

RADIO TEST REPORT – 468013-1R2TRFWL

Type of assessment: Modular approval				
Applicant:	Product:			
Thales DIS USA, Inc	RFID Readers			
Model (HVIN):	Host Model Name ((HMN)		
PR-01783	PV60-00-00-00-01	PV60-03-00-00-01	PV65-00-00-02-00	PV65-02-00-02-00
11(01/00	PV60-01-00-00-01	PV60-03-00-00-03	PV65-00-00-04-01	PV65-02-00-04-01
	PV60-02-00-00-03	PV60-04-00-00-01	PV65-00-01-00-01	PV65-02-00-05-01
	PV60-02-00-01-01	PV60-06-00-00-01	PV65-02-00-00-00	PV65-02-00-06-01
	PV60-02-00-03-01	PV60-06-00-00-03	PV65-02-00-00-01	PV65-02-01-00-01
	PV60-02-00-05-03	PV60-06-00-07-01	PV65-02-00-00-03	PV65-02-01-00-03
	PV60-02-00-06-01	PV65-00-00-00-00	PV65-02-00-01-00	PV65-02-03-00-01
	PV60-02-00-07-01	PV65-00-00-00-01	PV65-02-00-01-01	
FCC ID:	ISED Registration n	umber:		
2AQL3PR01813	22832-PR018	13		
 Specifications: FCC 47 CFR Part 15 Subpart C, §15.225 RSS-210, Issue 10, December 2019, Annex B.6 Date of issue: November 11, 2022				
		110		
Moustapha Salah Toubeh, Wirele	ess/EMC Specialist	MS		
Tested by		Signature		
Andrey Adelberg, Senior EMC/RF Specialist				
Reviewed by		Signature		

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation. The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

SCC File Number: 15064 (Ottawa/Almonte); 151100 (Montreal); 151097 (Cambridge) FCC 15.225, RSS-210 RFID; Date: September 2020

Lab locations

Company name	Nemko Canada I	nc.			
Facilities	Ottawa site: Montrée		al site:	Cambridge site:	Almonte site:
	303 River Road	292 Lal	orosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe	Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada	1	Canada	Canada
	K1V 1H2	H9R 5L	8	N3E OB2	KOA 1LO
	Tel: +1 613 737 9	9680 Tel: +1	514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737	9691 Fax: +1	514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.com	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of C	Contents	
Section 1		
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2		
2.1	Modifications incorporated in the EUT for compliance	
2.2	Technical judgment	5
2.3	Model variant declaration	5
2.4	Deviations from laboratory tests procedures	5
Section 3	Test conditions	. 6
3.1	Atmospheric conditions	
3.2	Power supply range	6
Section 4	Measurement uncertainty	. 7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	. 8
5.1	Disclaimer	
5.2	Applicant/Manufacture	8
5.3	EUT information	8
EUT inf	ormation, Continued	9
5.4	Radio technical information	9
5.5	EUT setup details	10
Section 6	Summary of test results	11
6.1	Testing location	11
6.2	Testing period	11
6.3	Sample information	
6.4	FCC Part 15 Subpart A and C, general requirements test results	
6.5	FCC Part §15.225 test results	
6.6	ISED RSS-Gen, Issue 5, test results	
6.7	ISED RSS-210, Issue 10, test results	
Section 7		
7.1	Test equipment list	
Section 8	5	
8.1	Variation of power source	
8.2	Number of frequencies	
8.3	Antenna requirement	
8.4	Occupied bandwidth	
8.5	Field strength within 13.110–14.010 MHz band	
8.6	Field strength outside 13.110–14.010 MHz band	
8.7	Frequency stability	
8.8	AC power line conducted emissions limits	26

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.225	Operation within the band 13.110–14.010 MHz.
RSS-210, Issue 10, Dec 2019, Annex B.6	Licence-Exempt Radio Apparatus: Category I Equipment.
	Devices operating in frequency bands for any application
	Band 13.110–14.010 MHz

1.2 Test methods

ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.


Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	September 12, 2022	Original report issued
R1TRF	September 30, 2022	Updated FCC ID and ISED ID.
R2TRF	November 11, 2022	Modified results related to Field strength outside 13.110–14.010 MHz band.

