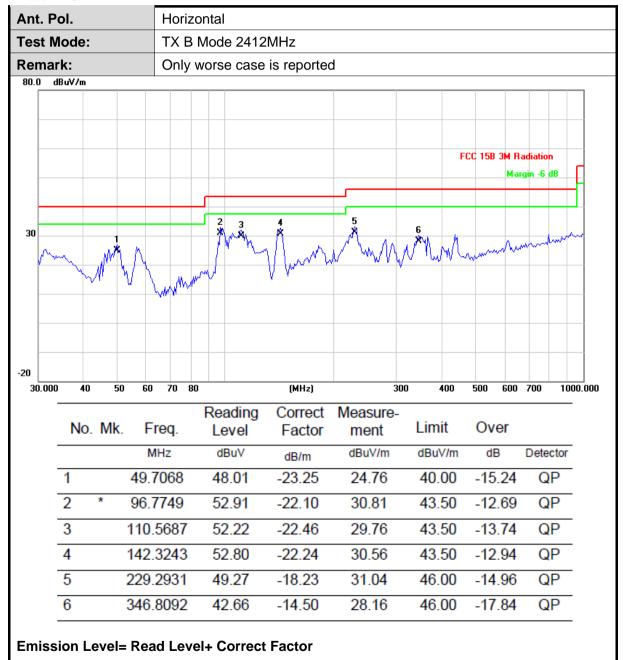
Test mode:

802.11n(HT20)

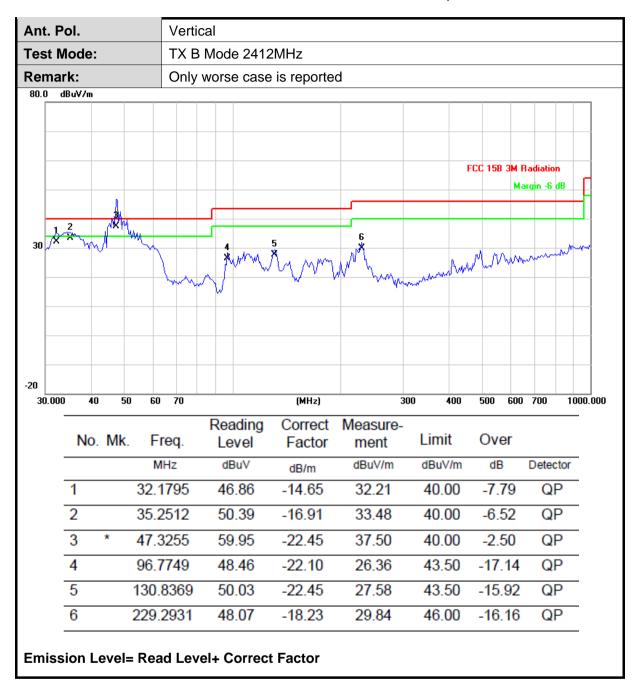
Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.20			
Test Method:	ANSI C63.10: 2					
Test Frequency Range:	All of the restric	t bands were	tested, only	the worst ba	and's (2310MHz to	
. , ,	2500MHz) data	was showed.	•		•	
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above 4CU=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Average Frequency Above 1GHz		3MHz	Average	
Limit:	Freque			/m @3m)	Value	
	Ahove 1	GHz	54.0		Average	
	7100001	OFIZ	74.0	0	Peak	
Test setup:	Tum Table	EUT-	Test Antenna	?		
	The EUT was placed on the top of a rotating table 1.5 meters above					
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the and the rotathe maximum 5. The test-recespecified Ba 6. If the emission the limit specified Ba 6. If the rotathe limit specified Ba 7. The radiation And found the the second specified Ba	t a 3 meter can be position of the set 3 meters che was mount theight is varied termine the made vertical polant. pected emission antenna was table was turn a reading. Server system would be reported theight of the sified, then testing ould be reported argin would be age method as measurement.	mber. The tall he highest race away from the ed on the toped from one naximum value rizations of the ton, the EUT tuned to heiged from 0 deras set to Peak aximum Hole EUT in peak ting could be ted. Otherwise re-tested or as specified arts are performoning which is	ole was rotated diation. The interference of a variable meter to four ere of the field me antenna and was arrange has from 1 magrees to 360 and Detect Fund Mode. The mode was 1 stopped and ere the emission of the report med in X, Y, to is worse care in the case of the c	ted 360 degrees to ce-receiving e-height antenna meters above the strength. Both are set to make the d to its worst case neter to 4 meters d degrees to find nction and OdB lower than d the peak values ons that did not sing peak, quasi-	
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.2 for details	3			
Test results:	Pass					


