

Test report

355058-1TRFWL

Date of issue: July 18, 2018

Applicant:

Gemalto

Product:

Document Reader AT10K

Model: Model variant:

PV70-02-00-00-01 PV75-02-00-00-01

FCC ID: IC Registration number: 2AQL3PR01523 22832-PR01523

Specifications:

FCC 47 CFR Part 15.225

Operation within the band 13.110-14.010 MHz

RSS-210 Issue 9, August 2016, Annex B.6

Devices operating in 13.110–14.010 MHz frequency band for any application

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC test site registration number: CA2040, IC: 2040A-4 (3 m semi anechoic chamber)

Tested by	Kevin Rose, Wireless/EMC Specialist	
Reviewed by	Russell Grant / Senior Technical Assessor	
Date	July 18, 2018	
Signature	Russell I rand	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	
Section 1	. Report summary	4
1.1	Applicant and manufacturer	. 4
1.2	Test specifications	. 4
1.3	Test specifications	. 4
1.4	Statement of compliance	. 4
1.5	Exclusions	. 4
1.6	Test report revision history	
Section 2	Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart C, intentional radiators test results	5
2.3	IC RSS-GEN, Issue 4, test results	. 5
2.4	IC RSS-210, Issue 9, test results	
Section 3	Equipment under test (EUT) details	6
3.1	Sample information	. 6
3.2	EUT information	. 6
3.3	Technical information	. 6
3.4	Product description and theory of operation	. 6
3.5	EUT exercise details	. 7
3.6	EUT setup diagram	
Section 4		
4.1	Modifications incorporated in the EUT	. 8
4.2	Technical judgment	. 8
4.3	Deviations from laboratory tests procedures	. 8
Section 5		
5.1	Atmospheric conditions	. 9
5.2	Power supply range	. 9
Section 6	6. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	i. i.	
7.1	Test equipment list	
Section 8		
8.1	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	
8.2	FCC 15.215(c) and RSS-Gen 6.6 Occupied (Emission) bandwidth	14
8.3	FCC 15.225(a–c) and RSS-210 B.6 (a–c) Field strength within the 13.110–14.010 MHz band	16
8.4	FCC 15.225(d) and RSS-210 B.6(d) Field strength of emissions outside 13.110–14.010 MHz band	
8.5	FCC 15.225(e) and RSS-210 B.6 Frequency tolerance of the carrier signal	
Section 9	·	
9.1	Radiated emissions set-up	23
9.2	Conducted emissions set-up	23

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Gemalto
Address	1 Imation Way
City	Oakdale
Province/State	MN
Postal/Zip code	55128
Country	USA

1.2 Test specifications

558074 D01 DTS Meas Guidance v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating
(April 5, 2017)	Under §15.247
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus

1.3 Test specifications

ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²
§15.215(c)	20 dB bandwidth	Pass

Notes: ¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.225(a)	Field strength within 13.553–13.567 MHz band	Pass
§15.225(b)	Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands	Pass
§15.225(c)	Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands	Pass
§15.225(d)	Field strength outside 13.110–14.010 MHz band	Pass
§15.225(e)	Frequency tolerance of carrier signal	Pass

Notes: None

2.3 IC RSS-GEN, Issue 4, test results

Part	Test description	Verdict
6.6	Occupied bandwidth	Pass
7.1.2	Receiver radiated emission limits	Not applicable
7.1.3	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass

Notes: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

2.4 IC RSS-210, Issue 9, test results

Annex	Test description	Verdict
B.6 (a)	The field strength within the band 13.553–13.567 MHz	Pass
B.6 (b)	The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz	Pass
B.6 (c)	The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz	Pass
B.6 (d)	The field strength outside the band 13.110–14.010 MHz	Pass
B.6	Carrier frequency stability	Pass

Notes: None

² The Antennas are located within the enclosure of EUT and not user accessible.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	May 29, 2018
Nemko sample ID number	1

3.2 EUT information

Product name	Document Reader AT10K
Model	PV70-02-00-00-01

3.3 Technical information

Operating band	13.553–13.567 MHz
Operating frequency	13.56 MHz
Modulation type	ASK
Occupied bandwidth (99 %)	66.4 Hz
Power requirements	120 Vac 60 Hz
Emission designator	A1D
Antenna information	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The AT10K Reader is an optical imaging reader designed to capture images of an ID document, for example a passport. In addition to acquiring images of the document, the reader is also capable of reading data encoded into a contactless RFID tag. The AT10K consists of two main PCBs:

- 1. Main controller and Document imager, which incorporates
 - a. a 32-bit RISC processor
 - b. Flash and DRAM memory
 - c. LED illumination drivers
 - d. a 3 mega-pixel CMOS image sensor
 - e. USB 2.0 interfaces
- 2. RFID and Antenna. The optional RFID electronics and antenna support RFID tag reading. The RFID module is a USB device, and is connected to the main controller's USB 2.0 hub where the RFID and optical data are merged into a single USB host connection.

