

TEST REPORT

Applicant:	GuangDong Unis Technology, Co. Ltd		
Address of Applicant:	No.1 Zheng An Road, West District, Zhongshan, Guangdong,China		
Manufacturer:	GuangDong Unis Technology, Co. Ltd		
Address of Manufacturer:	No.1 Zheng An Road, West District, Zhongshan, Guangdong,China		
Equipment Under Test (E	EUT)		
Product Name:	Ticket Dome R GMP		
Model No.:	T-351		
Trade Mark:	N/A		
FCC ID:	2AQKM-T-351		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.225		
Date of sample receipt:	Feb.20,2019		
Date of Test:	Feb.20,2019-Mar.18,2020		
Date of report issued:	Mar.18,2020		
Test Result :	PASS *		

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature: OGY SI

onmer **Robinson Lo**

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 26

2 Version

Version No.	Date	Description
00	Mar.18,2020	Original

Prepared By:

hant Ou

Date:

Mar.18,2020

Mar.18,2020

Project Engineer

Check By:

Date: obinson

Reviewer

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Pag	je					
1	COVE	ER PAGE	.1					
2	VERSION2							
3	CONT	TENTS	.3					
4	TEST	SUMMARY	.4					
	4.1 N	MEASUREMENT UNCERTAINTY	.4					
5	GENE	ERAL INFORMATION	.5					
	5.2 T 5.3 T 5.4 T 5.5 E 5.6 E 5.7 A	GENERAL DESCRIPTION OF EUT TEST MODE TEST FACILITY TEST LOCATION DESCRIPTION OF SUPPORT UNITS DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS	.6 .6 .6 .6 .6					
6	TEST	INSTRUMENTS LIST	.7					
7	TEST	RESULTS AND MEASUREMENT DATA	.9					
8	7.2 0 7.3 F 7.4 F 7.5 2 7.6 F	ANTENNA REQUIREMENT:	10 13 15 19 23					
9	EUT C	CONSTRUCTIONAL DETAILS	26					

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field Strength of Fundamental Emissions and Mask Measurement	15.225(a)(b)(c)	Pass
Radiated Emission	15.225(d)&15.209	Pass
20dB Emission Bandwidth	15.225&15.215	Pass
Frequency Stability Measurement	15.225(e)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

30MHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz	4.29dB	(1)
18GHz-40GHz	3.30dB	(1)
0.15MHz ~ 30MHz	3.44dB	(1)
	1GHz-18GHz 18GHz-40GHz 0.15MHz ~ 30MHz	1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Ticket Dome R GMP
Model No.:	T-351
Serial No.:	N/A
Test sample(s) ID:	GTS202003000040-1
Sample(s) Status	Engineered sample
Operation Frequency:	13.56MHz
Channel Number:	1
Modulation:	ASK
Antenna type:	PCB ANT
Gain of Antenna 11 to Antenna 14	Max. 0dBi each antenna
(for NFC Module 1):	
Gain of Antenna 21 to Antenna 24:	Max. 0dBi each antenna
(for NFC Module 2):	
Gain of Antenna 31 to Antenna 34:	Max. 0dBi each antenna
(for NFC Module 3):	
Gain of Antenna 41 to Antenna 44:	Max. 0dBi each antenna
(for NFC Module 4):	
Power supply:	AC 120V/60Hz
Note:	The EUT has 4 NFC Modules, each module has 4 antennas, totally 16 antennas.

5.2 Test mode

Transmitter mode Keep the EUT in continuously transmitting.					
Pre-te	est mode.				
			al operation, The EUT was p shown in this test report and		
	Axis	Х	Y	Z	
Fiel	ld Strength(dBuV/m)	86.23	86.53	86.45	
inal	Test Mode:				
Accor	ding to ANSI C63.4 sta	andards, the test results a	re both the "worst case" and	"worst setup": Y axis	
(see	the test setup photo)				
5.3	Test Facility				
	described in a report from the FCC is main • IC — Registration The 3m Semi-anecho by Certification and E Registration No.: 907 • NVLAP (LAB COD Global United Techno	filed with the (FCC) Feder Itained in files. Registration No.: 9079A Dic chamber of Global Unit Engineering Bureau of Indu 9A E:600179-0)	ed Technology Services Co. Istry Canada for radio equipr accredited by the National V	sion. The acceptance letter , Ltd. has been registered nent testing with	
5.4	Test Location				
	All tests were perform	ned at:			
	Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480				

Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

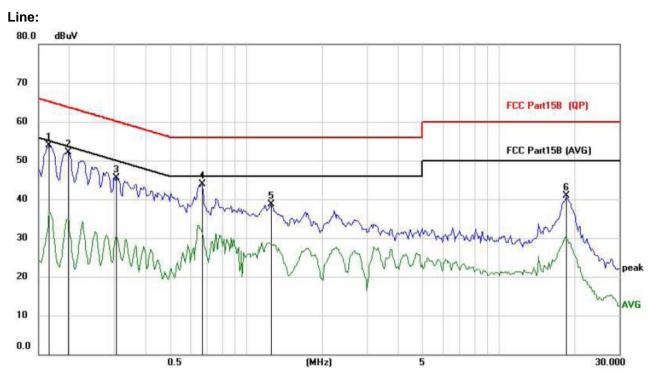
Gene	General used equipment:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

Test results and Measurement Data 7

7.1 Antenna requirement:

Standard requirement:	Standard requirement: FCC Part15 C Section 15.203					
15.203 requirement:						
responsible party shall be us antenna that uses a unique of	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.					
E.U.T Antenna:						

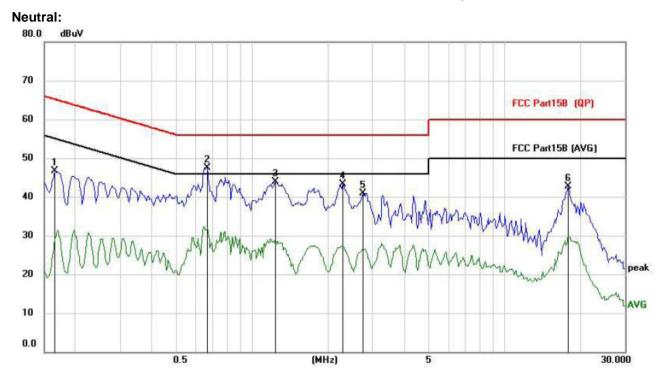
The antenna is PCB antenna, the best case gain of the antenna is 0.0dBi, reference to the appendix II for details


7.2 Conducted Emissions

	1					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
 Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto				
 Limit:		Limi	t (dBuV)			
	Frequency range (MHz)	Quasi-peak		erage		
	0.15-0.5	66 to 56*		o 46*		
	0.5-5	56		16		
	5-30 * Decreases with the logarith	60 m of the frequency	5	50		
Test setup:	Reference Plan					
Test procedure:	LISN 40cm 80cm 40cm 80cm 40cm 80cm Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization	EMI Receiver are connected to the on network (L.I.S.N.).	This provide:	sa		
	 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for detail	S				
Test mode:	Refer to section 5.2 for detail					
Test environment:		mid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					
	1 400					

GTS

Report No.: GTS202003000040F01


Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1655	42.90	10.92	53.82	65.18	-11.36	peak
2	0.1968	41.19	10.92	52.11	63.74	-11.63	peak
3	0.3060	34.67	10.92	45.59	60.08	-14.49	peak
4	0.6687	32.96	10.92	43.88	56.00	-12.12	peak
5	1.2498	27.68	10.94	38.62	56.00	-17.38	peak
6	18.4908	29.28	11.61	40.89	60.00	-19.11	peak

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1655	35.70	10.92	46.62	65.18	-18.56	peak
2 *	0.6648	36.59	10.92	47.51	56.00	-8.49	peak
3	1.2381	32.91	10.94	43.85	56.00	-12.15	peak
4	2.2950	32.34	10.98	43.32	56.00	-12.68	peak
5	2.7396	29.96	11.00	40.96	56.00	-15.04	peak
6	17.9019	31.05	11.59	42.64	60.00	-17.36	peak

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Field Strength of Fundamental Emissions and Mask Measurement