Measurement data:

Report No.: GTS201911000112F01


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz

■ Above 1GHz

Ant	Ant. Pol.			Horizontal					
Tes	Test Mode:			TX B Mode 2412MHz					
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4823.868	3 46.68	12.54	59.22	74.00	-14.78	peak
	2	*	4823.946	38.37	12.54	50.91	54.00	-3.09	AVG

Ant	Ant. Pol. Fest Mode:			tical					
Tes				B Mode 2412	2MHz				
	No. Mk.		. Freq.	Reading Level	Correct Factor	dD: Aller	Limit	Over	
			MHz	dBuV	dB/m		dBuV/m	dB	Detector
			4823.724	47.89	12.54	60.43	74.00	-13.57	peak
	2	*	4823.988	40.24	12.54	52.78	54.00	-1.22	AVG

Ant	Ant. Pol. Test Mode:			Hor	izontal					
Tes				TX	B Mode 243	7MHz				
	No. Mk.		. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1		4873.	676	45.33	12.85	58.18	74.00	-15.82	peak
	2	*	4873.	952	35.90	12.85	48.75	54.00	-5.25	AVG

Test Mo	lode:		TX E) Mada 2427								
				ΓX B Mode 2437MHz								
N			Freq.	Reading Level	9	Limit	Over					
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1	*	4	873.952	38.23	12.85	51.08	54.00	-2.92	AVG			
2		4	874.204	46.38	12.85	59.23	74.00	-14.77	peak			

Page 28 of 36

An	Ant. Pol.			Hor	izontal							
Tes	est Mode:			TX	TX B Mode 2462MHz							
	No	o. Mk	k. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1		4923.9	970	45.28	13.15	58.43	74.00	-15.57	peak		
	2	*	4923.9	970	37.68	13.15	50.83	54.00	-3.17	AVG		

Ant	Ant. Pol. Test Mode:			Vert	tical					
Tes				TXI	B Mode 246	2MHz				
-	No	. Mk	. Fre	q .	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
-	1		4923.9	970	45.28	13.15	58.43	74.00	-15.57	peak
-	2	*	4923.9	970	37.68	13.15	50.83	54.00	-3.17	AVG
-										

Ant	Ant. Pol.			Hori	izontal							
Tes	Test Mode:			TX (ΓX G Mode 2412MHz							
	No.	Mk	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz		lz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1		4823.	280	39.61	15.65	55.26	74.00	-18.74	peak		
	2	*	4823.	448	28.02	15.65	43.67	54.00	-10.33	AVG		

Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz

GTS

Report No.: GTS201911000112F01

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.018	42.25	15.88	58.13	74.00	-15.87	peak
2	*	4874.084	28.01	15.88	43.89	54.00	-10.11	AVG

	An	t. F	Pol.	ŀ	Horizontal					
Tes	st Mo	de:		-	TX G Mode 243	37MHz				
	No	. N	Лk.	Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over	
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1			4873.53	37.68	15.88	53.56	74.00	-20.44	peak
	2	*		4874.24	10 27.99	15.88	43.87	54.00	-10.13	AVG

An	Ant. Pol.			Verti	cal								
Tes	Test Mode:			TX G	X G Mode 2437MHz								
	No	. Mk	c. Fre		Reading Level	Correct Factor	Measure- ment	Limit	Over				
			MH	z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1		4872.8	872	42.15	15.87	58.02	74.00	-15.98	peak			
	2	*	4875.	182	27.99	15.89	43.88	54.00	-10.12	AVG			