During operation the controller board continually captures images using infra-red (IR) illumination at a rate of approximately 4 frames per second. These images are analyzed by the embedded CPU to determine if a document is present. If a document is detected, a series of document images are then acquired using IR illumination (890nm), Visible white illumination (400-700nm) and Ultra-violet (UV) illumination (365nm). These images are then sent over the USB 2.0 link to the host PC for further analysis or storage.

The main controller board is powered from an external +5V@3A DC universal (110-240VAC input) power supply or via 5V@500 mA available from the USB 2.0 host connection. LEDs used to illuminate the document for imaging are powered via a constant-current switching power supply controlled by the CPU through transistor switches. Switching power supplies convert from 5V to lower supply voltages used by the CPU and memory. Power and ground are distributed throughout the circuit board on separate planes of a multi-layer PCB layout.

The CPU is clocked using a directly connected 24 MHz crystal. The USB 2.0 hub incorporates its own dedicated 30 MHz crystal.

3.5 EUT exercise details

The EUT was setup as shown in figure 2.6-1. A sample passport was placed on the EUT and test software on the PC was used to continuously scan the sample passport once every approx. 5 seconds, transferring optical and RFID data over the USB. The EUT was continuously monitored by observing successful scanning on the test laptop PC. In addition, the test software provided audible indication of correct operation. Video surveillance of the unit in the test chamber was also used to monitor status LEDs for correct and continuous operation.

3.6 EUT setup diagram

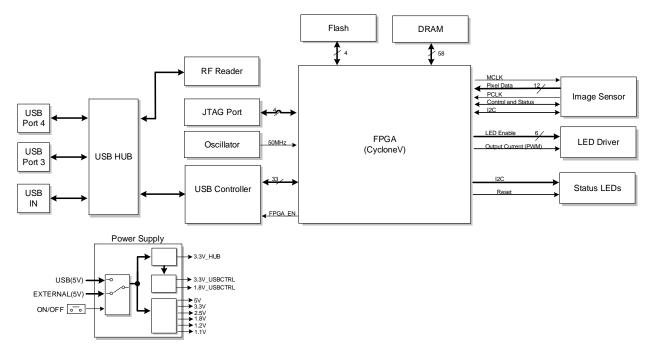


Figure 3.6-1: Setup diagram

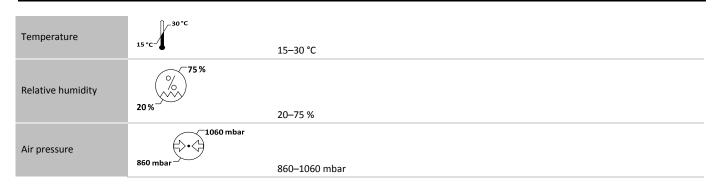
Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None


4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Dec. 09/18
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
AC Power source	Chenwa	2700M-10k	FA002716	_	VOU
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	March 26/19
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	June 27/18
Active loop antenna (0.01–30 MHz)	Com-Power	AL-130	FA002674	1 year	June 21/18
50 Ω coax cable	C.C.A.	None	FA002555	1 year	May 01/19
50 Ω coax cable	Huber + Suhner	None	FA002830	1 year	May 08/19
LISN	Rohde & Schwarz	ENV216	FA002023	1 year	May 19/19
50 Ω coax cable	C.C.A.	None	FA002556	1 year	May 01/19
Spectrum analyzer	Rohde & Schwarz	FSP	FA001920	1 year	Aug. 08/18
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	NCR

Note: NCR - no calibration required, VOU - verify on use

FCC Part 15 Subpart C and RSS-Gen

Section 8. Testing data

8.1 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

8.1.1 Definitions and limits

FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \mu H/50 \Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.1-1: Conducted emissions limit

Frequency of emission,	Conduct	ed limit, dBμV
MHz	Quasi-peak	Average**
0.15-0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note:

8.1.2 Test summary

Test date	June 5, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	44 %

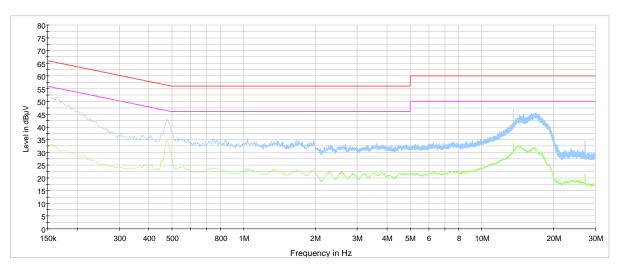
8.1.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