Test Requirement:	FCC Part15 C Section					
Test Method:	ANSI C63.10:2013					
Test site:	Measurement Distance: 3m					
Receiver setup:	RBW=9KHz, VBW=30k					
limit:	Frequency (MHz)	Field Strength (microvolts/meter) at 30m	Field Strength (dBuV/m) at 3m			
	1.705~13.110	30	69.5			
	13.110~13.410	106	80.5			
	13.410~13.553	334	90.5			
	13.553~13.567	15848	124.0			
	13.567~13.710	334	90.5			
	13.710~14.010	106	80.5			
	14.010~30.000	30	69.5			
Test setup:	4	3m	RX Antenna			
	Metal Full Soldered Ground Plane Spectrum Analyzer /Receiver					
Test Procedure:	 the top of the turntable the loop receiving an meters far away from Power on the EUT, the determine the position The height of the record ground to find the mathematical end For Fundamental end When the radiated end average value of the measurement field s complete pulse train, train does not exceed transmitter operates the pulse train exceed be determined from the train exceed the pulse train exceed t	ccording to ANSI C63.4. The le 0.8meter above ground. Itenna mounted antenna town in the turntable. The turntable was rotated by on of the highest radiation. The turntable was rotated by on	The phase center of ver was placed 3 360 degrees to one meter above ngth. measure QP reading. ed in terms of the ation is employed, the by averaging over one s, as long as the pulse ative (provided the s) or in cases where red field strength shall e during a 0.1 second			

	Report No.: GTS202003000040F01
	 Compliance with the spectrum mask is tested using a spectrum analyzer with RB set to a 1KHz for the band 13.553~13.567MHz.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Fr	Frequency(MHz):			13.56				Polarity:			HORIZONTAL	
N.	Frequency	Emission		Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Correction	
No.	(MHz)	Level	Detector	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Factor	
1	13.15	39.06	PK	80.50	41.44	1.00 H	185	34.36	5.26	-0.56	4.70	
2	13.55	48.88	PK	90.47	41.59	1.00 H	110	44.09	5.36	-0.57	4.79	
3	13.56	85.42	PK	124.00	38.58	1.00 H	95	80.54	5.45	-0.57	4.88	
4	13.57	49.02	PK	90.47	41.45	1.00 H	45	43.88	5.49	-0.35	5.14	
5	13.75	39.86	PK	80.50	40.64	1.00 H	155	34.53	5.63	-0.30	5.33	

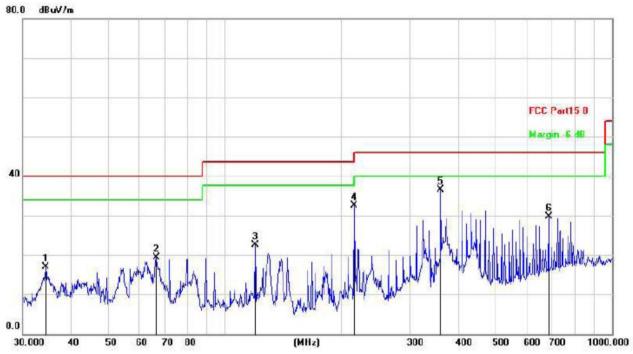
Fre	Frequency(MHz):			13.56			Polarity:			VERTICAL	
No.	Frequency	Emission	Detector	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Correction
NO.	(MHz)	Level	Delector	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Factor
1	13.15	41.06	PK	80.50	39.44	1.00 H	185	35.48	5.26	-0.56	4.70
2	13.55	49.62	PK	90.47	40.85	1.00 H	110	45.05	5.36	-0.57	4.79
3	13.56	86.53	PK	124.00	37.47	1.00 H	95	80.96	5.45	-0.57	4.88
4	13.57	49.98	PK	90.47	40.49	1.00 H	45	44.28	5.49	-0.35	5.14
5	13.75	40.84	PK	80.50	39.66	1.00 H	155	35.27	5.63	-0.30	5.33

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
- Margin value = Limit value- Emission level.
 The other emission levels were very low against the limit.

