

TEST REPORT

Applicant:	Guangdong Unis Technology, Co., Ltd		
Address of Applicant:	Zheng An Road 1,West Disrtict,Zhongshan,Guangdong		
Manufacturer:	Guangdong Unis Technology, Co., Ltd		
Address of	Zheng An Road 1,West Disrtict,Zhongshan,Guangdong		
Manufacturer: Equipment Under Test (E	EUT)		
Product Name:	Basketball Elite GMP		
Model No.:	C-598, C-598A		
Trade Mark:	N/A		
FCC ID:	2AQKM-C-598		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	Dec.10,2020		
Date of Test:	Dec.05,2020-Jan.21,2021		
Date of report issued:	Jan. 21, 2021		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 39

2 Version

Version No.	Date	Description
00	Jan.21,2021	Original

Tested/ Prepared By: Date: Jan.21,2021 zent Project Engineer 1 objustory (und Check By: Date: Jan.21,2021

Reviewer

3 Contents

		Pag	je
1	cov	ER PAGE	1
2	VER	SION	.2
3	CON	TENTS	.3
4	TEC		
4			
5	GEN	ERAL INFORMATION	5
5	5.1	GENERAL DESCRIPTION OF EUT	
5	5.2	TEST MODE	
5	5.3	DESCRIPTION OF SUPPORT UNITS	7
5	5.4	DEVIATION FROM STANDARDS	
5	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
5	5.6	TEST FACILITY	7
-	5.7	TEST LOCATION	
5	5.8	Additional Instructions	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA1	0
7	' .1	ANTENNA REQUIREMENT1	0
7	. 2	CONDUCTED EMISSIONS1	-
7	'. 3	CONDUCTED PEAK OUTPUT POWER1	
-	'.4	CHANNEL BANDWIDTH1	
7	' .5	POWER SPECTRAL DENSITY1	-
7	'.6	BAND EDGES	
	7.6.1		
	7.6.2	Radiated Emission Method2	23
7	. .7	SPURIOUS EMISSION	-
	7.7.1		
	7.7.2	Radiated Emission Method	31
8	TES	Т SETUP PHOTO	9
9	EUT	CONSTRUCTIONAL DETAILS	9

Test Summary 4

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.			

5 General Information

5.1 General Description of EUT

Product Name:	Basketball Elite GMP
Model No.:	C-598
Serial No.:	C-598A
Model Declaration:	PCB board, structure and internal of these model(s) are the same, just antenna location is difference, So no additional models were tested.
Test sample(s) ID:	GTSL202101000041-1(Engineer sample) GTSL202101000041-1(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20) Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	External ANT
Antenna Gain:	3.00dBi
Power Supply:	AC 120V/60Hz

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Tost shannal	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	/
Data rate	1Mbps	6Mbps	6.5Mbps	/

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special AT test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radi	iated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Con	ducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
7	Thermo meter	КТЈ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF C	onducted Test:					_
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	General used equipment:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

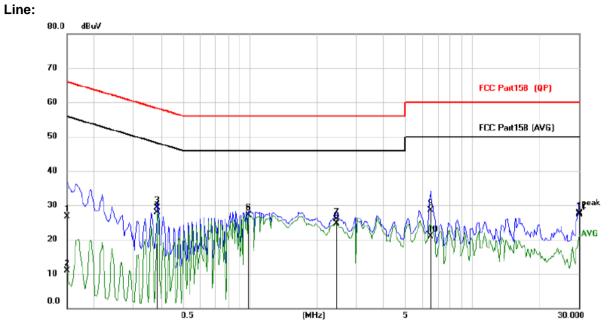
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

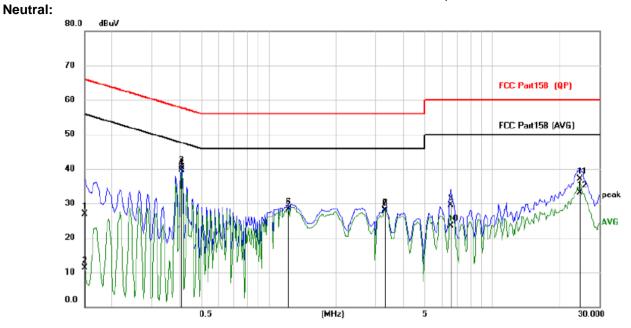
The antennas are External antenna, the best case gain of the antennas are 3.00dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Frequency range (MHz)	Erequency range (MHz) Limit (dBuV)							
		Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46							
	5-30								
	* Decreases with the logarithm								
Test setup:	Reference Plane								
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Fequipment E.U.T Test table/Insulation plane Remark: E.U.T E.U.T LISN Lies Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedence stabilization 50ohm/50uH coupling impedence stabilization 50ohm/50uH coupling impedence stabilization 2. The peripheral devices are LISN that provides a 50ohm 1. So that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are or interference. In order to find positions of equipment and	EMI Receiver The connected to the a network (L.I.S.N.). In the mease also connected to the h/50uH coupling imp the block diagram checked for maximus all of the interface of	This provide uring equipm he main powe edance with of the test se m conducted ssion, the rela- tables must b	s a nent. er through a 50ohm etup and d ative pe changed					
Test Instruments:	according to ANSI C63.10:2 Refer to section 6.0 for details		neasulemen						
Test mode:	Refer to section 5.2 for details		Dur	4040					
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar					
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

