APPROVAL SHEET

1. CUSTOMER.

:

2.Antenna Model

: <u>AT2.4G -PCB</u>

3. Antenna type.

: <u>Ceramic Antenna</u>

4. APPROVAL NO.

: <u>AT2.4G-PCB</u>

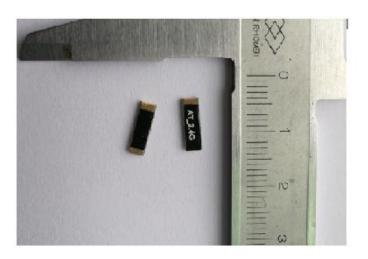
5. ISSUED DATE.

:

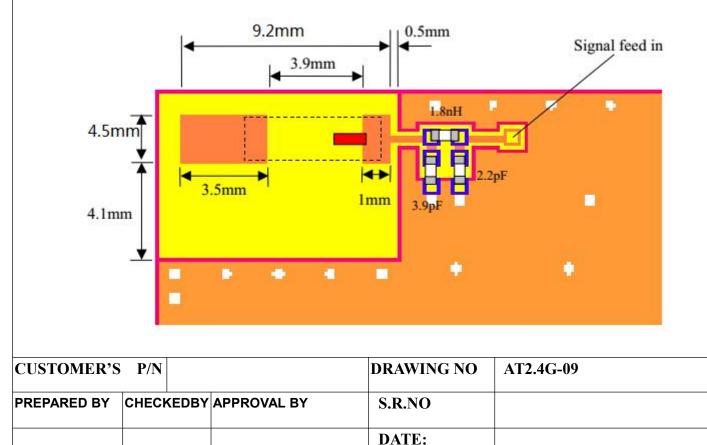
APPROVAL BY	CHECKED BY	PREPARED BY

SHENZHEN WINNERELEC INDUSTRIAL CO.,LTD. Application of AT2.4G-PCB Series

Feature

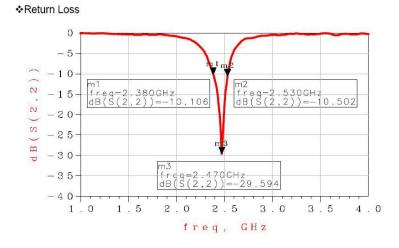

- i High gain ₩
- *Omni-directional
- ⅔ Wide bandwidth

Applications

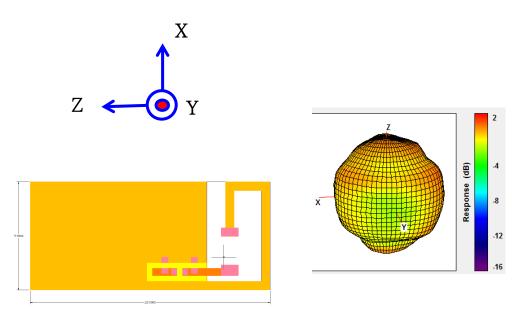

% Bluetooth/ireless LAN/Home RF

℁ ISM band 2.4GHz applications

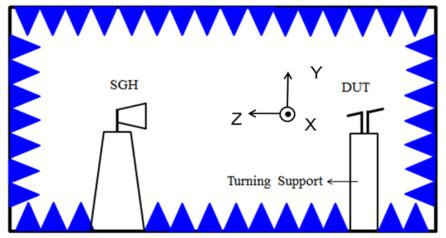
PCB Board Pattern



1.Dimensions


2. Electric Specifications

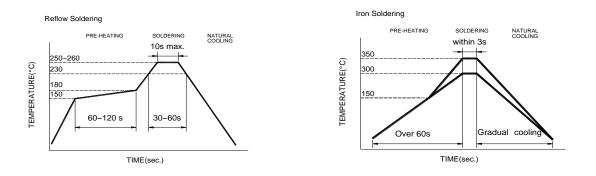
TYPE	PCB Series
Operating Frequency Range	2400~2484MHz
Input impedance	50 Ω
Operating VoltageRange	3.0V~4.2V
Antenna gain	OdBi
Demodulation Mode	GFSK(Basic Data Rate) & 8DPSK(Enhanced Data Rate)


2.4CUSTOMER	'S		DRAWING NO	AT2.4G-PCB Series
P/N				
PREPARED BY	CHECKED BY	APPROVAL BY	S.R.NO	
			DATE:	

3. Radiation Pattern

	Efficiency	Peak Gain	Directivity
2450MHz	68.15%	OdBi	0 dBi

Chamber Coordinate System

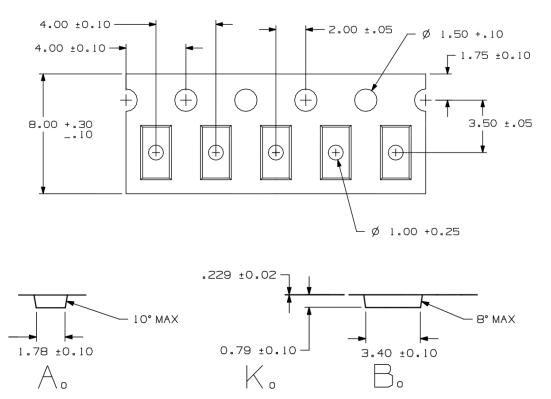


4. Reliability and Test Condictions ITEM REQUIREMENTS TEST CONDITION Solderability 1. Wetting shall exceed 90% coverage Pre-heating temperature:150°C /60sec. 2. No visible mechanical damage Solder temperature:230 \pm 5°C Duration:4±1sec. TEMP (℃) Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin 4±1 sec. 230°C **150°**℃ 60sec Solder heat 1. No visible mechanical damage Pre-heating temperature:150°C /60sec. 2. Central Freq. change :within ± 6% Resistance Solder temperature:260±5°C TEMP (°C) Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 10±0.5 sec. 260°C Flux for lead free: rosin **150**℃ 60sec Component 1. No visible mechanical damage The device should be reflow Adhesion soldered(230±5°C for 10sec.) to a tinned (Push test) copper substrate A dynometer force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the termination attached to component. 1. No visible mechanical damage Component Insert 10cm wire into the remaining open eve bend, the ends of even wire lengths Adhesion upward and wind together. (Pull test) ot h .

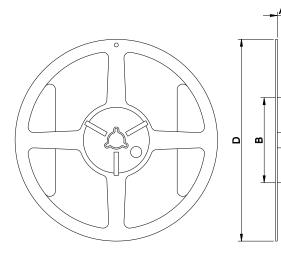
		Terminal shall not be remarkably damaged.
Thermal shock	1. No visible mechanical damage2. Central Freq. change :within $\pm 6\%$ PhaseTemperature($^{\circ}$ C)Time(min)1 $\pm 85 \pm 5^{\circ}$ C 30 ± 3 2RoomWithinTemperature3sec3 $-40 \pm 2^{\circ}$ C 30 ± 3 4RoomWithinTemperature3sec	+85°C =>30±3min -40°C =>30±3min Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to High Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 85±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to Low Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Humidity	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.

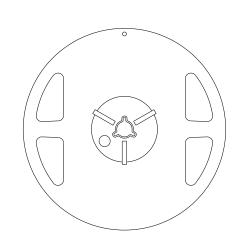
5.Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.


Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.


- Preheat circuit and products to 150° C
- · Never contact the ceramic with the iron tip
- · Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.


6. Packaging Information

Reel Specification: (7", Ф180 mm)

7" x 8 mm

C

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

ONEWAVE TECHNOLOGY CO., LTD.

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40 $^\circ C$ and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.