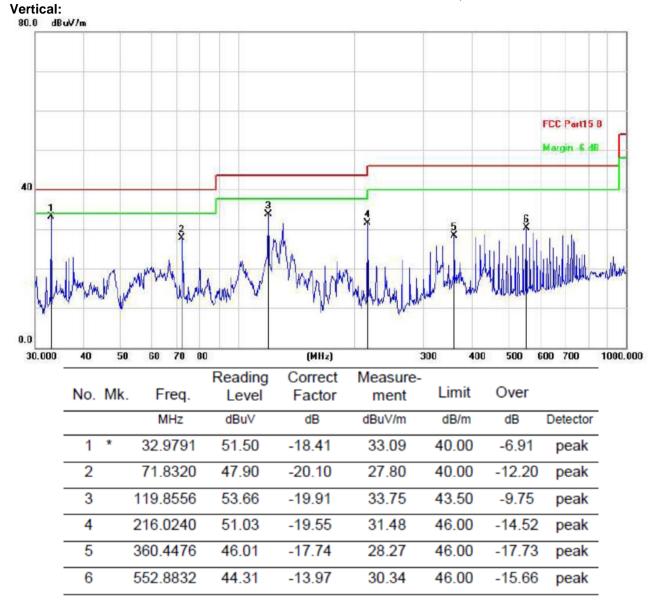
7.4 Radiated Emission

7.4 Radiated Emission						
Test Requirement:	FCC Part15 C Section 15.225(d) and 15.209					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	9KHz to 1000MHz					
Test site:	Measurement D	Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-peak	200Hz	300Hz	Quasi-peak Value	
	150kHz- 30MHz	Quasi-peak	9kHz	10kHz	Quasi-peak Value	
	30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value	
Limit:			-		s specified in Section n in Table per Section	
	Frequency	y (MHz)	Field stro (micorvolts)		Measurement distance (meters)	
	0.009~0	0.490	2400/F(KHz)	300	
	0.490~1	1.705	24000/F	(KHz)	30	
	1.705	~30	30		30	
	30~8	38	100)	3	
	88~2	16	150)	3	
	216~9	960	200)	3	
	960~1	000	500)	3	
Test setup:	Below 30MHz	EUT- Tum Table	Test Antenna Im Receive			


	Report No.: GTS202003000040F01					
	$= \frac{\langle 3m \rangle}{}$ $= \frac{\langle 3m \rangle}{$					
Test Procedure:	 Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable. 					
	2. Power on the EUT, the turntable was rotated by 360 degrees to determine the position of the highest radiation.					
	3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.					
	 For each suspected emissions, the antenna tower was scan (from 1M to 4M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. 					
	5. Set the test-receiver system to Peak or CISPR quasi-peak detect function with specified bandwidth under maximum hold mode.					
	6. When the radiated emissions limits are expressed in terms of the average value of the emissions and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.					
	 In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.


Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		34.3964	35.24	-18.33	16.91	40.00	-23.09	peak
2		66.4989	38.88	-19.52	19.36	40.00	-20.64	peak
3		119.8556	42.41	-19.91	22.50	43.50	-21.00	peak
4		216.0240	51.98	-19.55	32.43	46.00	-13.57	peak
5	*	360.4476	54.26	-17.74	36.52	46.00	-9.48	peak
6		684.7454	41.75	-12.07	29.68	46.00	-16.32	peak

GTS

Report No.: GTS202003000040F01

Test Requirement:	FCC Part15 C Section 15.225 and 15.215				
Test Method:	ANSI C63.10:2013				
Limit:	N/A				
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 20dB Emission Bandwidth

Measurement Data

Antenna 11;

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	13.65	Pass

Antenna 12;

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	13.67	Pass

Antenna 13;

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	13.65	Pass

Antenna 14;

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	13.63	Pass

Note: Tests preformed at each antennas, only report results at antenna 11 to antenna 14 of NFC module 1 as Typical representative results.