GTS

Measurement data


Report No.: GTSL202101000041F03

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBu∨	dBu∨	dB	Detector
1	0.1500	15.87	10.92	26.79	66.00	-39.21	QP
2	0.1500	0.02	10.92	10.94	56.00	-45.06	AVG
3	0.3840	18.44	10.92	29.36	58.19	-28.83	QP
4	0.3840	17.06	10.92	27.98	48.19	-20.21	AVG
5	0.9846	16.20	10.92	27.12	56.00	-28.88	QP
6 *	0.9846	16.17	10.92	27.09	46.00	-18.91	AVG
7	2.4510	14.91	10.98	25.89	56.00	-30.11	QP
8	2.4510	13.67	10.98	24.65	46.00	-21.35	AVG
9	6.4944	17.43	11.17	28.60	60.00	-31.40	QP
10	6.4944	9.68	11.17	20.85	50.00	-29.15	AVG
11	30.0000	15.13	12.09	27.22	60.00	-32.78	QP
12	30.0000	15.61	12.09	27.70	50.00	-22.30	AVG

GTS

Report No.: GTSL202101000041F03

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector
1	0.1500	15.97	10.92	26.89	66.00	-39.11	QP
2	0.1500	0.42	10.92	11.34	56.00	-44.66	AVG
3	0.4074	29.66	10.92	40.58	57.70	-17.12	QP
4 *	0.4074	28.83	10.92	39.75	47.70	-7.95	AVG
5	1.2264	17.41	10.93	28.34	56.00	-27.66	QP
6	1.2264	17.43	10.93	28.36	46.00	-17.64	AVG
7	3.3393	17.06	11.02	28.08	56.00	-27.92	QP
8	3.3393	16.87	11.02	27.89	46.00	-18.11	AVG
9	6.5412	18.29	11.18	29.47	60.00	-30.53	QP
10	6.5412	12.27	11.18	23.45	50.00	-26.55	AVG
11	24.6528	25.33	11.87	37.20	60.00	-22.80	QP
12	24.6528	21.20	11.87	33.07	50.00	-16.93	AVG

Notes:

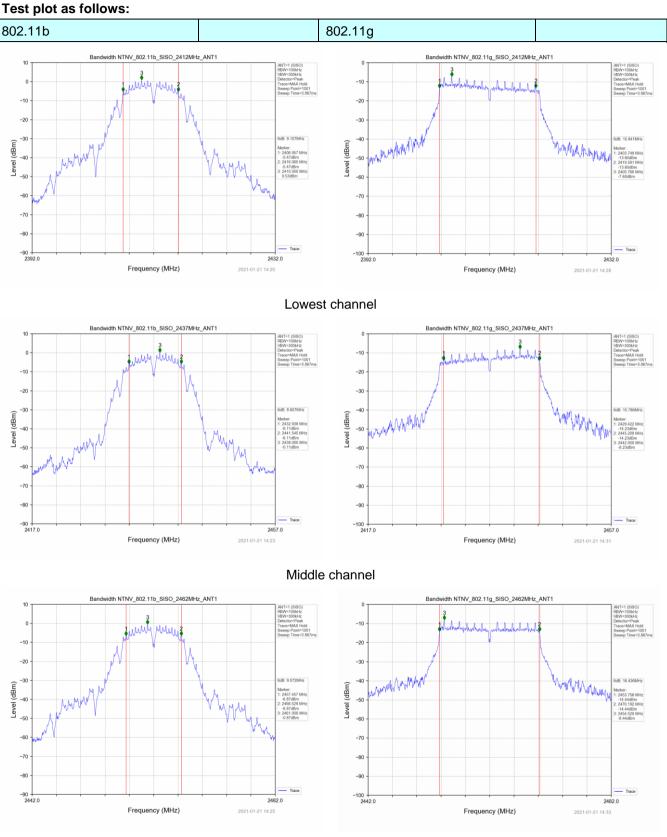
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement :	FCC Part1	FCC Part15 C Section 15.247 (b)(3)					
Test Method :	KDB55807	KDB558074 D01 DTS Meas Guidance v05or02					
Limit:	30dBm						
Test setup:			ter		C		
Test Instruments:	Refer to se	ection 6.0 for	details				
Test mode:	Refer to se	Refer to section 5.2 for details					
Test environment:	Temp.:	Temp.: 24 °C Humid.: 53% Press.: 1012mbar					
Test voltage:	AC 120V,	AC 120V, 60Hz					
Test results:	Pass						