2.1 Modifications incorporated in the EUT for compliance

The following modifications were installed by client:

- Ferrite on USB cable

Nèmko

The cable has been looped six times around the ferrite by the client. The ferrite is located at the extremity of the cable connected to the EUT. The model of the ferrite is 742 701 5 and the manufacturer is Wurth Elektronik.

The antenna of the EUT has been loaded to perform Conducted Emission outside the transmitter's fundamental emission band). For the other tests, EUT has been used as provided by the client.

2.2 Technical judgment

None

2.3 Model variant declaration

None

2.4 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % - 75 % 20 % - 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

Nèmko

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, ±dB
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 5 Information provided by the applicant

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Thales DIS USA, Inc
Applicant address	Arboretum Plaza II, 9442 N. Capital of Texas Hwy, Suite 400, Austin, TX, 78759, USA
Manufacturer 1 name	Thales DIS (Tianjin) CO LTD
Manufacturer 1 address	4 th Floor, Building 8, Saifei Shiji Medical Equipment Park, Medical Equipment Industrial Park, Tianjin, Beichen
	Economic-Technological Development Area, Beichen District, Tianjin, China
Manufacturer 2 name	Benchmark Electronics Huntsville Inc.
Manufacturer 2 address	4807 Bradford Dr NW, Huntsville, AL 35805-1948, USA

5.3 EUT information

Product	RFID Readers
Model	PR-01783
Serial number	2220@0009
Part number	PR-01783
Model variants	NA
Power supply requirements	USB: 5 V_{DC} connected to a laptop computer powered by an AC power source.

EUT information, Continued

Host model names (HMN) and	PV60-00-00-01	AT9000 MK2, UV
information	PV60-01-00-00-01	AT9000 MK2, UV, SMARTCARD
	PV60-02-00-00-03	AT9000 MK2, RF, UV, CONFIRM
	PV60-02-00-01-01	AT9000 MK2, RF, UV, SECURITY LOOP
	PV60-02-00-03-01	AT9000 MK2, RF, UV, IDSCAN
	PV60-02-00-05-03	AT9000 MK2, RF, UV, CONFIRM, MAXVISION
	PV60-02-00-06-01	AT9000 MK2, RF, UV, NID
	PV60-02-00-07-01	AT9000 MK2, RF, UV, HINGED HOOD
	PV60-03-00-00-01	AT9000 MK2, RF, UV, SMARTCARD
	PV60-03-00-00-03	AT9000 MK2, RF, UV, CONFIRM, SMARTCARD
	PV60-04-00-00-01	AT9000 MK2, UV, MAG
	PV60-06-00-00-01	AT9000 MK2, RF, UV, MAG
	PV60-06-00-00-03	AT9000 MK2, RF, UV, CONFIRM, MAG
	PV60-06-00-07-01	AT9000 MK2, RF, UV, MAG, HINGED HOOD
	PV65-00-00-00-00	KR9000 FULL PAGE READER
	PV65-00-00-00-01	KR9000 FULL PAGE READER, UV
	PV65-00-00-02-00	KR9000 FULL PAGE READER, WHT ON BLK
	PV65-00-00-04-01	KR9000 FULL PAGE READER, UV, BLK ON WHT
	PV65-00-01-00-01	KR9000 FULL PAGE READER, UV, DOC CLIP
	PV65-02-00-00-00	KR9000 FULL PAGE READER, RF
	PV65-02-00-00-01	KR9000 FULL PAGE READER, RF, UV
	PV65-02-00-00-03	KR9000 FULL PAGE READER, RF, UV, CONFIRM
	PV65-02-00-01-00	KR9000 FULL PAGE READER, RF, BLK ON WHT
	PV65-02-00-01-01	KR9000 FULL PAGE READER, RF, UV, BLK ON WHT
	PV65-02-00-02-00	KR9000 FULL PAGE READER, RF, WHT ON BLK
	PV65-02-00-04-01	KR9000 FULL PAGE READER, RF, UV, BLK ON WHT
	PV65-02-00-05-01	KR9000 FULL PAGE READER, RF, UV, MAXVISION
	PV65-02-00-06-01	KR9000 FULL PAGE READER, RF, UV, NID
	PV65-02-01-00-01	KR9000 FULL PAGE READER, RF, UV, DOC CLIP
	PV65-02-01-00-03	KR9000 READER, RF, UV, DOC CLIP, CONFIRM
	PV65-02-03-00-01	KR9000 FULL PAGE READER, RF, UV, ENH HOOD

