

TEST Report

Applicant:	Guangdong Unis Technology, Co., Ltd
Address of Applicant:	Zheng An Road 1,West Disrtict,Zhongshan,Guangdong
Manufacturer :	Guangdong Unis Technology, Co., Ltd
Address of Manufacturer :	Zheng An Road 1,West Disrtict,Zhongshan,Guangdong
Equipment Under Test (El	JT)
Product Name:	Basketball Elite GMP
Model No.:	C-598, C-598A
Trade Mark:	N/A
FCC ID:	2AQKM-C-598
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Dec.10,2020
Date of Test:	Dec.05,2020-Jan.21,2021
Date of report issued:	Jan.21,2021
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Jan.21,2021	Original

Jamellu

Date:

Jan.21,2021

Jan.21,2021

Project Engineer

Check By:

Tested/ Prepared By

applies or lund Date: Reviewer

3 Contents

1	COV	/ER PAGE	.1
2	VER	SION	.2
3		ITENTS	
4		T SUMMARY	
5	_		
Э	GEN		-
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5 5.6	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.0 5.7	Test Location	
	5.8	Additional Instructions	
6	TES	T INSTRUMENTS LIST	Q
	_		-
7	TES	T RESULTS AND MEASUREMENT DATA1	0
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER1	
	7.4	20DB EMISSION BANDWIDTH	
	7.5	FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7 7.8	DWELL TIME	
	7.8	BAND EDGE	
	7.9.1		
	7.9.2		
	7.10	SPURIOUS EMISSION	
	7.10		
	7.10	.2 Radiated Emission Method	41
8	TES	T SETUP PHOTO4	19
9	EUT	CONSTRUCTIONAL DETAILS	19
-			

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB		(1)
Radiated Emission			(1)
Radiated Emission			(1)
Radiated Emission	on 18GHz-40GHz 3.30dB		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	5%.

5 General Information

5.1 General Description of EUT

Product Name:	Basketball Elite GMP
Model No.:	C-598
Series model:	C-598A
Model Declaration:	PCB board, structure and internal of these model(s) are the same, just antenna location is difference, So no additional models were tested.
Test sample(s) ID:	GTSL202101000041-1(Engineer sample)
	GTSL202101000041-1(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	External ANT
Antenna gain:	3.00dBi
Power supply:	AC 120V/60Hz

Operation	Operation Frequency each of channel							
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz	
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz	
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz	
20	2421MHz	40	2441MHz	60	2461MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.
Test Facility
The test facility is recognized, certified, or accredited by the following organizations: • FCC —Registration No.: 381383
Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.
• IC —Registration No.: 9079A
The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A
• NVLAP (LAB CODE:600179-0)
Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0
Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

6 Test Instruments list

Radi	Radiated Emission:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021			
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021			
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021			
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021			
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021			
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021			
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021			

Con	Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021			

RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021
9	Power Sensor	Agilent	E9300A	GTS589	June. 25 2020	June. 24 2021
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 25 2020	June. 24 2021

Gene	General used equipment:										
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021					
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021					

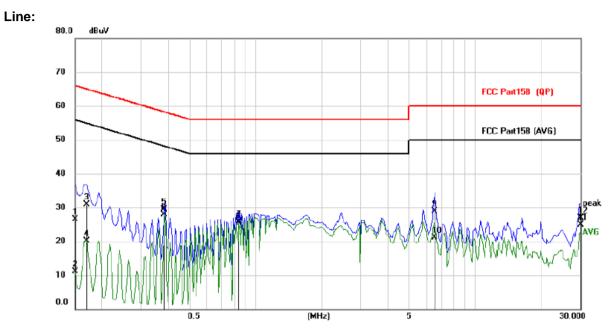
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique o	be designed to ensure that no antenna other than that furnished by the ed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit so e replaced by the user, but the use of a standard antenna jack or electrical t:
(i) Systems operating in the 2 operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the
E.U.T Antenna:	
The antenna is external AN	T, the best case gain of the is 3.0dBi, reference to the appendix II for details

Test Requirement:	FCC Part15	5 C Section 15	.207					
Test Method:	ANSI C63.1	0:2013						
Test Frequency Range:	150KHz to	30MHz						
Class / Severity:	Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz)							
Receiver setup:								
Limit:								
	Frequen	age						
	(0.15-0.5		66 to 56*	56 to	9 46*		
		0.5-5		56	4	6		
		5-30		60	5	0		
	* Decrease	s with the loga	rithm of the	frequency.				
Test setup:	. <u> </u>	Reference	Plane					
Test procedure:	Remark: E.U.T: Equipmen LISN: Line Imped Test table height=	t Under Test ence Stabilization Netw	EMI Receive	-ilter AC p		brough a		
	line impe 50ohm/5 2. The peri LISN tha terminati photogra 3. Both side interfere positions	edance stabiliz 60uH coupling pheral devices it provides a 5 ion. (Please re	ation netwo impedance are also cc 0ohm/50uH fer to the bl are checked o find the m and all of th	rk (L.I.S.N.). for the measu onnected to th coupling imp ock diagram d for maximul aximum emis ne interface c	This provides uring equipme e main powe edance with of the test set m conducted sion, the rela ables must b	a ent. r through a 50ohm tup and tive e changed		
Test Instruments:	Refer to see	ction 6.0 for de	etails					
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

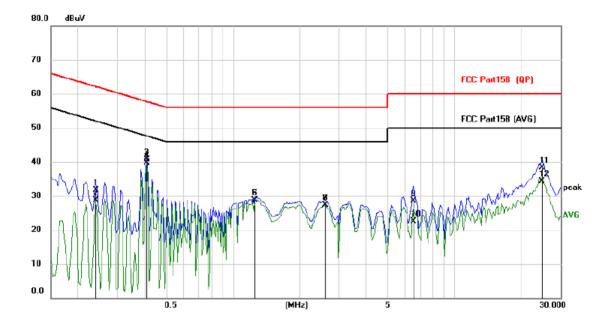

7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

GTS

Report No.: GTSL202101000041F01

Measurement data:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	0.1500	15.63	10.92	26.55	66.00	-39.45	QP
2	0.1500	0.18	10.92	11.10	56.00	-44.90	AVG
3	0.1695	20.08	10.92	31.00	64.98	-33.98	QP
4	0.1695	9.19	10.92	20.11	54.98	-34.87	AVG
5	0.3840	18.54	10.92	29.46	58.19	-28.73	QP
6 *	0.3840	17.06	10.92	27.98	48.19	-20.21	AVG
7	0.8403	15.07	10.92	25.99	56.00	-30.01	QP
8	0.8403	14.57	10.92	25.49	46.00	-20.51	AVG
9	6.5412	17.70	11.18	28.88	60.00	-31.12	QP
10	6.5412	9.98	11.18	21.16	50.00	-28.84	AVG
11	30.0000	12.89	12.09	24.98	60.00	-35.02	QP
12	30.0000	14.76	12.09	26.85	50.00	-23.15	AVG
-							