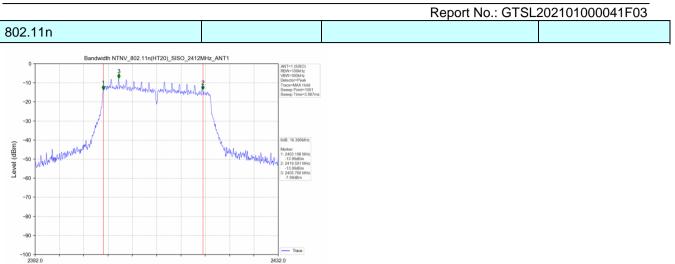
Measurement Data

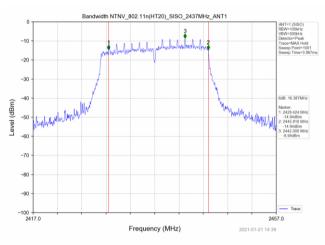
Test CH		Limit(dBm)	Result		
rescon	802.11b	802.11g	802.11n(HT20)	Linii(abiii)	Result
Lowest	11.61	9.70	9.27		Pass
Middle	10.72	9.60	8.83	30.00	
Highest	10.34	9.77	9.08		

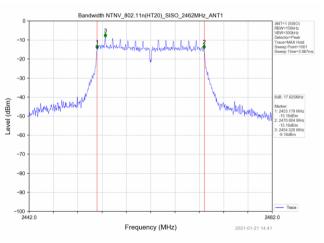

7.4 Channel Bandwidth

Test Requirement :	FCC Part1	FCC Part15 C Section 15.247 (a)(2)					
Test Method :	KDB55807	KDB558074 D01 DTS Meas Guidance v05or02					
Limit:	>500KHz						
Test setup:	SF	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to se	ection 6.0 for	details				
Test mode:	Refer to se	ection 5.2 for	details				
Test environment:	Temp.:	Temp.: 24 °C Humid.: 53% Press.: 1012mbar					
Test voltage:	AC 120V, 6	AC 120V, 60Hz					
Test results:	Pass						

Measurement Data


Test CH	(Limit(KHz)	Result		
Test CIT	802.11b	802.11g	802.11n(HT20)		Result
Lowest	9.107	15.841	16.396		
Middle	8.607	15.786	16.387	>500	Pass
Highest	9.072	16.436	17.625		


Highest channel



Lowest channel

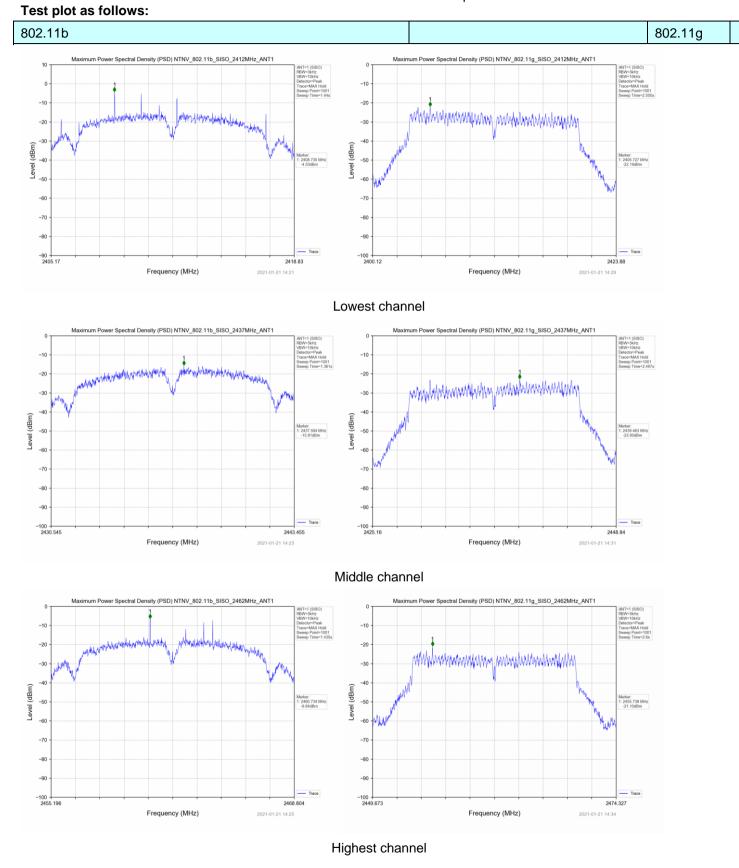
2021-01-21 14:36

Frequency (MHz)