5.4 Radio technical information

Frequency band	13.553–13.567 MHz
Frequency Min (MHz)	13.56
Frequency Max (MHz)	13.56
Field strength, dBµV/m @ 3 m	63.80
Measured BW (kHz), 99% OBW	0.70
Type of modulation	ASK
Emission classification	0K70A1D
Transmitter spurious, dBµV/m @ 3 m	55.29 (Peak) at 684.0225 MHz
Antenna information	PCB antenna
Product description and theory of	RFID readers operate at 13.56 MHz, reading ID cards and Passports
operation	
Software	Firmware: FW00303-00-21.sbin

5.5 EUT setup details

5.5.1 Radio exercise details

Operating conditions	Once energized, 2 RFID cards have been used to force the transmitter to transmit continuously with a duty cycle of 100%

Table 5.5-1: EUT sub assemblies

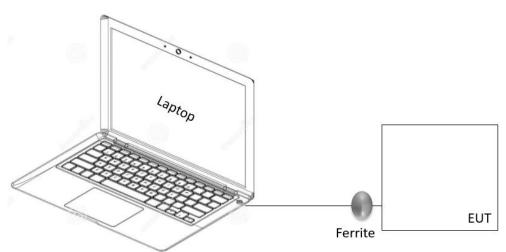

Description	Brand name	Model, Part number, Serial number, Revision level
PR-01783	Thales	MN: PR-01783, PN: PR-01783, SN: 2220@0009
Ferrite 742 701 5	Wurth Elektronik	MN: 742 701 5, SN: None
Test Card	Thales	MN: DS-00031, REV: B
Test Card	Molex	MN: 1462360031

Table 5.5-2: EUT interface ports

Description	Qty.
USB	1

Table 5.5-3: Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level
Laptop	Dell	MN: Latitude 5590, SN: None

Figure 5.5-1: Setup block diagram

Section 6 Summary of test results

6.1 **Testing** location

Test location (s)	Ottawa		
6.2 Testing period			
Test start date	July 25, 2022	Test end date	July 28, 2022
6.3 Sample informatio	n		
Receipt date	July 25, 2022	Nemko sample ID number(s)	#1

FCC Part 15 Subpart A and C, general requirements test results 6.4

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
Notes:	None	

FCC Part §15.225 test results 6.5

Table 6.5-1: FCC §15.225 requirements results

Part	Test description	Verdict
§15.225(a)	Field strength within 13.553–13.567 MHz band	Pass
§15.225(b)	Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands	Pass
§15.225(c)	Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands	Pass
§15.225(d)	Field strength outside 13.110–14.010 MHz band	Pass
§15.225(e)	Frequency tolerance of carrier signal	Pass

Notes None

6.6 ISED RSS-Gen, Issue 5, test results

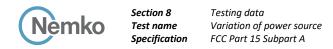
Table 6.6-1: RSS-Gen requirements results

Clause	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass
otes:	¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver r	neither scanner receiver, therefore exempt from receive
	requirements.	

6.7 ISED RSS-210, Issue 10, test results

Table 6.7-1: ISED RSS-247 requirements results

Section	Test description	Verdict
Annex B.6 (a)(i)	The field strength within the band 13.553–13.567 MHz	Pass
Annex B.6 (a)(ii)	The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz	Pass
Annex B.6 (a)(iii)	The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz	Pass
Annex B.6 (a)(iv)	The field strength outside the band 13.110–14.010 MHz	Pass
Annex B.6 (b)	Carrier frequency stability	Pass
Notes: Non	e	


Section 7 Test equipment

7.1 Test equipment list

Nemko

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	20-Jan-23
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
61505 AC source	Chroma	61509	FA003036	_	VOU
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	25-Nov-22
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	14-Feb-23
Active loop antenna (0.01–30 MHz)	Com-Power	AL-130	FA002722	1 year	11-Mar-23
Signal and Spectrum Analyzer	Rhode&Schwarz	FSW50	FA003267	1 year	29-Nov-22
Temperature chamber	Espec	EPX-4H	FA002735	1 year	05-Oct-22
LISN	Rohde & Schwarz	ENV216	FA002023	1 year	08-Oct-22