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTSL202101000041F01

Neutral:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2397	20.81	10.92	31.73	62.11	-30.38	QP
2	0.2397	17.73	10.92	28.65	52.11	-23.46	AVG
3	0.4074	29.76	10.92	40.68	57.70	-17.02	QP
4 *	0.4074	28.83	10.92	39.75	47.70	-7.95	AVG
5	1.2498	17.74	10.94	28.68	56.00	-27.32	QP
6	1.2498	17.75	10.94	28.69	46.00	-17.31	AVG
7	2.6187	16.38	11.00	27.38	56.00	-28.62	QP
8	2.6187	16.22	11.00	27.22	46.00	-18.78	AVG
9	6.5568	17.28	11.18	28.46	60.00	-31.54	QP
10	6.5568	11.40	11.18	22.58	50.00	-27.42	AVG
11	24.7737	26.36	11.87	38.23	60.00	-21.77	QP
12	24.7737	22.38	11.87	34.25	50.00	-15.75	AVG

Notes:

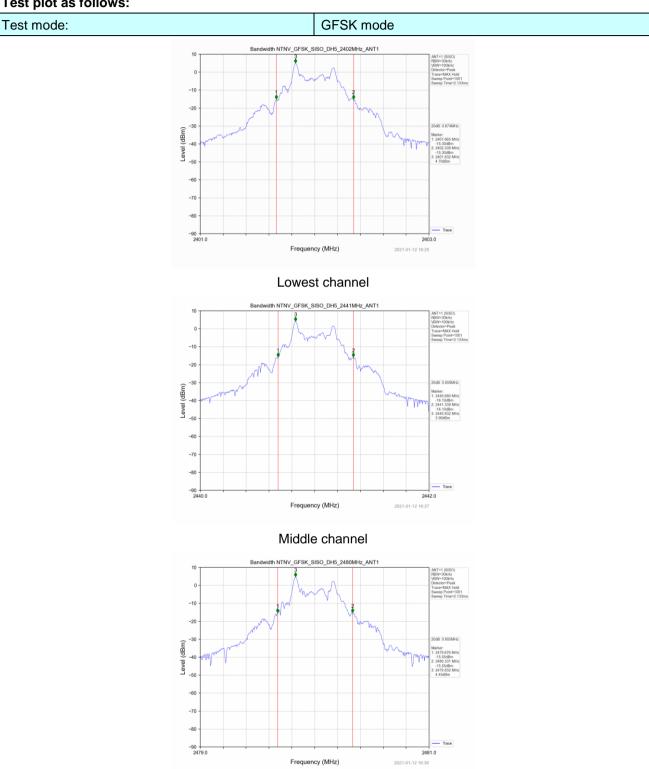
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	२)				
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to see	ction 6.0 for d	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

7.3 Conducted Peak Output Power

Measurement Data

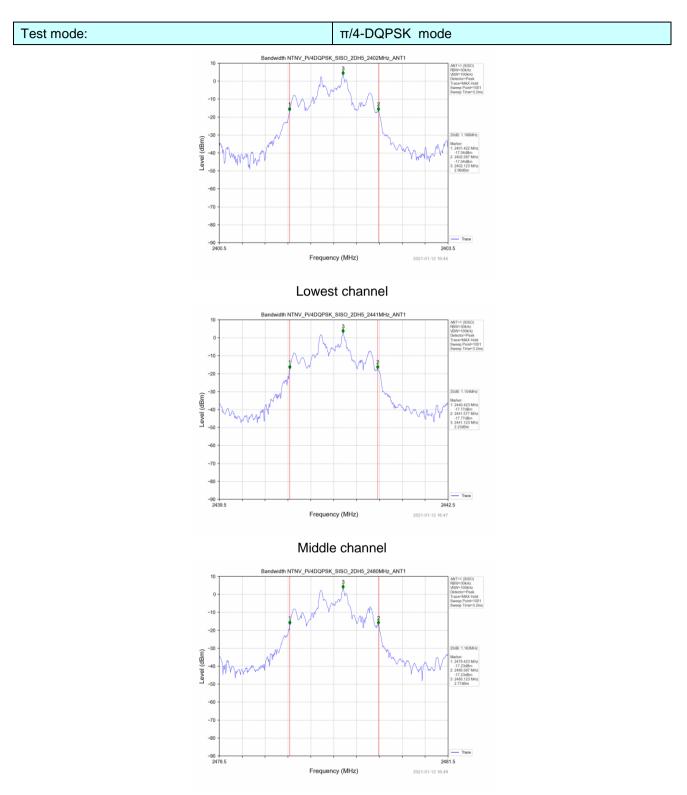
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	5.02			
GFSK	Middle	4.25	30.00	Pass	
	Highest	4.74			
	Lowest	5.17			
π/4-DQPSK	Middle	4.52	20.97	Pass	
	Highest	4.81			
	Lowest	5.10			
8-DPSK	SK Middle 4.45		20.97	Pass	
	Highest	4.76			


FCC Part15 C Section 15.247 (a)(2) **Test Requirement:** Test Method: ANSI C63.10:2013 Limit: N/A Test setup: Spectrum Analyzer E.U.T • **Non-Conducted Table Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mbar