Middle channel

Highest channel

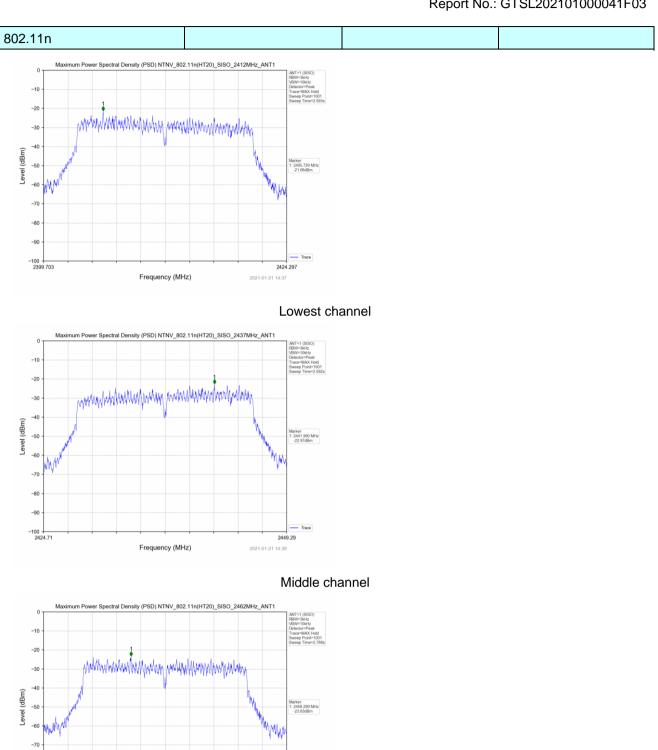
7.5 Power Spectral Density


			>						
Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (e)							
Test Method:	KDB55807	KDB558074 D01 DTS Meas Guidance v05or02							
Limit:	8dBm/3kH	z							
Test setup:		Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ection 6.0 for	details						
Test mode:	Refer to se	ection 5.2 for	details						
Test environment:	Temp.:	24 °C	Humid.:	53%	Press.:	1012mbar			
Test voltage:	AC 120V,	AC 120V, 60Hz							
Test results:	Pass								

Measurement Data

Test CH	Po	Power Spectral Density (dBm/3kHz)					
802.11b 802.11g		802.11n(HT20)	(dBm/3kHz)	Result			
Lowest	-4.53	-22.19	-21.66				
Middle	-15.81	-15.81 -23.00		8.00	Pass		
Highest	-6.64	-21.10	-23.63				

GTS


Report No.: GTSL202101000041F03

-80 -90

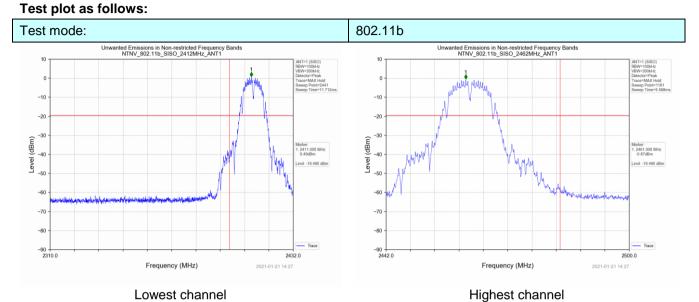
Report No.: GTSL202101000041F03

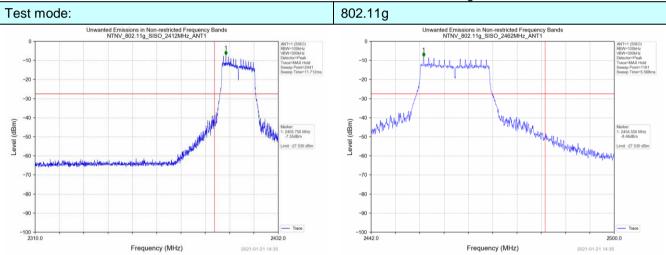
Highest channel

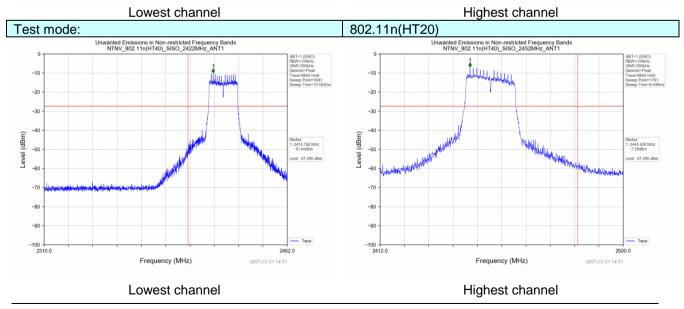
Trace

2475.219

Frequency (MHz)


7.6 Band edges


7.6.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 24 °C Humid.: 53% Press.: 1012mbar						
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