Notes: NCR - no calibration required, VOU - verify on use

Section 8 Testing data

8.1 Variation of power source

8.1.1 References, definitions and limits

FCC §15.31 (e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 25, 2022
			54, 25, 2022

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

EUT Power requirements:	🖾 AC	□ DC	□ Battery
If EUT is an AC or a DC powered, was the noticeable output power variation observed?	□ YES	🖾 NO	□ N/A
If EUT is battery operated, was the testing performed using fresh batteries?	🗆 YES	🗆 NO	🖾 N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	□ YES	🗆 NO	🖾 N/A

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device			Location of measurement frequency inside the
	operates (in each band)	Number of test frequencies required	operating frequency range
	1 MHz or less	1	Center (middle of the band)
	1–10 MHz	2	1 near high end, 1 near low end
	Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end
Notes:		-	5 /
Notes:		at the centre / low end / high end of the frequency ra	5 /
Notes: 8.2.2		-	5 /
	"near" means as close as possible to or	-	5 /

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

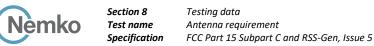
The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worstcase modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.



Section 8 Test name Specification

Testing data Number of frequencies FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

Table 8.2-2: Test channels selection					
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, kHz	Single Tx frequency, MHz		
13.553 13.567 14 13.560					

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable

requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict		Pass						
Tested by	/	Moustapha Salah Toubeh		Test dat	e	Jul	y 25, 2022	
8.3.3	Observations, setting	s and special notes						
None								
8.3.4	Test data							
Must the El	UT be professionally install	ed?	🛛 YES					
Does the EL	JT have detachable antenn	a(s)?	□ YES	🛛 NO				
I	If detachable, is the antenr	a connector(s) non-standard?	□ YES	□ NO	⊠ N/A			

8.4 Occupied bandwidth

8.4.1 References, definitions and limits

FCC Part §15.215:

Additional provisions to the general radiated emission limitations:

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

ANSI C63.10-2013, Clause 6.9.3:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

RSS-Gen, Clause 6.7:

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

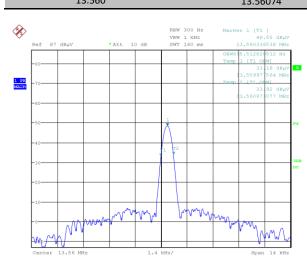
8.4.2 Test summary

Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 25, 2022

8.4.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 6.9.3. Spectrum analyser settings:

Resolution bandwidth:	≥ 1 % of span
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold


Section 8

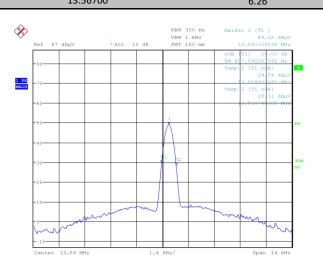
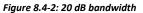
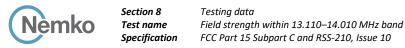

8.4.4 Test data

	Table 8.4-1: 99% band	width results		
Frequency, MHz 99% bandwidth, kHz				
13.	56	0.6	95	
	Table 8.4-2: Lower 20 dBc fre	equency cross result		
Fundamental frequency, MHz	Lower 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz	
13.560	13.55993	13.55300	6.93	

Table 8.4-3: Upper 20 dBc frequency cross result

Fundamental frequency, MHz	Upper 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz
13 560	13 5607/	13 56700	6.26





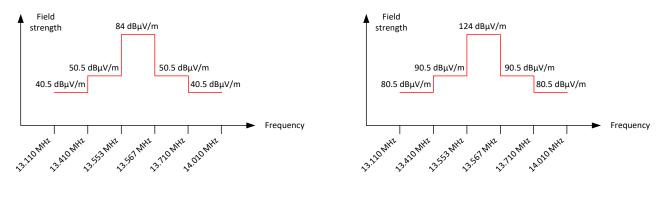
Date: 25.JUL.2022 18:17:43

Figure 8.4-1: 99% bandwidth

Date: 25.JUL.2022 18:19:37

8.5 Field strength within 13.110–14.010 MHz band

8.5.1 References, definitions and limits


FCC §15.225:

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848 µV/m (84 dBµV/m) at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 μV/m (50.5 dBμV/m) at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 μV/m (40.5 dBμV/m) at 30 meters.