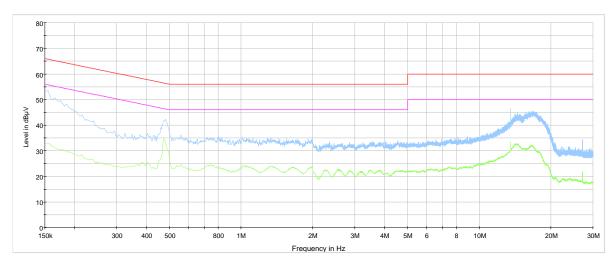
Test receiver settings:


Frequency span	150 kHz to 30 MHz
Detector mode	Peak and Average (preview mode); Quasi-Peak (final measurements)
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Trace mode	Max Hold
Measurement time	1000 ms

^{* -} The level decreases linearly with the logarithm of the frequency.

^{** -} A linear average detector is required.

8.1.4 Test data


NEX-355058 CE Phase 120 Vac 60 Hz 13.56 antenna is terminated

Preview Result 2-AVG

Preview Result 1-PK+ CISPR 32 Mains Q-Peak Class B Limit

CISPR 32 Mains Average Class B Limit Final_Result QPK Final_Result CAV

Plot 8.1-1: Conducted emissions on phase line

NEX-355058 CE Neutral 120 Vac 60 Hz 13.56 antenna is terminated

Preview Result 12-AVG
Preview Result 1-PK+
CISPR 32 Mains Q-Peak Class B Limit
CISPR 32 Mains Average Class B Limit
Final_Result QPK
Final_Result CAV

Plot 8.1-2: Conducted emissions on neutral line

FCC 15.215(c) and RSS-Gen 6.6 Occupied (Emission) bandwidth

Specification FCC 15 Subpart C and RSS-Gen

8.2 FCC 15.215(c) and RSS-Gen 6.6 Occupied (Emission) bandwidth

8.2.1 Definitions and limits

FCC

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80 % of the permitted band in order to minimize the possibility of out-of-band operation.

IC

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

8.2.2 Test summary

Test date	June 5, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	44 %

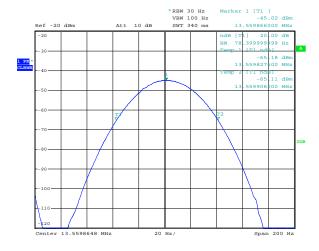
8.2.3 Observations, settings and special notes

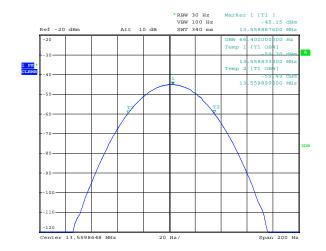
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of span
Video bandwidth	RBW×3
Trace mode	Max Hold

8.2.4 Test data

Table 8.2-1: Lower 20 dBc frequency cross result


Fundamental frequency, MHz	Lower 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz
13.560	13.559827	13.553	6.827


Table 8.2-2: Upper 20 dBc frequency cross result

Fundamental frequency, MHz	Upper 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz
13.560	13.599060	13.567	32.06

Specification FCC 15 Subpart C and RSS-Gen

Date: 5.JUN.2018 23:20:32 Date: 5.JUN.2018 23:22:02

Figure 8.2-1: 20 dB bandwidth

Figure 8.2-2: 99% dB bandwidth

8.3 FCC 15.225(a-c) and RSS-210 B.6 (a-c) Field strength within the 13.110-14.010 MHz band

8.3.1 Definitions and limits

- a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848 μ V/m (84 dB μ V/m) at 30 m.
- b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 μ V/m (50.5 dB μ V/m) at 30 m.
- c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 μ V/m (40.5 dB μ V/m) at 30 m.

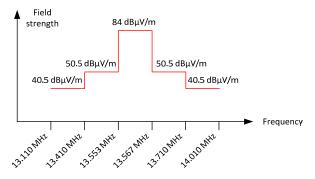


Figure 8.3-1: In-band spurious emissions limit

8.3.2 Test summary

Test date	June 5, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	44 %

8.3.3 Observations/special notes

The measurements were performed at the distance of 3 m. 40 dB distance correction factor* was applied to the measurement result in order to comply with 30 m limits.