GTS

Report No.: GTSL202101000041F03

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.10: 20	ANSI C63.10: 2013									
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.									
Test site:	Measurement Di										
Receiver setup:	Frequency										
•		Peak	1MHz	3MHz		Value Peak					
	Above 1GHz		verage								
Limit:	Frequer	Average 1MHz 3MHz Average Frequency Limit (dBuV/m @3m) Value									
		-	54.0	0	A	verage					
	Above 10	3HZ	74.0	0		Peak					
Test Procedure:	 The EUT was the ground at determine the 2. The EUT was antenna, whice tower. The antenna h ground to dete horizontal and measurement For each susp and then the a and the rota ta the maximum The test-recei Specified Ban If the emission limit specified, the EUT would 10dB margin v average meth The radiation 	Receiver- placed on the a 3 meter carr position of the set 3 meters a h was mounter h was	ber. The tal e highest rac away from the d on the top d from one n ximum value zations of the uned to heig d from 0 dee as set to Pea aximum Hole UT in peak could be stop Otherwise t sted one by d and then r s are perform	ble was ro diation. The interfer of a variation of a variation was arran the antenn of a variation of a variati	btated 36 rence-rec able-heig bur meter eld streng a are set nged to it 1 meter t 360 degre Function the peak ions that g peak, q n a data Y, Z axis	0 degrees to ceiving ht antenna rs above the gth. Both to make the s worst case o 4 meters ees to find and ower than the c values of did not have uasi-peak or sheet. s positioning.					
	And found the worst case mo				, 5050, 01						
Test Instruments:	Refer to section			+1							
Test mode:	Refer to section										
	Temp.: 24 °		id.: 53%	6 P	ress.:	1012mbar					
Test environment:	10111011124										
Test environment: Test voltage:	AC 120V, 60Hz										

Measurement data:

Report No.: GTSL202101000041F03

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported Horizontal: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin						
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type					
2390	67.97	-5.68	62.29	74	-11.71	peak					
2390	48.33	-5.68	42.65	54	-11.35	AVG					
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.										

Vertical: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type				
(MHz)	(dBµV)	(dBµV) (dB) (dBµV/m)		(dBµV/m)	(dB)	Detector Type				
2390	68.15	-5.68	62.47	74	-11.53	peak				
2390	49.32	-5.68	43.64	54	-10.36	AVG				
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

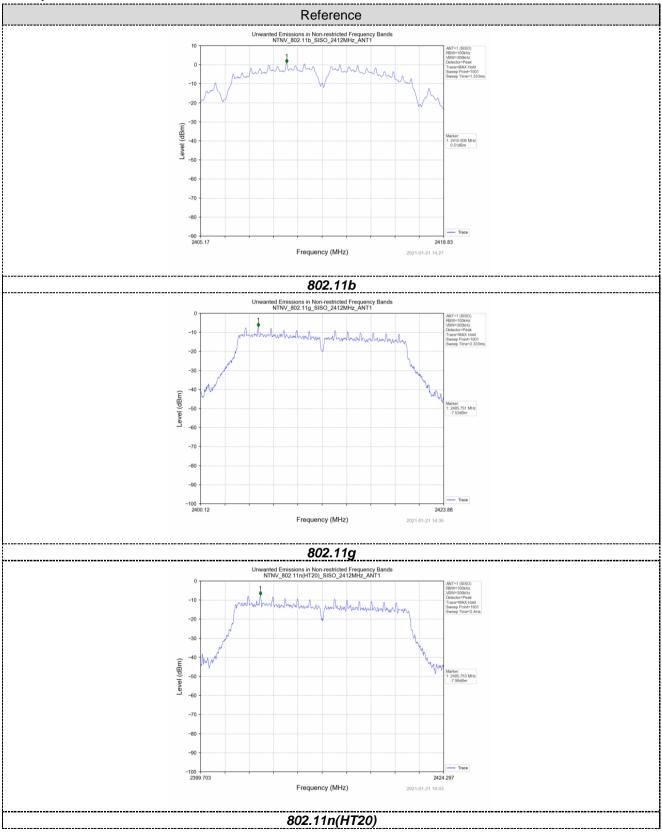
Horizontal: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type			
2483.5	64.52	-5.85	58.67	74	-15.33	peak			
2483.5 48.33 -5.85 42.48 54 -11.52 AVG									
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