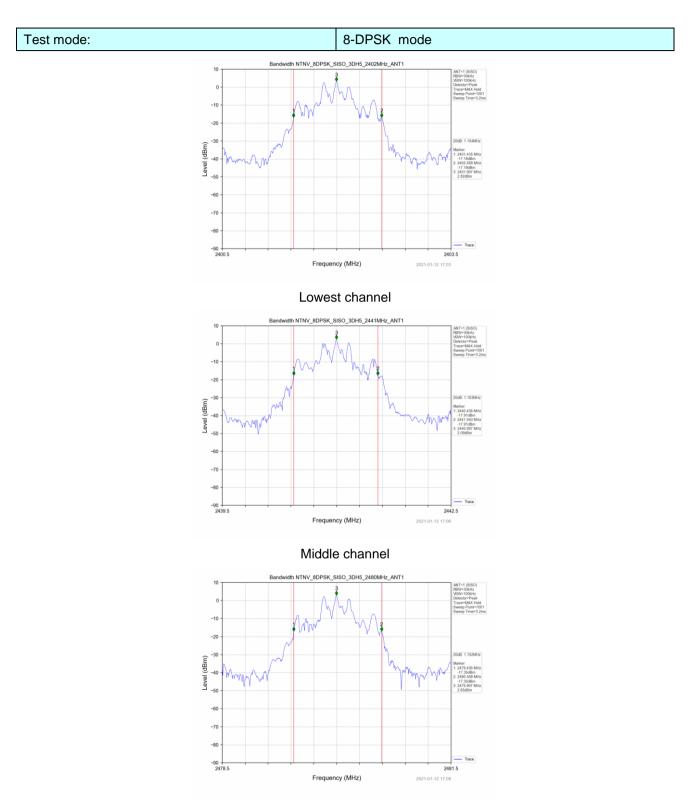
7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.674	
GFSK	Middle	0.659	Pass
	Highest	0.655	
	Lowest	1.166	
π/4-DQPSK	Middle	1.154	Pass
	Highest	1.163	
	Lowest	1.154	
8-DPSK	Middle	1.103	Pass
	Highest	1.152	



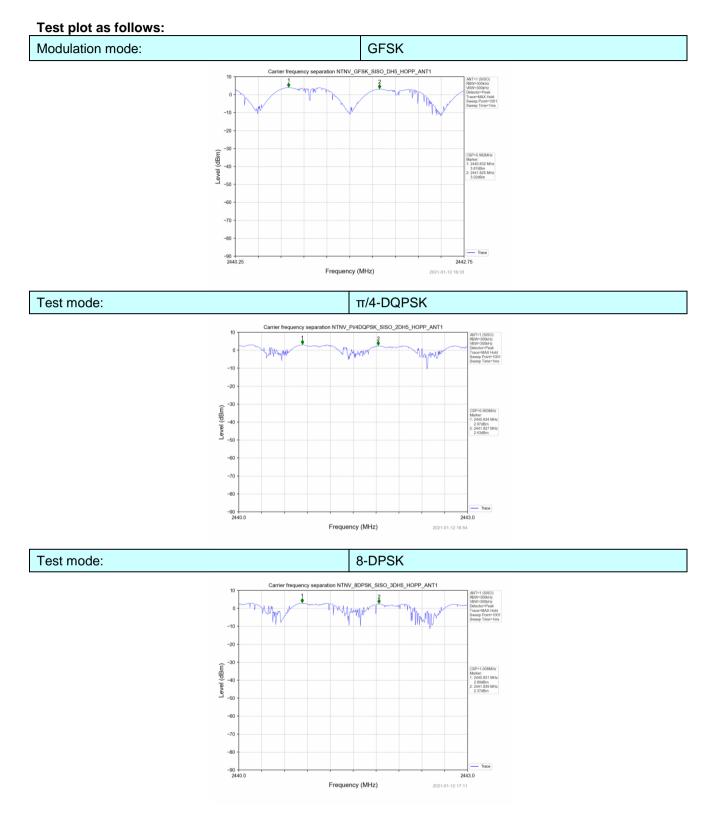
Test plot as follows:


Highest channel

Highest channel

Highest channel

7.5 Frequencies Separation


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)								
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100k	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π /4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:									
Test Instruments:	Refer to se	ction 6.0 for c	details						
Test mode:	Refer to se	ction 5.2 for c	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

Mode	Test channel	Frequencies Separation (kHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.992	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.993	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.008	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak								
Limit:	15 channels	15 channels							
Test setup:	Spec			2.U.T					
Test Instruments:	Refer to sec	ction 6.0 for d	etails						
Test mode:	Refer to sec	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79		Pass
8-DPSK	79		Pass

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:	RBW=1MH	z, VBW=1M⊦	lz, Span=0Hz	z, Detector=P	eak			
Limit:	0.4 Second							
Test setup:	Sp							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.392	125.440	400	Pass
2441MHz	DH3	1.647	263.520	400	Pass
2441MHz	DH5	2.896	308.907	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

π /4-DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	0.385	123.200	400	Pass
2441MHz	2DH3	1.637	261.920	400	Pass
2441MHz	2DH5	2.885	307.733	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

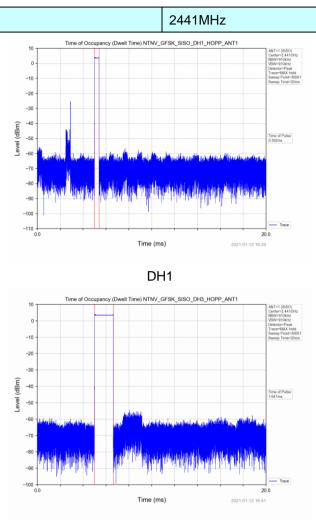
Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

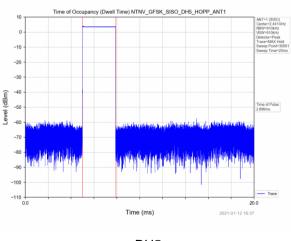
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	0.383	122.560	400	Pass
2441MHz	3DH3	1.634	261.440	400	Pass
2441MHz	3DH5	2.885	307.733	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