* 30 m to 3 m distance correction factor calculation (for 13 MHz band):

 $40 \times Log_{10} (3 \text{ m}/30 \text{ m}) = 40 \times Log_{10} (0.1) = -40 \text{ dB}$

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	10 kHz
Video bandwidth	30 kHz
Trace mode	Max Hold

8.3.4 Test data

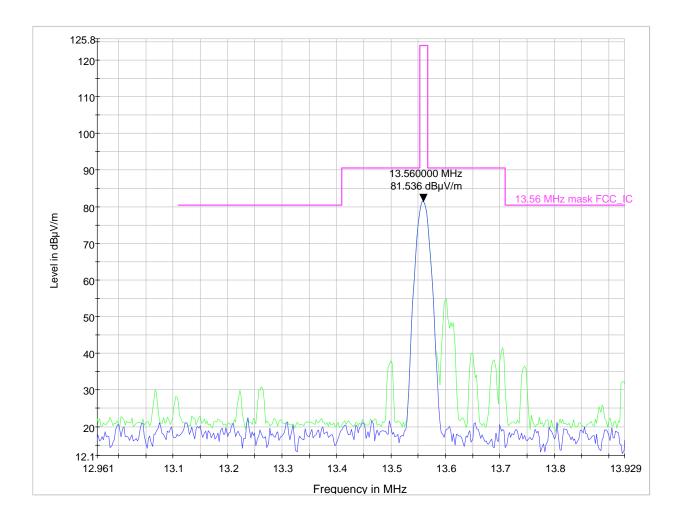


Figure 8.3-2: Field strength within 13.410–13.567 MHz band

Note: The peak emission is lower than the Average limit. Therefore it complies with Average requirements

Table 8.3-1: Output power and EIRP results

Frequency, MHz	Output power, dBµV/m	Output power limit, dBμV/m	Margin, dB
13.56	81.54	124.0	42.46

8.4 FCC 15.225(d) and RSS-210 B.6(d) Field strength of emissions outside 13.110–14.010 MHz band

8.4.1 Definitions and limits

FCC:

The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209. The field strength of emissions appearing within restricted bands (as specified in §15.205) shall not exceed the limits from §15.209.

ISED:

RSS-Gen general field strength limits for frequencies outside the band 13.110–14.010 MHz.

Table 8.4-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.4-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608-614	7.25–7.75
3.020-3.026	13.36–13.41	960-1427	8.025-8.5
4.125-4.128	16.42-16.423	1435-1626.5	9.0–9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660-1710	10.6-12.7
5.677-5.683	25.5–25.67	1718.8-1722.2	13.25-13.4
6.215-6.218	37.5–38.25	2200-2300	14.47-14.5
6.26775-6.26825	73–74.6	2310–2390	15.35–16.2
6.31175-6.31225	74.8-75.2	2655-2900	17.7-21.4
8.291-8.294	108–138	3260–3267	22.01–23.12
8.362-8.366	156.52475-156.52525	3332-3339	23.6-24.0
8.37625-8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43-36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in table above and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

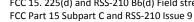


Table 8.4-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.4.2 Test summary

Test date	June 5, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	44 %

8.4.3 Observations, settings and special notes

The spectrum was searched from 9 kHz to 1 GHz. Radiated measurements were performed at a distance of 3 m.

Spectrum analyzer settings for frequencies below 30 MHz:

Detector mode	Quasi-Peak
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Trace mode	Max Hold
Measurement time	100 ms

Spectrum analyzer settings for frequencies above 30 MHz:

Detector mode	Peak
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Trace mode	Max Hold
Measurement time	100 ms