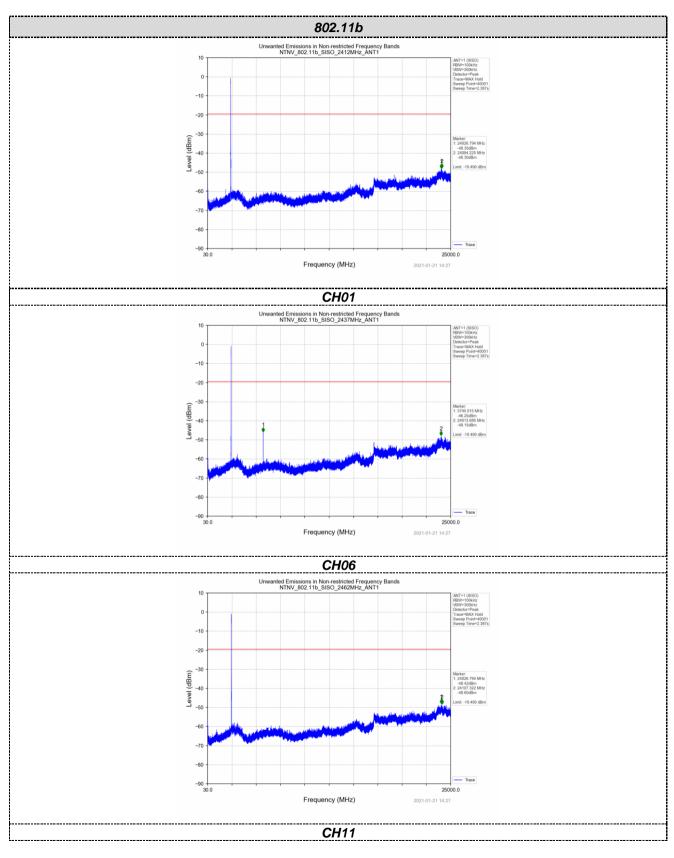
Vertical: 802.11b Mode TX CH HIGH (2462MHz)

Report No.: GTSL202101000041F03										
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type				
2483.5 63.75 -5.65 58.1 74 -15.9 peak										
2483.5	47.83	-5.85	41.98	54	-12.02	AVG				
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.										
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.										