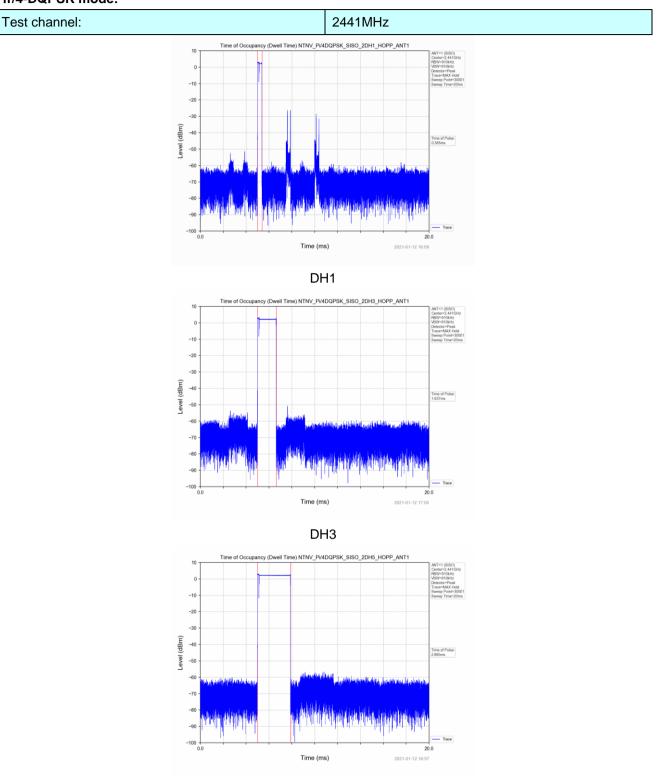

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5

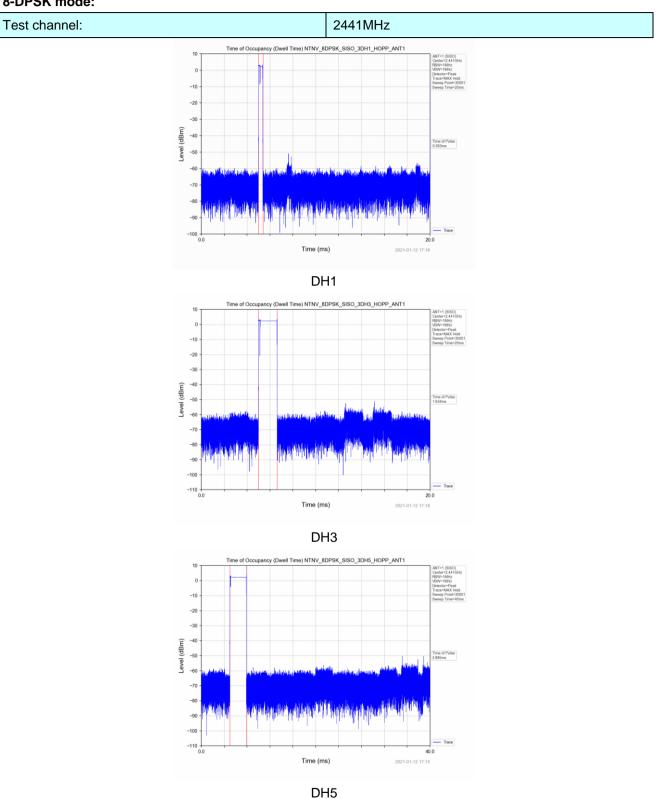


Test plot as follows: GFSK mode:

Test channel:


DH3

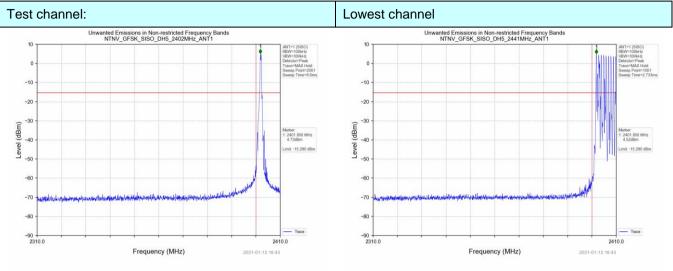
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


π/4-DQPSK mode:

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

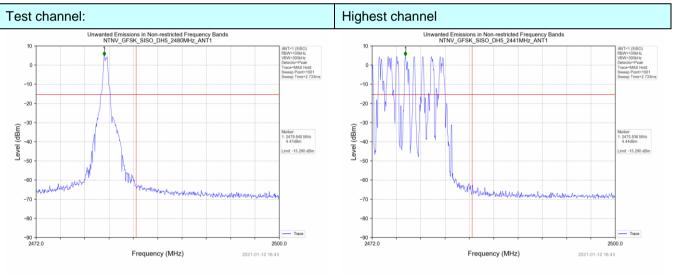
7.8 Pseudorandom Frequency Hopping Sequence