8.4.4 Test data

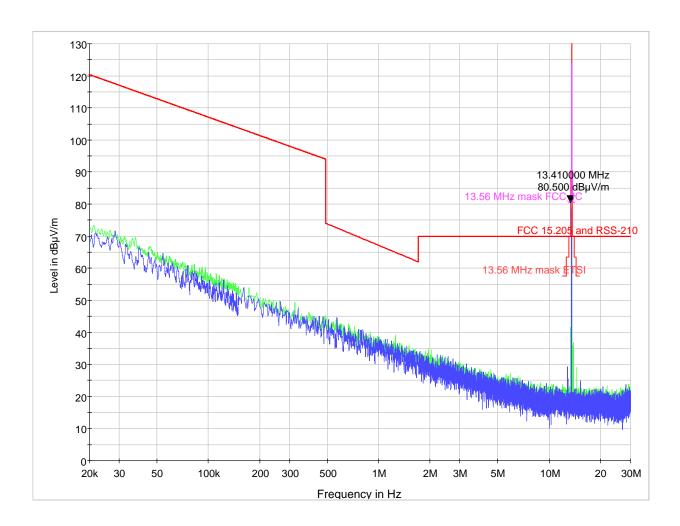


Figure 8.4-1: Field strength of spurious emissions below 30 MHz

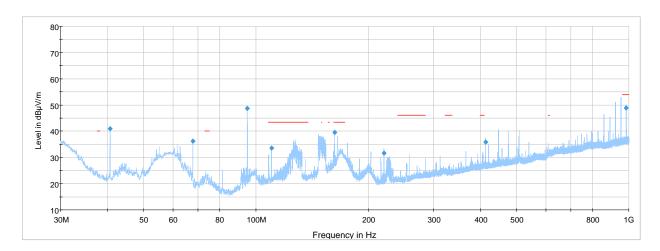


Figure 8.4-2: Field strength of spurious emissions above 30 MHz

Note: all measurement results indicated in the plot were taken with a peak detector, which is more stringent measurement, and still comply with quasi-peak limit.

Table 8.4-4: Radiated emissions (Quasi-Peak) results

Frequency (MHz)	Quasi-Peak field strength¹ (dBμV/m)	3 m Quasi- Peak limit ³ (dBµV/m)	Margin (dB)	Measurement time (ms)	Bandwidth (kHz)	Antenna height (cm)	Pol. (V/H)	Turn table position (°)	Correction factor ² (dB)
110.225	33.58	43.50	9.92	100	120	100.0	V	108.0	14.4
162.725	39.51	43.50	3.99	100	120	101.9	V	90.0	14.0
984.475	48.79	54.00	5.21	100	120	102.0	V	236.0	27.2

Notes:

- 1 Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)
- ² Correction factor = antenna factor ACF (dB) + cable loss (dB)
- ³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Sample calculation: 20 dB μ V/m (field strength) = 10 dB μ V (receiver reading) + 10 dB (Correction factor)

8.5 FCC 15.225(e) and RSS-210 B.6 Frequency tolerance of the carrier signal

8.5.1 Definitions and limits

The frequency tolerance of the carrier signal shall be maintained within ±0.01 % (±100 ppm) of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.5.2 Test summary

Test date	June 5, 2018	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	44 %

8.5.3 Observations, settings and special notes

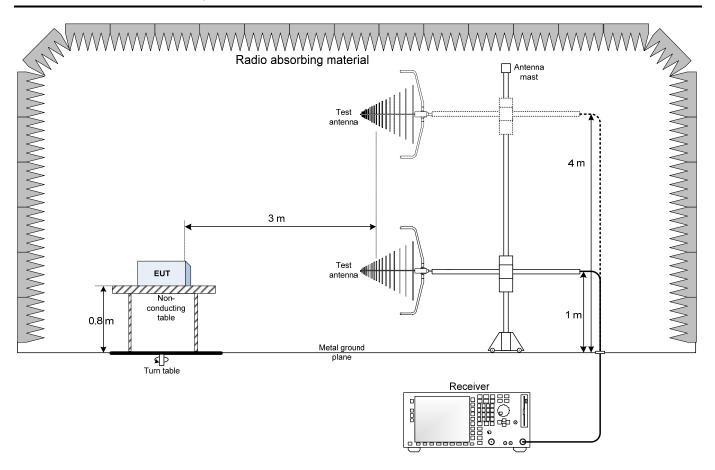
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of emission bandwidth
Video bandwidth	RBW×3
Trace mode	Max Hold

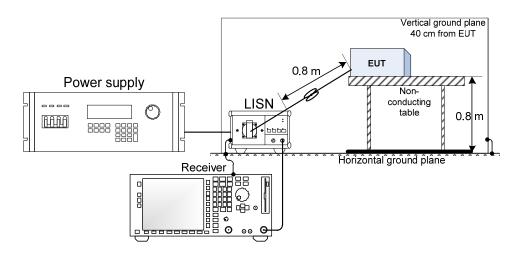
8.5.4 Test data

Table 8.5-1: Frequency drift measurements results

Test conditions	Frequency, MHz	Frequency drift, ±ppm	Limit, ±ppm	Margin, ppm
+50 °C, Nominal	13.559864	-2.2	100	97.8
+20 °C, +15 %	13.559894	0.0	100	100.0
+20 °C, Nominal	13.559894	Reference	Reference	Reference
+20 °C, −15 %	13.559894	0.0	100	100.0
−20 °C, Nominal	13.559963	5.1	100	94.9


Note: frequency drift was calculated as follows:

Frequency drift (ppm) = $((F_{measured} - F_{reference}) \div F_{reference}) \times 1 \times 10^6$



Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