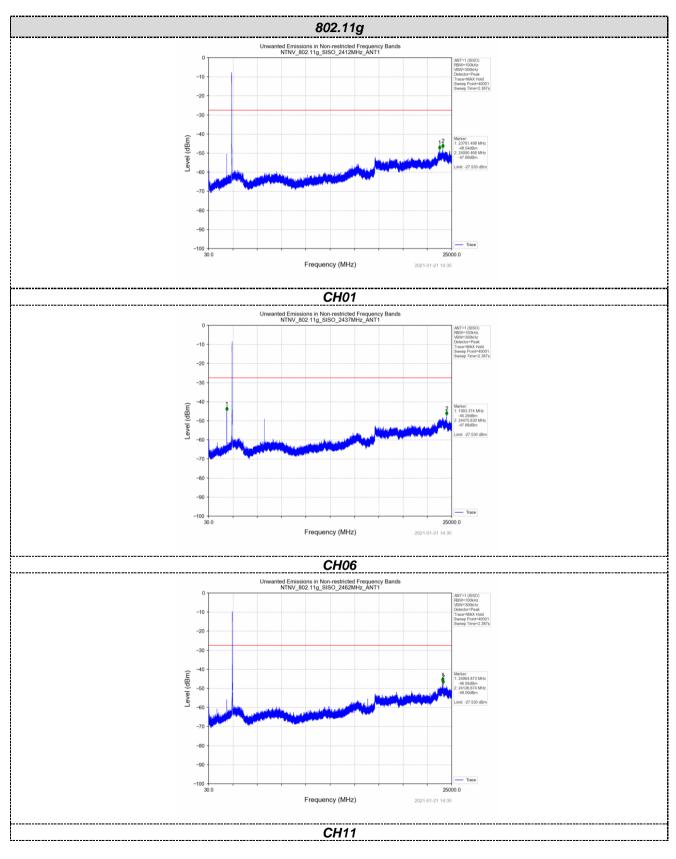
7.7 Spurious Emission

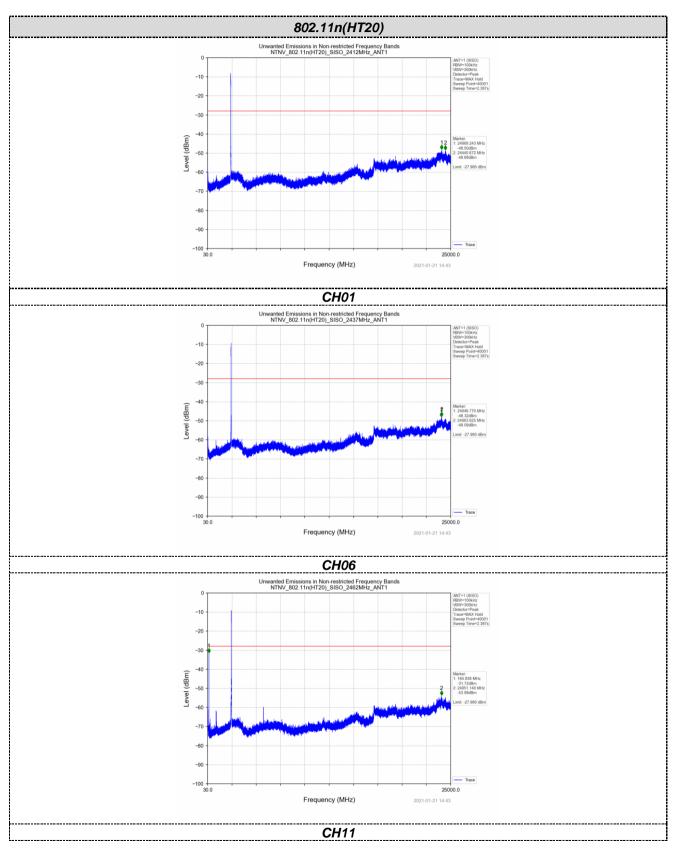

7.7.1 Conducted Emission Method

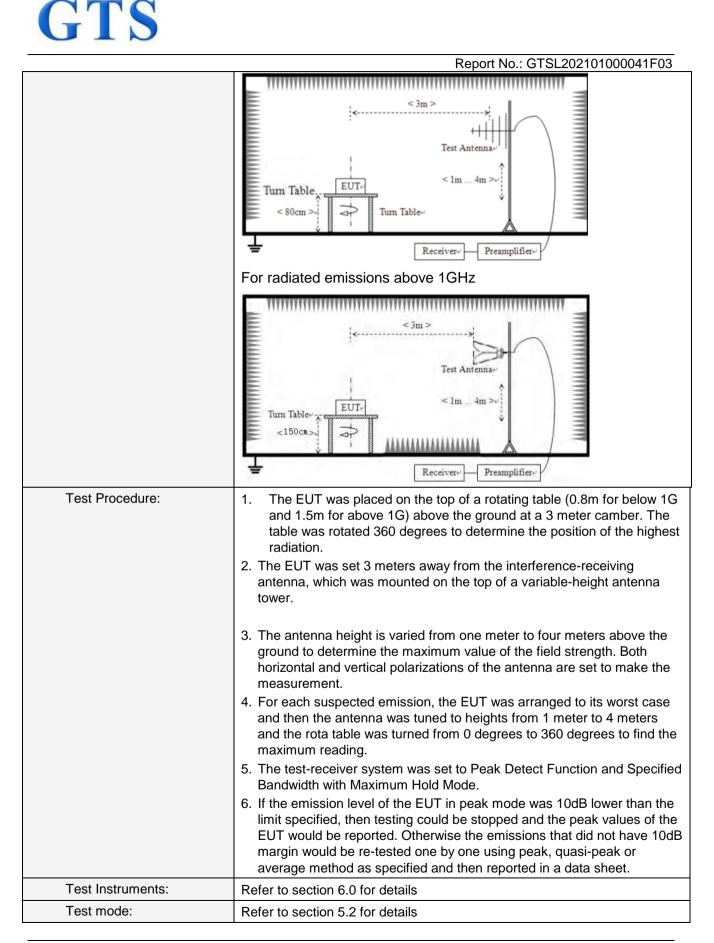
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.:24 °CHumid.:53%Press.:1012mbar						
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						



Test plot as follows:


Report No.: GTSL202101000041F03





7.7.2 Radiated Emission Method

FCC Part15 C Section 15.209							
ANSI C63.10: 2013							
9kHz to 25GHz							
Measurement Distance: 3m							
Frequency	[Detector	RB	BW VBW		Value	
9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	z Quasi-peak	
150KHz-30MHz	Qu	uasi-peak	9KH	Ηz	30KH:	z Quasi-peak	
30MHz-1GHz	Qı	uasi-peak	100k	Ήz	300KH	Iz Quasi-peak	
		Peak	1Mł	Ηz	3MHz	z Peak	
Above IGI12		Peak	1Mł	Ηz	10Hz	Average	
Frequency		Limit (u\	//m)	V	alue/	Measurement Distance	
0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
0.490MHz-1.705M	Hz	24000/F(KHz)		QP	300m	
1.705MHz-30MH	z	30			QP	30m	
30MHz-88MHz		100			QP		
88MHz-216MHz	2	150	150		QP		
216MHz-960MH	Z	200		QP		3m	
960MHz-1GHz		500		QP		011	
Above 1GHz		500	500		500 Average		
710010112		5000)	F	Peak		
For radiated emiss	sions	from 9kH	z to 30	OMH	Z		
For radiated emissions from 30MHz to1GHz							
	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3 Frequency I 9KHz-150KHz Qu 150KHz-30MHz Qu 30MHz-1GHz Qu Above 1GHz Qu 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emissions	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Frequency Limit (uv 0.009MHz-0.490MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 300 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 For radiated emissions from 9kH	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBN 9KHz-150KHz Quasi-peak 2000 150KHz-30MHz Quasi-peak 100k 30MHz-1GHz Quasi-peak 100k Above 1GHz Peak 1Mk Peak 1Mk 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 0.490MHz-1.705MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 S000 5000	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz 0.009MHz-0.490MHz 2400/F(KHz) 0 0 0.490MHz-1.705MHz 24000/F(KHz) 0 0 0.490MHz-1.705MHz 30 0 0 1.705MHz-30MHz 30 0 0 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 0 0 960MHz-1GHz 500 Av Above 1GHz 500 Av 5000 F F F For radiated emissions from 9kHz to 30MH 1m 1m Im Table Im Im Im Im S0m Im Im Im Im S0m Im Im <td< td=""><td>ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 2400/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP 5000 Average 5000 Peak For radiated emissions from 9kHz to 30MHz For radiated emissions from 9kHz to 30MHz</td></td<>	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 2400/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP 5000 Average 5000 Peak For radiated emissions from 9kHz to 30MHz For radiated emissions from 9kHz to 30MHz	