Test plot as follows:

Report No.: GTS202003000040F01

Antenna 11

Antenna 12

Antenna 13

Antenna 14

7.0 F	requency Stability Me	easurement		
Т	est Requirement:	FCC Part15 C Section 15.225 (e)		
Т	est Method:	ANSI C63.10: 2013		
R	Receiver setup:	RBW=1KHz, VBW=1KHz, Sweep time=Auto		
Li	imit:	The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency		
		over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage,		
		for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.		
		For battery operated equipment, the equipment tests shall be performed using a new battery.		
Т	est setup:			
		Spectrum Analyzer		
Т	est Procedure:	1. The transmitter output (antenna port) was connected to the spectrum analyzer.		
		 EUT have transmitted absence of modulation signal and fixed channelize 		
		Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.		
		 Set RBW=1KHz, VBW=1KHz with peak detector and maxhold settings. 		
		5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc $x10^6$ ppm and the limit is less than ± 100 ppm.		
		The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value		
		7. Extreme temperature rule is -20° C $\sim 50^{\circ}$ C		
Т	est Instruments:	Refer to section 6.0 for details		
Т	est mode:	Refer to section 5.2 for details		
Т	est results:	Pass		

7.6 Frequency Stability Measurement

Measurement data:

GTS

For Antenna 11:

Report No.: GTS202003000040F01

	Reference	Frequency: 13.56MHz (Lin	mit: ±0.01%)	
Voltage (V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
	+20(Ref)	13,560,005	6	0.00004425
	-20	13,560,007	7	0.00005162
	-10	13,560,005	5	0.00003687
	0	13,559,995	-5	-0.00003687
	+10	13,560,005	5	0.00003687
120	+20	13,560,010	10	0.00007375
	+25	13,560,006	6	0.00004425
	+30	13,559,993	-7	-0.00005162
	+40	13,559,998	-2	-0.00001475
	+50	13,559,996	-4	-0.00002950
138	+20	13,560,009	9	0.00006637
End point 102	+20	13,560,006	6	0.00004425

For Antenna 12:

Reference Frequency: 13.56MHz (Limit: ±0.01%)				
Voltage(V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
	+20(Ref)	13,560,002	2	0.00001475
	-20	13,560,006	6	0.00004425
	-10	13,560,007	7	0.00005162
	0	13,559,998	-2	-0.00001475
	+10	13,560,003	3	0.00002212
120	+20	13,560,012	12	0.00008850
	+25	13,560,003	3	0.00002212
	+30	13,559,997	-3	-0.00002212
	+40	13,559,996	-4	-0.00002950
	+50	13,559,998	-2	-0.00001475
138	+20	13,560,007	7	0.00005162
End point 102	+20	13,560,005	5	0.00003687

GTS

For Antenna 13:

Report No.: GTS202003000040F01

Reference Frequency: 13.56MHz (Limit: ±0.01%)				
Voltage (V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
	+20(Ref)	13,559,993	-7	-0.00005162
	-20	13,559,996	-4	-0.00002950
	-10	13,559,993	-7	-0.00005162
	0	13,559,998	-2	-0.00001475
	+10	13,560,005	5	0.00003687
120	+20	13,560,010	10	0.00007375
	+25	13,560,006	6	0.00004425
	+30	13,559,993	-7	-0.00005162
	+40	13,559,999	-1	-0.00000737
	+50	13,559,997	-3	-0.00002212
138	+20	13,560,006	6	0.00004425
End point 102	+20	13,560,003	3	0.00002212

For Antenna 14:

Reference Frequency: 13.56MHz (Limit: ±0.01%)				
Voltage(V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
	+20(Ref)	13,560,008	8	0.00005900
	-20	13,559,997	3	0.00002212
	-10	13,560,006	6	0.00004425
	0	13,560,003	3	0.00002212
	+10	13,560,005	5	0.00003687
120	+20	13,560,010	10	0.00007375
	+25	13,560,003	3	0.00002212
	+30	13,559,997	-3	-0.00002212
	+40	13,559,998	-2	-0.00001475
	+50	13,559,993	-7	-0.00005162
138	+20	13,560,005	5	0.00003687
End point 102	+20	13,559,996	-4	-0.00002950

Note: Tests preformed at each antennas, only report results at antenna 11 to antenna 14 of NFC module 1 as Typical representative results.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

----- End -----