RSS-210, Annex B.6:

Devices shall comply with the following requirements:

- a. the field strength of any emission shall not exceed the following limits:
- i. 15.848 mV/m (84 dBµV/m) at 30 m, within the band 13.553–13.567 MHz
- ii. $334 \,\mu$ V/m (50.5 dBµV/m) at 30 m, within the bands 13.410–13.553 MHz and 13.567–13.710 MHz
- iii. $106 \,\mu$ V/m (40.5 dB μ V/m) at 30 m, within the bands 13.110–13.410 MHz and 13.710–14.010 MHz

Figure 8.5-2: In-band spurious emissions limit at 3 m

8.5.2 Test summary

Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 25, 2022

Testing data Field strength within 13.110–14.010 MHz band FCC Part 15 Subpart C and RSS-210, Issue 10

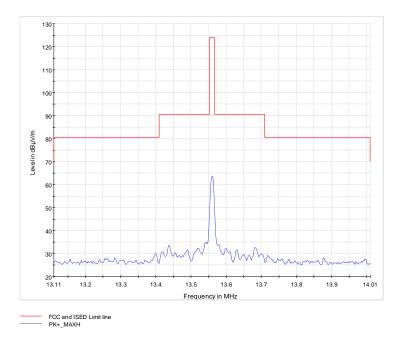
8.5.3 Observations, settings and special notes

The measurements were performed at the distance of 3 m. 40 dB distance correction factor* was applied to the measurement result in order to comply with 30 m limits.

st 30 m to 3 m distance correction factor calculation (for 13 MHz band):

 $40 \times Log_{10} (3 \text{ m}/30 \text{ m}) = 40 \times Log_{10} (0.1) = -40 \text{ dB}$

- Radiated measurements were performed at a distance of 3 m.
- The spurious emission was tested per ANSI C63.10, Clause 6.4.


Spectrum analyser settings:	
Resolution bandwidth:	10 kHz
Video bandwidth:	30 kHz
Detector mode:	Peak
Trace mode:	Max Hold

8.5.4 Test data

Table 8.5-1: Field strength measurements results

Frequency range,			Calculated field strength at 30 m,	Limit,	
MHz	Frequency, MHz	Field strength at 3 m, dBµV/m	dBµV/m	dBµV/m	Margin, dB
13.110-13.410	13.400	30.10	-9.90	40.50	50.40
13.410–13.553	13.553	48.00	8.00	50.50	42.50
13.553-13.567	13.560	63.80	23.80	84.00	60.20
13.567–13.710	13.569	45.70	5.70	50.50	44.80
13.710-14.010	13.717	29.10	-10.90	40.50	51.40

Note: Calculated field strength at 30 m = Measured field strength at 3 m - 40 dB

8.6 Field strength outside 13.110–14.010 MHz band

8.6.1 References, definitions and limits

FCC §15.225:

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

RSS-210, Annex B.6:

Devices shall comply with the following requirements:

- a. the field strength of any emission shall not exceed the following limits:
- iv. RSS-Gen general field strength limits for frequencies outside the band 13.110–14.010 MHz

Table 8.6-1: FCC §15.209 and RSS-Gen – Radiated emission limits

	Field strength of emissions					
Frequency, MHz	μV/m	dBµV/m	Measurement distance, m			
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300			
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30			
1.705–30.0	30	29.5	30			
30–88	100	40.0	3			
88–216	150	43.5	3			
216–960	200	46.0	3			
above 960	500	54.0	3			

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

8.6.2 Test summary

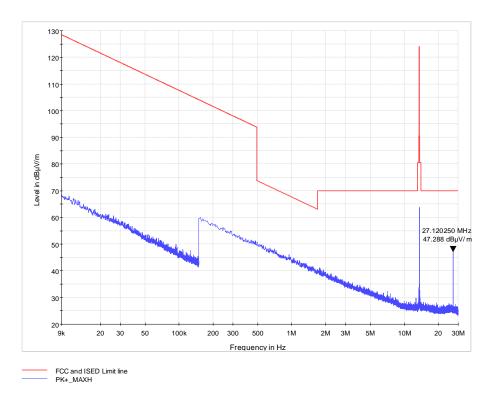
Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 25, 2022

Testing data Field strength outside 13.110–14.010 MHz band FCC Part 15 Subpart C and RSS-210, Issue 10

8.6.3 Observations, settings and special notes

- The spectrum was searched from 9 kHz to 1 GHz.
- Radiated measurements were performed at a distance of 3 m.
- The spurious emission was tested per ANSI C63.10, Clause 6.4 and 6.5.

