

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191108002

FCC/IC REPORT

Applicant: AceAge Inc.

Address of Applicant: 26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1

Equipment Under Test (EUT)

Product Name: Karie Connectivity Module

Model No.: AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A,

AceAge2B, AceAge2C, AceAge2D

Trade mark: AceAge

FCC ID: 2AQKR-P001R1

Canada IC: 24087-P001R1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-Gen Issue 5 March 2019 Amendment 1

RSS-247 Issue 2, February 2017

Date of sample receipt: 12 Nov., 2019

Date of Test: 13 Nov., to 22 Nov., 2019

Date of report issued: 10 Dec., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Dec., 2019	Original

Remark: This report was amended on FCC ID: 2AQKR-P001R1 follow FCC Class II Permissive Change. The differences between them as below: Update DDR SDRAM and Flash Memory merchants, update Power connector and power cable, added model AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D. So Radiated Emission Below 1GHz has been retested.

Tested by: Mike OU Date: 10 Dec., 2019

Test Engineer

Reviewed by: Winner Thang Date: 10 Dec., 2019

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	_	NERAL INFORMATION	
Э	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED OUTPUT POWER	9
	6.3	OCCUPY BANDWIDTH	10
	6.4	POWER SPECTRAL DENSITY	11
	6.5	BAND EDGE	12
	6.5.	1 Conducted Emission Method	12
	6.5.2	2 Radiated Emission Method	13
	6.6	Spurious Emission	14
	6.6.	1 Conducted Emission Method	14
	6.6.2	2 Radiated Emission Method	15
7	TES	ST SETUP PHOTO	21
R	FUT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Se	Result	
rest items	FCC	IC	Result
Antenna Requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	RSS-GEN Section 8.8	N/A
Conducted Peak Output Power	15.247 (b)(3)	RSS-247 Section 5.4 (d)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	RSS-247 Section 5.2 (a)	Pass*
Power Spectral Density	15.247 (e)	RSS-247 Section 5.2 (b)	Pass*
Band Edge	15.247(d)	RSS-GEN Section 8.10 RSS-247 Section 5.5	Pass*
Conducted and Radiated Spurious Emission	15.205/15.209	RSS-GEN Section 6.13 RSS-247 Section 5.5	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: please refer to the FCC ID: 2AQKR-P001R1

5 General Information

5.1 Client Information

Applicant:	AceAge Inc.
Address:	26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1
Manufacturer	AceAge Inc.
Address:	26 Ontario Street, Suite 109 Guelph, Ontario, Canada N1E7K1

5.2 General Description of E.U.T.

Product Name:	Karie Connectivity Module
Model No.:	AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.53 dBi
Power supply:	DC 4.2V
Remark:	Model No.: AceAge1A, AceAge1B, AceAge1C, AceAge1D, AceAge2A, AceAge2B, AceAge2C, AceAge2D were identical inside, the electrical circuit design, layout, components used and internal wiring. They only differences is Model Name

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE191108002

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.53 dBi.

6.2 Conducted Output Power

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (b)(3) RSS-247 section 5.4(d) ANSI C63.10:2013 and KDB558074	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1	

6.3 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2) RSS-247 section 5.2(a)	
Test Method:	ANSI C63.10:2013 and KDB558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1	

6.4 Power Spectral Density

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (e) RSS-247 section 5.2(b) ANSI C63.10:2013 and KDB558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1				

6.5 Band Edge

6.5.1 Conducted Emission Method

0.5.1 Conducted Enhancing					
Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5				
Test Method:	ANSI C63.10:2013 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1				