Ant	Ant. Pol. Fest Mode:			Horiz	ontal					
Tes				TX G	Mode 2462	2MHz				
	No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	Ηz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4924.	.078	27.90	16.10	44.00	54.00	-10.00	AVG
	2		4925.	500	38.74	16.12	54.86	74.00	-19.14	peak

Ant. Pol.	Vertical					
Test Mode:	TX G Mode 24	62MHz				
No. Mk. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4924.39	96 40.15	16.10	56.25	74.00	-17.75	peak
2 * 4924.39	96 28.03	16.10	44.13	54.00	-9.87	AVG

Гest	Mod			Horizontal								
	WOU	e:		1XT	TX N(HT20) Mode 2412MHz							
_	No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_				Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	1	*	4823.7	760	28.04	15.65	43.69	54.00	-10.31	AVG		
2	2		4824.3	300	38.37	15.65	54.02	74.00	-19.98	peak		

Ant.	Pol.			Verti	cal					
Tes	t Mod	e:		TX N	I(HT20) Mod	de 2412MH:	Z			
	No.	o. Mk. Fre		eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4822.	500	28.10	15.65	43.75	54.00	-10.25	AVG
	2		4824.	960	42.17	15.65	57.82	74.00	-16.18	peak

An	t. Pol.		I	Horizontal							
Tes	st Mo	de:	-	TX N(HT20) Mode 2437MHz							
	No. Mk.		c. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1		4874.43	32 38.15	15.88	54.03	74.00	-19.97	peak		
	2	*	4874.87	70 27.95	15.88	43.83	54.00	-10.17	AVG		

Ant	. Pol.			Verti	Vertical						
Tes	t Mod	e:		TX N	N(HT20) Mod	de 2437MH	Z				
	No.	Mk. Fre		eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1	*	4874.	234	28.08	15.88	43.96	54.00	-10.04	AVG	
	2		4875.	194	42.75	15.89	58.64	74.00	-15.36	peak	

An	t. Pol.			Hori	Horizontal							
Tes	st Mo	de:		1 XT	TX N(HT20) Mode 2462MHz							
	No	o. Mk. l		eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MH	IZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1		4923.	922	38.85	16.10	54.95	74.00	-19.05	peak		
	2	*	4924.	078	27.94	16.10	44.04	54.00	-9.96	AVG		

Ant	. Pol.			Vertical						
Tes	st Mod	le:		1 XT	N(HT20) Mo	de 2462MH	Z			
,	No.	o. Mk. Fr		eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
,				z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
,	1	*	4922.	968	27.96	16.10	44.06	54.00	-9.94	AVG
,	2		4925.	188	41.89	16.12	58.01	74.00	-15.99	peak

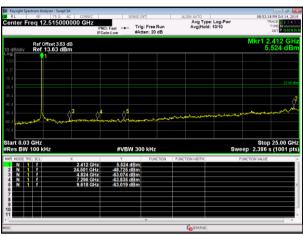
Remark:

- 1.No report for the emission which more than 10 dB below the prescribed limit. 2.Emission Level= Read Level+ Correct Factor

7.7 Spurious Emission

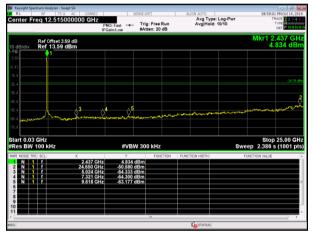
7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

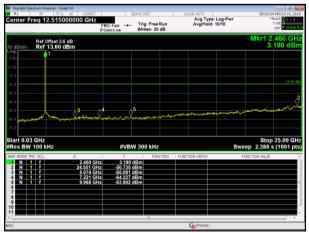


Test plot as follows:

Report No.: GTS201911000112F01


802.11b(Only worse case is reported)

Lowest channel


30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----