Spectrum analyser settings for measurements below 150 kHz:


Resolution bandwidth:	300 Hz
Video bandwidth:	9 kHz
Detector mode:	Quasi-Peak
Trace mode:	Max Hold

Spectrum analyser settings for measurements below 30 MHz:

Resolution bandwidth:	9 kHz
Video bandwidth:	30 kHz
Detector mode:	Quasi-Peak
Trace mode:	Max Hold

Spectrum analyser settings for measurements below 1 GHz:	
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data

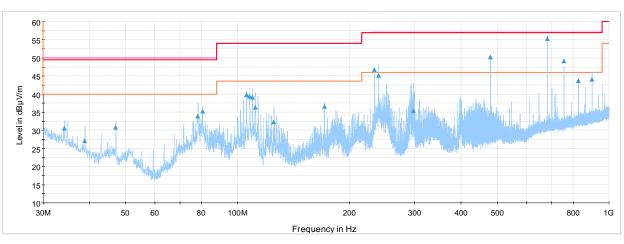


Figure 8.6-1: Field strength of spurious emissions below 30 MHz

Section 8 Test name Specification Testing data Field strength outside 13.110–14.010 MHz band FCC Part 15 Subpart C and RSS-210, Issue 10

Test data, continued

Radiated Emissions from 30-1000 MHz

FCC 15.209 and RSS-210 limit line

ICES-003 Limit - Class A, QP, 3 m FCC Part 15 Limit - Class A, QP, 3 m Preview Result 1-PK+

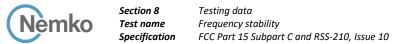

Final_Result QPK

Figure 8.6-2: Field strength of spurious emissions above 30 MHz

Frequency, MHz	Field strength at 3 m, dBµV/m	Quasi-Peak 3 m limit, dBµV/m	Margin, dB
34.268	30.57	40.00	9.43
38.876	27.08	40.00	12.92
47.072	30.88	40.00	9.12
78.355	33.93	40.00	6.07
80.634	35.29	40.00	4.71
105.806	39.87	43.50	3.63
107.843	39.46	43.50	4.04
109.783	39.11	43.50	4.39
111.723	36.40	43.50	7.10
125.448	32.38	43.50	11.12

Table 8.6-2: Field strength measurements results

Note: The limits up the 10th harmonic (135.6 MHz) are defined in FCC 15.209 and RSS-210 standards. The applicable limits above the 10th harmonic are defined in EMC standards (FCC part 15 and ICES-003).

8.7 Frequency stability

8.7.1 References, definitions and limits

FCC §15.225:

(e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

RSS-210, Annex B.6:

- Devices shall comply with the following requirements:
- b. the carrier frequency stability shall not exceed ±100 ppm

8.7.2 Test summary

Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 28, 2022
	1		1

8.7.3 Observations, settings and special notes

Frequency drift (ppm) = (($F_{measured} - F_{reference}$) ÷ $F_{reference}$) × 1×10 ⁶		
Margin [dB] = 10×Log10 (Limit[ppm]/Drift[ppm])		
Frequency stability test was performed as per ANSI C63.10, Clause 6.8. Spectrum analyser settings:		
Resolution bandwidth:	10 Hz	
Video bandwidth:	30 Hz	
Detector mode:	Peak	

8.7.4 Test data

Table 8.7-1: Frequency drift measurement

Test conditions	Frequency, Hz	Drift, ppm	Limit, ±ppm
+50 °C, Nominal	13560313.7	-1.8	100.0
+40 °C, Nominal	13560310.7	-2.0	100.0
+30 °C, Nominal	13560316.7	-1.5	100.0
+20 °C, +15 %	13560208.8	-9.5	100.0
+20 °C, Nominal	13560337.7	Refe	rence
+20 °C, −15 %	13560339.7	0.1	100.0
+10 °C, Nominal	13560359.6	1.6	100.0
0 °C, Nominal	13560369.6	2.4	100.0
–10 °C, Nominal	13560373.6	2.6	100.0
–20 °C, Nominal	13560341.7	0.3	100.0

8.8 AC power line conducted emissions limits

References, definitions and limits 8.8.1

FCC §15.407(b):

(8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required. For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-Gen, Clause 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below

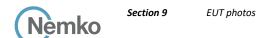
Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

		Conducted emissions limit, dBµV		
F	requency of emission, MHz	Quasi-peak	Average**	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5–5	56	46	
	5–30	60	50	
Notes:	* - The level decreases linearly with the lo	garithm of the frequency.		
	** - A linear average detector is required.			