3	Pseudorandom Frequ	
	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)/g/h requirement:
		ems shall have hopping channel carrier frequencies separated by a minimum of 25 f the hopping channel, whichever is greater.
	carrier frequencies that are se whichever is greater, provided shall hop to channel frequence hopping frequencies. Each fre receivers shall have input ban	bing systems operating in the 2400-2483.5 MHz band may have hopping channel eparated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, d the systems operate with an output power no greater than 125 mW. The system ies that are selected at the system hopping rate from a Pseudorandom ordered list equency must be used equally on the average by each transmitter. The system indwidths that match the hopping channel bandwidths of their corresponding quencies in synchronization with the transmitted signals.
	each transmission. However, a comply with all of the regulatic information) stream. In additio	d spectrum systems are not required to employ all available hopping channels durin the system, consisting of both the transmitter and the receiver, must be designed to ons in this section should the transmitter be presented with a continuous data (or on, a system employing short transmission bursts must comply with the definition of d must distribute its transmissions over the minimum number of hopping channels
	recognize other users within the hopsets to avoid hopping on c	gence within a frequency hopping spread spectrum system that permits the system he spectrum band so that it individually and independently chooses and adapts its occupied channels is permitted. The coordination of frequency hopping systems in ress purpose of avoiding the simultaneous occupancy of individual hopping nitters is not permitted.
	EUT Pseudorandom Freq	
	The pseudorandom sequence added in a modulo-two additio begins with the first ONE of 9 • Number of shift register stag	e may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. res: 9
	The pseudorandom sequence added in a modulo-two additio begins with the first ONE of 9	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. es: 9 equence: $2^9 - 1 = 511$ bits
	The pseudorandom sequence added in a modulo-two additio begins with the first ONE of 9 • Number of shift register stag • Length of pseudo-random se • Longest sequence of zeros:	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a constage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. es: 9 equence: $2^9 \cdot 1 = 511$ bits 8 (non-inverted signal)
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stag • Length of pseudo-random set • Longest sequence of zeros: Linear Feedback St	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. es: 9 equence: $2^9 - 1 = 511$ bits
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stag • Length of pseudo-random set • Longest sequence of zeros: Linear Feedback St	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. res: 9 requence: 2 ⁹ - 1 = 511 bits 8 (non-inverted signal) The sequence of the PRBS sequence
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stage • Length of pseudo-random set • Longest sequence of zeros: Linear Feedback State An example of Pseudorandom	The may be generated in a nine-stage shift register whose 5th and 9th stage outputs a point stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. The sequence: 2 ⁹ -1 = 511 bits 8 (non-inverted signal) Third Register for Generation of the PRBS sequence for Frequency Hopping Sequence as follow:
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stage • Length of pseudo-random set • Longest sequence of zeros: • Linear Feedback St An example of Pseudorandom 0 2 4 6	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. res: 9 equence: 2 ⁹ -1 = 511 bits 8 (non-inverted signal) thift Register for Generation of the PRBS sequence in Frequency Hopping Sequence as follow:
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stage • Length of pseudo-random set • Longest sequence of zeros: • Linear Feedback St An example of Pseudorandom 0 2 4 6 Each frequency used equally of	e may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. es: 9 equence: $2^9 \cdot 1 = 511$ bits 8 (non-inverted signal) thift Register for Generation of the PRBS sequence in Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stage • Longest sequence of zeros: • Linear Feedback St An example of Pseudorandom 0 2 4 6 Each frequency used equally The system receivers have inp	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a consecutive ONEs; i.e. the shift register is initialized with nine ones. les: 9 equence: $2^9 \cdot 1 = 511$ bits 8 (non-inverted signal) thift Register for Generation of the PRBS sequence in Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 on the average by each transmitter.
	The pseudorandom sequence added in a modulo-two addition begins with the first ONE of 9 • Number of shift register stags • Length of pseudo-random set • Longest sequence of zeros: • Linear Feedback St An example of Pseudorandom 0 2 4 6 Each frequency used equally The system receivers have input transmitters and shift frequence	a may be generated in a nine-stage shift register whose 5th and 9th stage outputs a on stage. And the result is fed back to the input of the first stage. The sequence consecutive ONEs; i.e. the shift register is initialized with nine ones. es: 9 equence: $2^9 \cdot 1 = 511$ bits 8 (non-inverted signal) thift Register for Generation of the PRBS sequence in Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 on the average by each transmitter. put bandwidths that match the hopping channel bandwidths of their corresponding


7.9 Band Edge

7.9.1 Conducted Emission Method

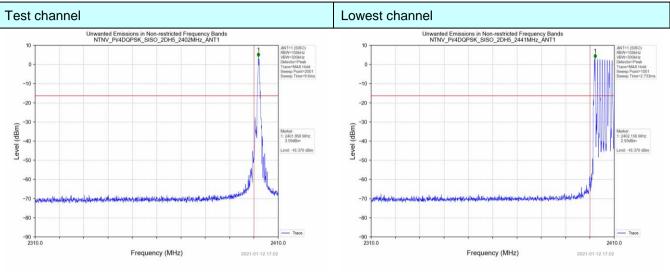
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:	RBW=100k	Hz, VBW=30	0kHz, Detec	tor=Peak				
Limit:	spectrum in produced by 100 kHz bar desired pow	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spect		E.U fucted Table	.T				
Test Instruments:	Refer to sec	Refer to section 6.0 for details						
Test mode:	Refer to sec	Refer to section 5.2 for details						
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		



Test plot as follows: GFSK Mode:

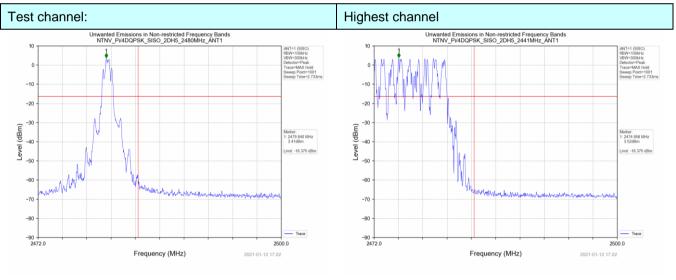
No-hopping mode

Hopping mode



No-hopping mode

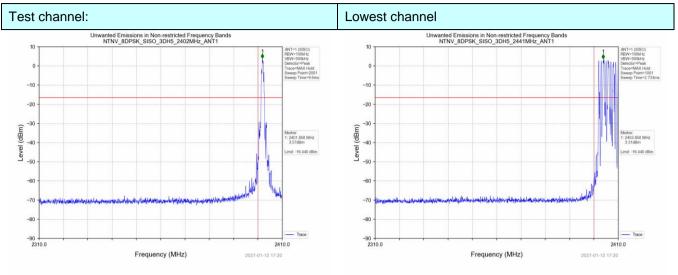
Hopping mode



π /4-DQPSK Mode:

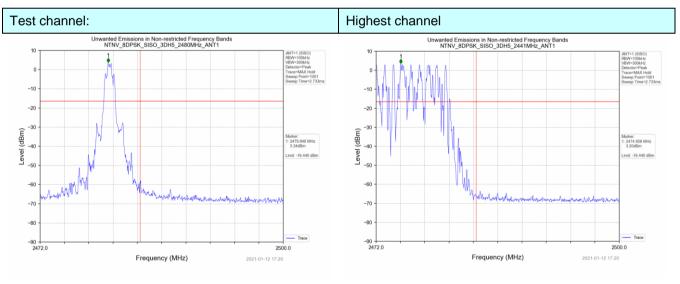
No-hopping mode

Hopping mode



No-hopping mode

Hopping mode



8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

1.9.2 Raulateu Ellission W	emoa							
Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10	ANSI C63.10:2013						
Test Frequency Range:	All of the re 2500MHz) d			ested, onl	y the wo	orst band's (2	2310MHz to	
Test site:	Measuremer	Measurement Distance: 3m						
Receiver setup:	Frequency			RBW	VBW	/ Re	mark	
	Above 1GF	Pos	ık	1MHz	3MH	z Peal	< Value	
	Above 101	Pea	ık	1MHz	10Hz	z Avera	ge Value	
Limit:	Fre	quency	L	.imit (dBu∖		,	mark	
	Aboy	ve 1GHz		54.			ge Value	
Test setup:				74.	00	Peal	< Value	
	Tum Table- <150cm>		< 3m :	Test Antenr	1			
Test Procedure:	 ground at determine 2. The EUT antenna, tower. 3. The anter 	a 3 meter c e the position was set 3 m which was m	amber. of the eters a nounted varied	The table highest ra way from t d on the to from one	was rota diation. the interfe o of a var meter to t	riable-height four meters a	ees to ving antenna above the	
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test Instruments:	Refer to sec	tion 6.0 for d	etails					
Test mode:	Refer to sec	tion 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humi	d.: 529	%	Press.:	1012mbar	
				I				

7.9.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

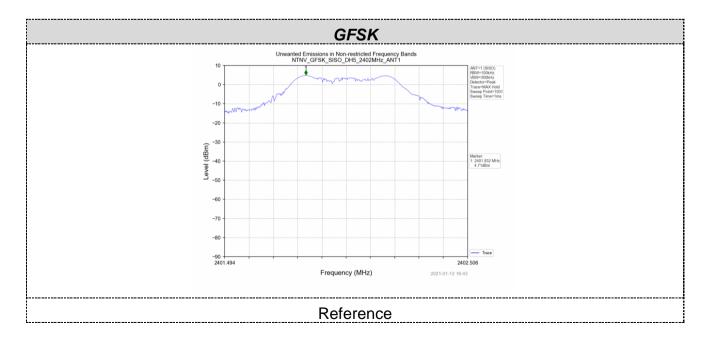
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2390	58.29	-5.68	52.61	74	-21.39	peak			
2390	2390 42.55 -5.68 36.87 54 -17.13								
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

	Meter					
Frequency	Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	62.22	-5.68	56.54	74	-17.46	peak
2390	45.35	-5.68	39.67	54	-14.33	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lc	ss – Pre-amplifier			

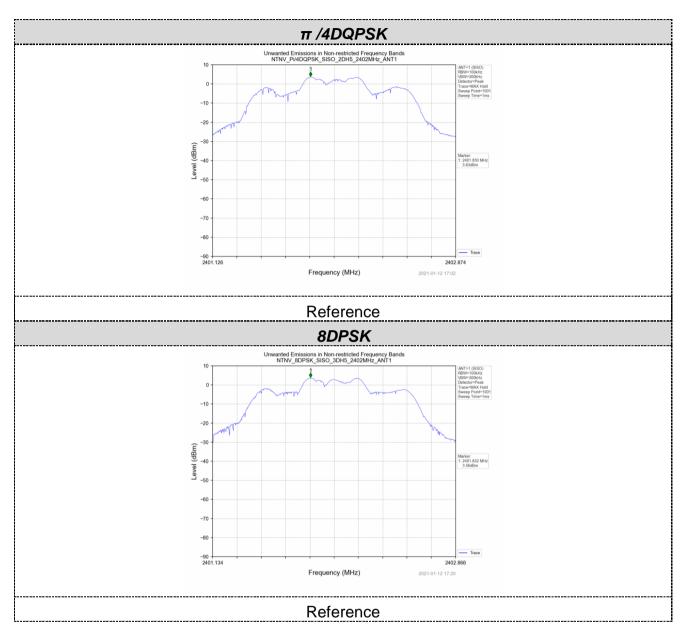
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

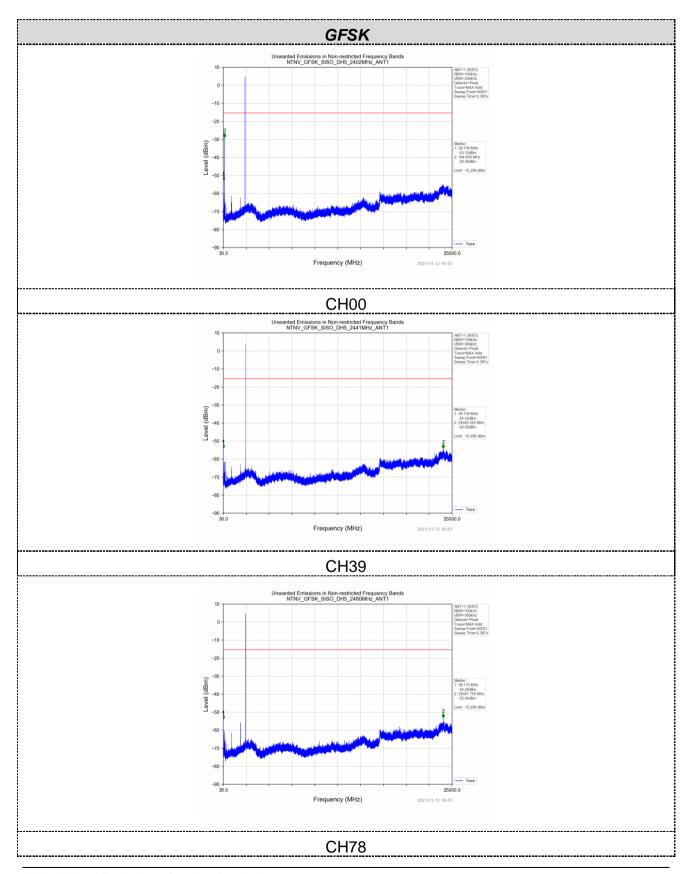

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	60.68	-5.85	54.83	74	-19.17	peak
2483.5	43.75	-5.85	37.9	54	-16.1	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

Vertical:

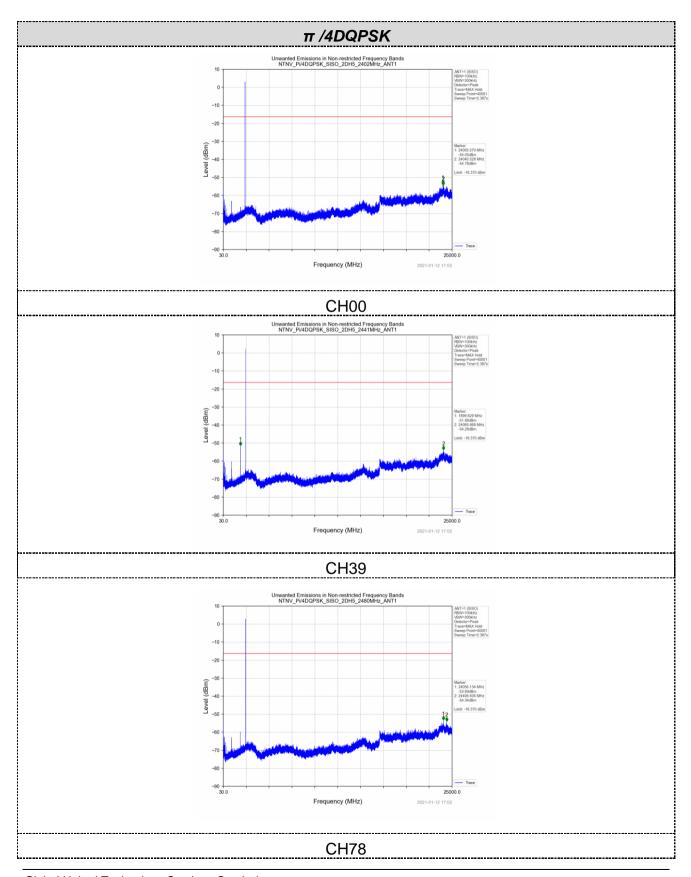
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	62.97	-5.85	57.12	74	-16.88	peak
2483.5	46.68	-5.85	40.83	54	-13.17	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			-

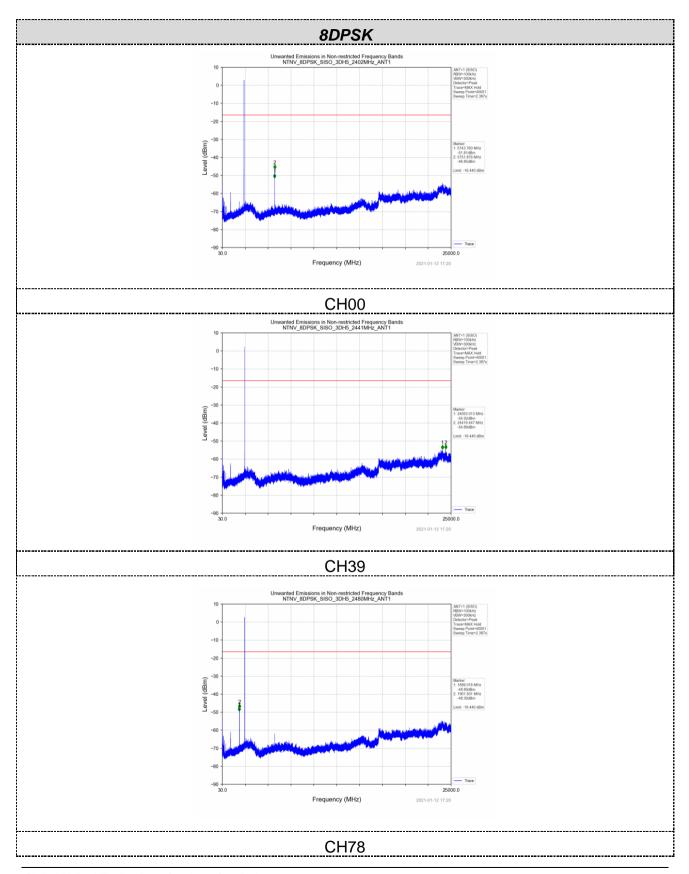

7.10 Spurious Emission 7.10.1 Conducted Emission Method

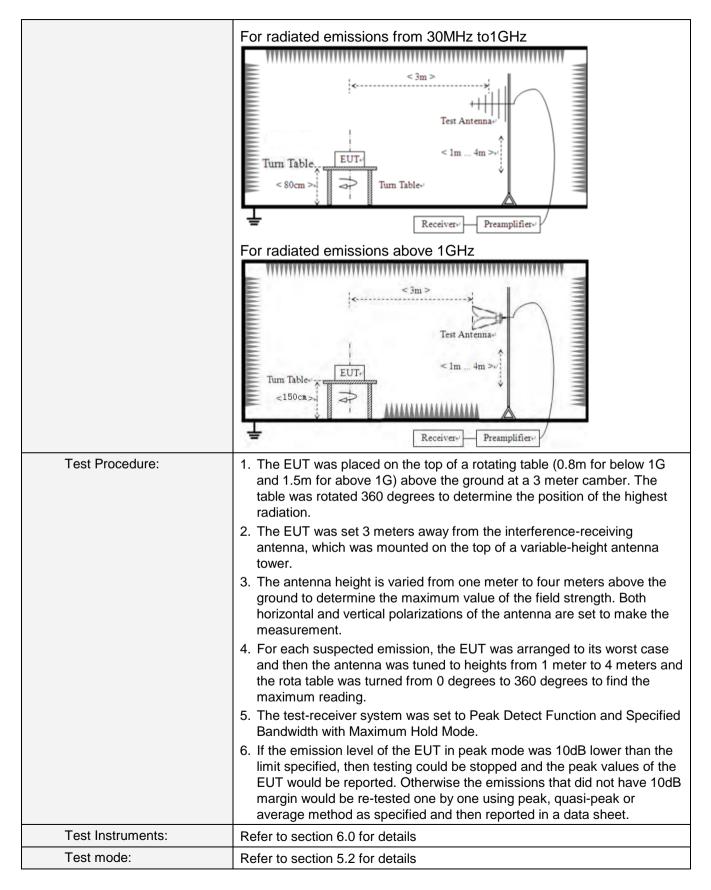
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.1	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to sec	Refer to section 6.0 for details					
Test mode:	Refer to see	Refer to section 5.2 for details					
Test results:	Pass	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	



Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960







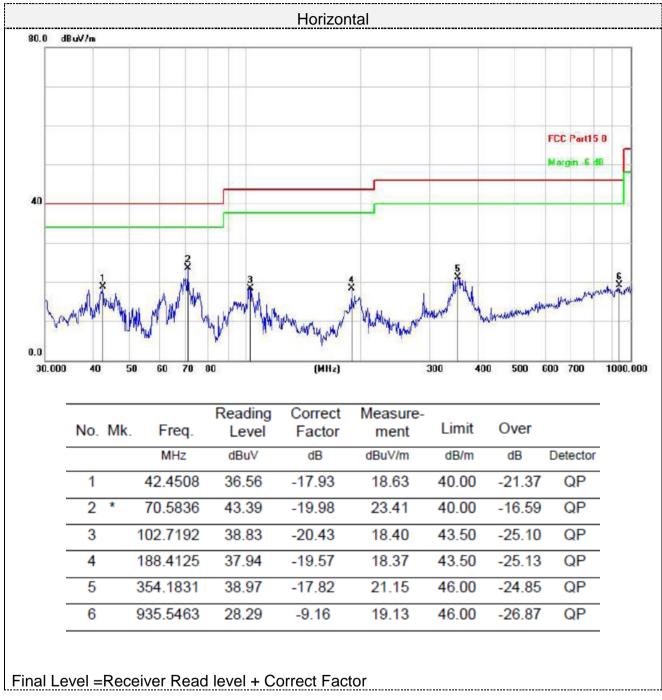
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency Detector RB				N	VBW	,	Value	
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600H:	z	Quasi-peak	
	150KHz-30MHz Qu		uasi-peak	9KH	Ηz	30KH	Z	Quasi-peak	
	30MHz-1GHz Qu		uasi-peak	120k	Ήz	300K⊦	łz	Quasi-peak	
	Above 1GHz		Peak	1Mł	Ηz	3MHz	Z	Peak	
	Above rgnz		Peak	1Mł	Ηz	10Hz	-	Average	
Limit:	Frequency	Frequency Limit (uV/m) Value					Ν	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	IHz	24000/F(KHz)		QP	30m		
	1.705MHz-30MH	z	30			QP		30m	
	30MHz-88MHz		100			QP			
	88MHz-216MHz	2	150			QP			
	216MHz-960MH	Z	200			QP		3m	
	960MHz-1GHz		500		QP			511	
	Above 1GHz		500		Average				
			5000)	F	Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	омн	Z			
	For radiated emissions from 9kHz to 30MHz								

7.10.2 Radiated Emission Method

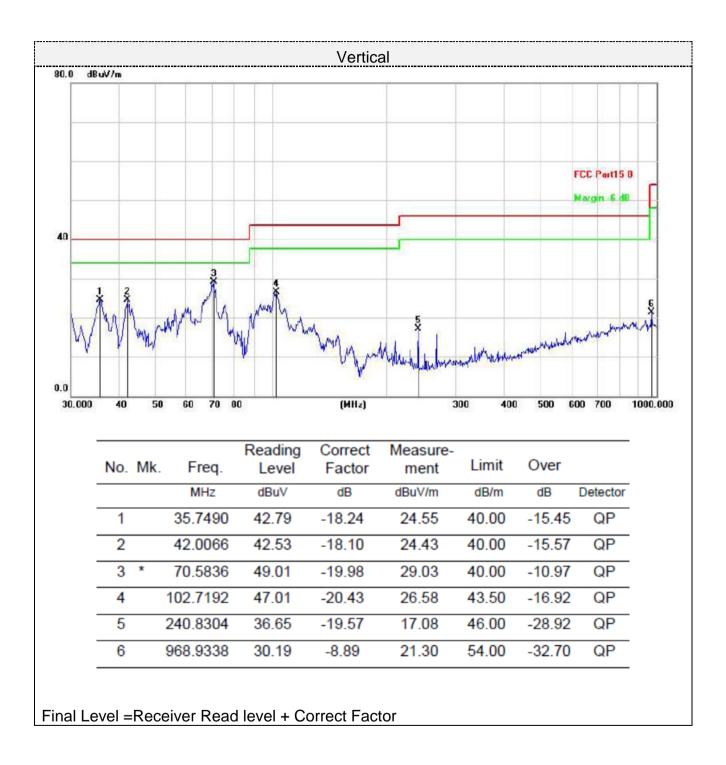
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

For 1GHz to 25GHz

GTS

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.75	-3.61	59.14	74	-14.86	peak
4804	46.28	-3.61	42.67	54	-11.33	AVG
7206	57.49	-0.85	56.64	74	-17.36	peak
7206	44.45	-0.85	43.6	54	-10.4	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.19	-3.61	58.58	74	-15.42	peak
4804	48.25	-3.61	44.64	54	-9.36	AVG
7206	58.17	-0.85	57.32	74	-16.68	peak
7206	45.42	-0.85	44.57	54	-9.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	61.42	-3.49	57.93	74	-16.07	peak
4882	46.65	-3.49	43.16	54	-10.84	AVG
7326	59.79	-0.8	58.99	74	-15.01	peak
7326	44.58	-0.8	43.78	54	-10.22	AVG

\ /.		
\/A	rtica	•
~~~	ruca	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	61.52	-3.49	58.03	74	-15.97	peak
4882	45.75	-3.49	42.26	54	-11.74	AVG
7326	58.18	-0.8	57.38	74	-16.62	peak
7326	44.33	-0.8	43.53	54	-10.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



# CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	62.32	-3.41	58.91	74	-15.09	peak
4960	45.38	-3.41	41.97	54	-12.03	AVG
7440	57.45	-0.72	56.73	74	-17.27	peak
7440	44.57	-0.8	43.77	54	-10.23	AVG
Remark: Facto	r = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	62.37	-3.41	58.96	74	-15.04	peak
4960	46.69	-3.41	43.28	54	-10.72	AVG
7440	59.45	-0.72	58.73	74	-15.27	peak
7440	44.33	-0.8	43.53	54	-10.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

### Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 (2) When the test results of Peak Detected below the limits of Average Detected,

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



# 8 Test Setup Photo

Reference to the **appendix I** for details.

# 9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----