Report No.: GTSL202101000041F03										
Test voltage:	AC120V 60Hz									
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar									
Test voltage:	st voltage: AC 120V, 60Hz									
Test results:	Fest results: Pass									

Remarks:

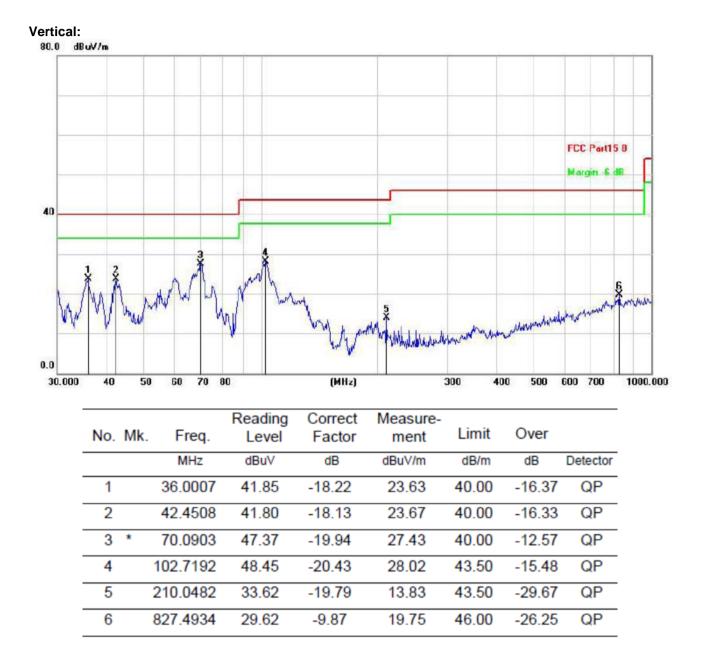
1. Only the worst case Main Antenna test data.


2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		46.3402	34.77	-18.03	16.74	40.00	-23.26	QP
2	*	70.8315	38.40	-20.00	18.40	40.00	-21.60	QP
3		93.4402	35.27	-21.03	14.24	43.50	-29.26	QP
4		197.8928	36.80	-20.13	16.67	43.50	-26.83	QP
5		352.9433	39.73	-17.83	21.90	46.00	-24.10	QP
6		801.7863	32.95	-9.98	22.97	46.00	-23.03	QP

Final Level =Receiver Read level + Correct Factor

Final Level =Receiver Read level + Correct Factor

Above 1GHz

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
4824	65.23	-3.67	61.56	74	-12.44	peak	
4824	46.57	-3.64	42.93	54	-11.07	AVG	
7236	62.68	-0.9	61.78	74	-12.22	peak	
7236	43.97	-0.9	43.07	54	-10.93	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Horizontal: LOW CH1 (802.11b Mode)/2412

Vertical: LOW CH1 (802.11b Mode)/2412

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4824	63.28	-3.67	59.61	74	-14.39	peak	
4824	46.53	-3.64	42.89	54	-11.11	AVG	
7236	58.84	-0.9	57.94	74	-16.06	peak	
7236	44.42	-0.9	43.52	54	-10.48	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4874	62.39	-3.53	58.86	74	-15.14	peak	
4874	45.62	-3.53	42.09	54	-11.91	AVG	
7311	57.57	-0.85	56.72	74	-17.28	peak	
7311	42.22	-0.85	41.37	54	-12.63	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Horizontal: MID CH6 (802.11b Mode)/2437

Vertical: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4874	62.48	-3.53	58.95	74	-15.05	peak	
4874	46.56	-3.53	43.03	54	-10.97	AVG	
7311	59.49	-0.85	58.64	74	-15.36	peak	
7311	44.27	-0.85	43.42	54	-10.58	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4924	64.17	-3.49	60.68	74	-13.32	peak	
4924	46.58	-3.49	43.09	54	-10.91	AVG	
7386	59.32	-0.78	58.54	74	-15.46	peak	
7386	42.74	-0.78	41.96	54	-12.04	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Horizontal: HIGH CH11 (802.11b Mode)/2462

Vertical: HIGH CH11 (802.11b Mode)/2462

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4924	66.23	-3.49	62.74	74	-11.26	peak	
4924	46.01	-3.49	42.52	54	-11.48	AVG	
7386	60.12	-0.78	59.34	74	-14.66	peak	
7386	43.46	-0.78	42.68	54	-11.32	AVG	
Remark: Factor	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----