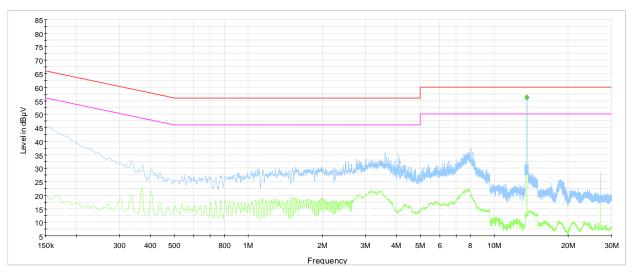
Table 8.8-1: Conducted emissions limit

8.8.2 Test summary

Verdict	Pass		
Tested by	Moustapha Salah Toubeh	Test date	July 28, 2022

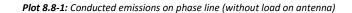


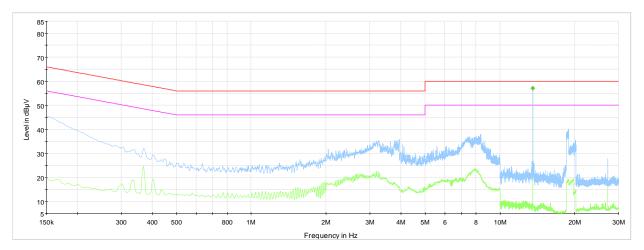
8.8.3 Observations, settings and special notes


Port under test – Coupling device	AC input of Laptop's Power supply – Artificial Mains Network (AMN)
EUT power input during test	5 V_{DC} USB Powered from laptop (via external 100–240 V_{AC} , 50/60 Hz power adapter)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
Additional notes:	 Testing was performed with both antenna and with antenna terminated to demonstrate compliance within transmit band. The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure. The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Conducted AC line emissions test was performed as per ANSI C63.10, Clause 6.2. Spectrum analyser settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

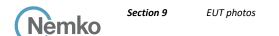

8.8.4 Test data



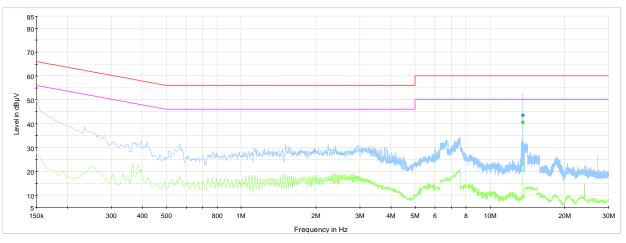
Conducted Emission 120 V-60 Hz Line

CISPR 32 Limit - Class B, Mains (QP) CISPR 32 Limit - Class B, Mains (Avg) Preview Result 2-AVG Preview Result 1-PK+ Final_Result QPK ٠

٠ Final_Result CAV



Conducted Emission 120 V- 60 Hz Neutral


CISPR 32 Limit - Class B, Mains (QP) CISPR 32 Limit - Class B, Mains (Avg) Preview Result 2-AVG Preview Result 1-PK+ Final_Result QPK Final_Result CAV

•

Plot 8.8-2: Conducted emissions on neutral line (without load on antenna)


Test data, Continued

Conducted Emission 120 V- 60 Hz Line_antenna loaded u cmission 120 V-60 Hz Line_antenna I Preview Result 2-AVG Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (OP) CISPR 32 Limit - Class B, Mains (Avg) Final_Result OPK Final_Result CAV

• ٠

Plot 8.8-3: Conducted emissions on phase line (with loaded antenna)

Conducted Emission 120 V-60 Hz Neutral_antenna loaded

- CISPR 32 Limit Class B, Mains (QP) CISPR 32 Limit Class B, Mains (Avg) Preview Result 2-AVG Preview Result 1-PK+ Final_Result QPK Final_Result CAV

- •

Plot 8.8-4: Conducted emissions on neutral line (with loaded antenna)

End of the test report