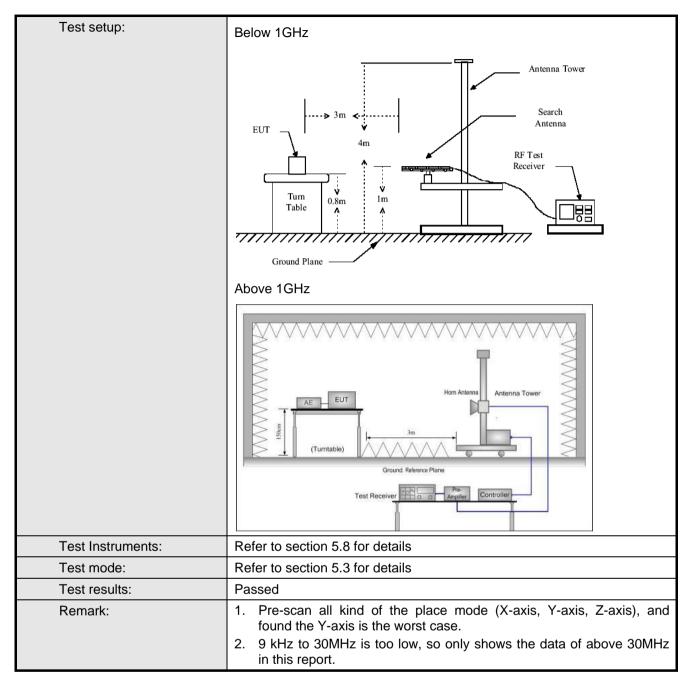
6.5.2 Radiated Emission Method

6.5.2 Radiated Emission N	2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 RSS-GEN section 8.10								
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013 and KDB558074							
Test Frequency Range:	2.3GHz to 2.50	3Hz							
Test Distance:	3m								
Receiver setup:	Frequency	Detecto		RBW		/BW	Remark		
	Above 1GHz	Peak		1MHz		MHz	Peak Value		
I inche		RMS		1MHz it (dBuV/m @3		MHz	Average Value Remark		
Limit:	Frequen	_	LIIIII	54.00)III <i>)</i>	Αν	verage Value		
	Above 1G	iHz		74.00			Peak Value		
Test esturi	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
Test setup:	AE (To	EUT		Horn Artenna Mereoce Plane Amptier Control	Antenna T	ower			
Test Instruments:	Refer to section	n 5.8 for d	letails						
Test mode:	Refer to section	n 5.3 for d	letails						
Test results:	Pass*, Refer to	the FCC	ID: 2	AQKR-P001R	1				

6.6 Spurious Emission

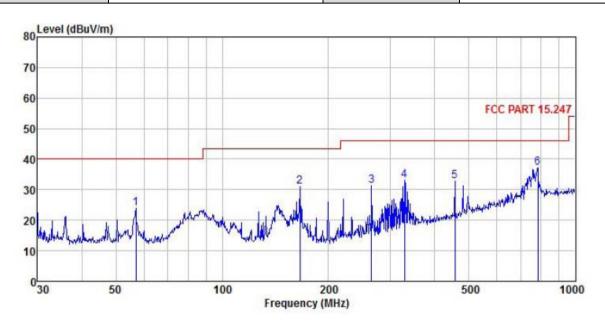
6.6.1 Conducted Emission Method

Mail adilianta Ellinoidi matila							
Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5						
Test Method:	ANSI C63.10:2013 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass*, Refer to the FCC ID: 2AQKR-P001R1						



6.6.2 Radiated Emission Method

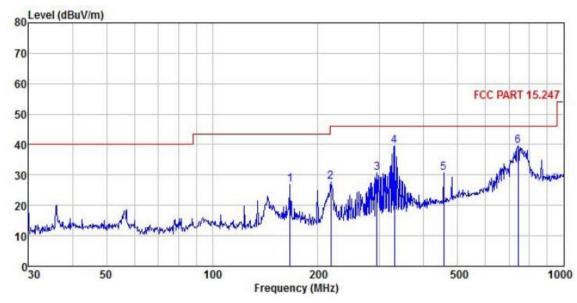
Test Requirement:		FCC Part 15 C Section 15.209 and 15.205 RSS-Gen section 6.13					
Test Method:	ANSI C63.10:20	013					
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	VB	W	Remark
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300k	KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3M		Peak Value
Limite	Frequency	RMS	Lim	1MHz nit (dBuV/m @	3M)	HΖ	Average Value Remark
Limit:	30MHz-88M		LIII	40.0	SIII)	0	luasi-peak Value
	88MHz-216M			43.5			luasi-peak Value
	216MHz-960N			46.0			uasi-peak Value
	960MHz-1G	Hz		54.0			luasi-peak Value
	Abovo 1GL	1-7	54.0			Average Value	
				74.0			Peak Value
Test Procedure:	Above 1GHz 54.0 Average Value						



Measurement Data (worst case):

Below 1GHz:

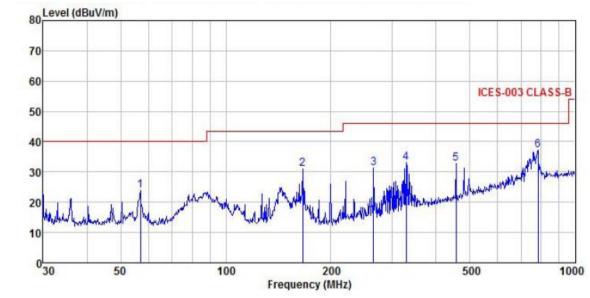
Product Name:	Karie Connectivity Module	Product Model:	AceAge1A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Free						Limit	Over	Remark
rrcq	Level	ractor	1000	ractor	Level	LINE	LIMIC	Kemaik
MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
56.991	40.69	11.51	1.37	29.79	23.78	40.00	-16.22	QP
166.068	48.08	9.49	2.63	29.08	31.12	43.50	-12.38	QP
264.746	43.91	12.99	2.85	28.51	31.24	46.00	-14.76	QP
327.887	44.50	14.17	3.03	28.51	33.19	46.00	-12.81	QP
455.906	41.63	16.70	3.25	28.88	32.70	46.00	-13.30	QP
782.345	39.77	21.22	4.35	28.29	37.05	46.00	-8.95	QP
	MHz 56. 991 166. 068 264. 746 327. 887 455. 906	MHz dBuV 56.991 40.69 166.068 48.08 264.746 43.91 327.887 44.50 455.906 41.63	Freq Level Factor MHz dBuV dB/m 56.991 40.69 11.51 166.068 48.08 9.49 264.746 43.91 12.99 327.887 44.50 14.17 455.906 41.63 16.70	Freq Level Factor Loss MHz dBuV dB/m dB 56.991 40.69 11.51 1.37 166.068 48.08 9.49 2.63 264.746 43.91 12.99 2.85 327.887 44.50 14.17 3.03 455.906 41.63 16.70 3.25	MHz dBuV dB/m dB dB 56.991 40.69 11.51 1.37 29.79 166.068 48.08 9.49 2.63 29.08 264.746 43.91 12.99 2.85 28.51 327.887 44.50 14.17 3.03 28.51 455.906 41.63 16.70 3.25 28.88	MHz dBuV dB/m dB dB dBuV/m 56.991 40.69 11.51 1.37 29.79 23.78 166.068 48.08 9.49 2.63 29.08 31.12 264.746 43.91 12.99 2.85 28.51 31.24 327.887 44.50 14.17 3.03 28.51 33.19 455.906 41.63 16.70 3.25 28.88 32.70	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 56.991 40.69 11.51 1.37 29.79 23.78 40.00 166.068 48.08 9.49 2.63 29.08 31.12 43.50 264.746 43.91 12.99 2.85 28.51 31.24 46.00 327.887 44.50 14.17 3.03 28.51 33.19 46.00 455.906 41.63 16.70 3.25 28.88 32.70 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dB uV/m dB uV/m

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

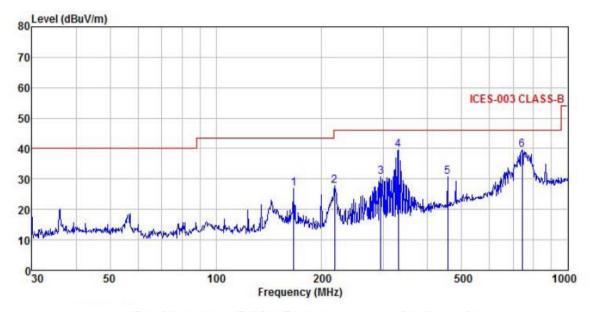
Product Name:	Karie Connectivity Module	Product Model:	AceAge1A					
Test By:	Mike	Test mode:	BLE Tx mode					
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal					
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%					


	Freq		Antenna Factor						Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	166.651	43.73	9.52	2.64	29.08	26.81	43.50	-16.69	QP
2	217.544	42.27	11.39	2.85	28.72	27.79	46.00	-18.21	QP
2 3 4 5 6	294.114	42.65	13.52	2.92	28.46	30.63	46.00	-15.37	QP
4	330.195	50.84	14.22	3.04	28.52	39.58	46.00	-6.42	QP
5	455.906	39.71	16.70	3.25	28.88	30.78	46.00	-15.22	QP
6	742.259	43.08	20.58	4.33	28.51	39.48	46.00	-6.52	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Karie Connectivity Module	Product Model:	AceAge1A						
Test By:	Mike	Test mode:	BLE Tx mode						
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 5	7%					
80 Level (dBuV/m)									


	Freq	ReadA Level	ntenna Factor						
82	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	56.991	40.69	11.51	1.37	29.79	23.78	40.00	-16.22	QP
2	166.068	48.08	9.49	2.63	29.08	31.12	43.50	-12.38	QP
3	264.746	43.91	12.99	2.85	28.51	31.24	46.00	-14.76	QP
4	327.887	44.50	14.17	3.03	28.51	33.19	46.00	-12.81	QP
2 3 4 5	455.906	41.63	16.70	3.25	28.88	32.70	46.00	-13.30	QP
6	782.345	39.77	21.22	4.35	28.29	37.05	46.00	-8.95	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Karie Connectivity Module	Product Model:	AceAge1A
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna Level Factor							Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	166.651	43.73	9.52	2.64	29.08	26.81	43.50	-16.69	QP
2	217.544	42.27	11.39	2.85	28.72	27.79	46.00	-18.21	QP
2 3 4 5 6	294.114	42.65	13.52	2.92	28.46	30.63	46.00	-15.37	QP
4	330.195	50.84	14.22	3.04	28.52	39.58	46.00	-6.42	QP
5	455.906	39.71	16.70	3.25	28.88	30.78	46.00	-15.22	QP
6	742.259	43.08	20.58	4.33	28.51	39.48	46.00	-6.52	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 EUT Constructional Details

Reference to the test report No. CCISE1108001

----End of report-----