Global United Technology Services Co., Ltd.

Report No.: GTSL202108000157F02

TEST REPORT

Guangdong Unis Technology, Co., Ltd **Applicant:**

Address of Applicant: Zheng An Road 1, West District, Zhongshan, GuangDong

Manufacturer/Factory: Guangdong Unis Technology, Co., Ltd

Address of Zheng An Road 1, West District, Zhongshan, GuangDong

Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: portal

Model No.: A-453

Trade Mark: UNIS

FCC ID: 2AQKM-A453

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Aug. 16,2021

Date of Test: Aug. 16,2021-Aug. 30,2021

Aug. 30,2021 Date of report issued:

PASS * **Test Result:**

Authorized Signature:

Robinson Lu **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date Date	Description Original			
00	Aug. 30,2021				
0 2 2 2 0					

Prepared By:	Joseph Ou	Date:	Aug. 30,2021	
	Project Engineer	- 6 6 19 1		<u>a</u>
Check By:	Latingon lust	Date:	Aug. 30,2021	
	Reviewer			de de la companya de

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
7		
3	CONTENTS	3
4	TEST SUMMARY	4
i		Ó
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	7
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	7
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6 TEST FACILITY	7
	5.7 TEST LOCATION	7
	5.8 ADDITIONAL INSTRUCTIONS	7
6	5 TEST INSTRUMENTS LIST	8
٠	A A A A A A A A A A A A A A A A A A A	
7	TEST RESULTS AND MEASUREMENT DATA	10
i	그래 보다 가장 되는 것 같다. 그렇게 되었는데 그래요 보다 가장 되었다. 얼마나 없는데 그래요	- SP
	7.1 ANTENNA REQUIREMENT	2.30
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	24
8	TEST SETUP PHOTO	32
0	ELIT CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Peak Conducted Output Power	15.247 (b)(3)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	portal
Model No.:	A-453
Test sample(s) ID:	GTSL202108000157-1
Sample(s) Status:	Engineer sample
Hardware Version:	UBMB32_V2.1
Software Version:	7.1.2
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK // // // // // // // // // // // // //
Antenna Type:	FPC Antenna
Antenna Gain:	2.04dBi
Power Supply:	DC 12V From External Circuit
Adapter Information:	Adapter 1: Mode: KPL-060F-VI
2 2 2	Input: AC 100-240V, 50/60Hz, 1.7A
	Output: DC 12V, 5A, 60W
	Adapter 2: Mode: PA-1061-81
	Input: AC100-240V, 50/60Hz, 1.6A
6 6 6 6	Output: DC 12V, 5A, 60W

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz	
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz	
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz	
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz	
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz	
6	2412 MHz	<u>// 16 // </u>	2432 MHz	26	2452 MHz	36	2472 MHz	
7 🤌	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz	
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz	
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz	
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default / / / / / / / / / / / / / / / / / / /

6 Test Instruments list

Rad	iated Emission:			-		
Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m Semi- Anechoic ZhongYu Electro		ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission								
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022			
4 ENV216 2-L-V- NETZNACHB.DE RO		ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ &	TA328	GTS233	June. 24 2021	June. 23 2022			
8 Absorbing clamp Elektronik- Feinmechanik		ZAP ZAP ZAP	MDS21	GTS229	June. 24 2021	June. 23 2022			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022			

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

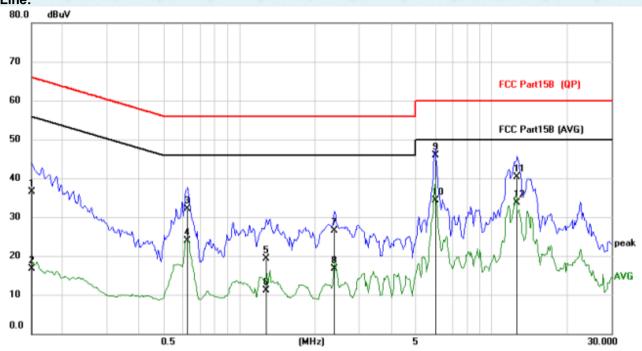
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

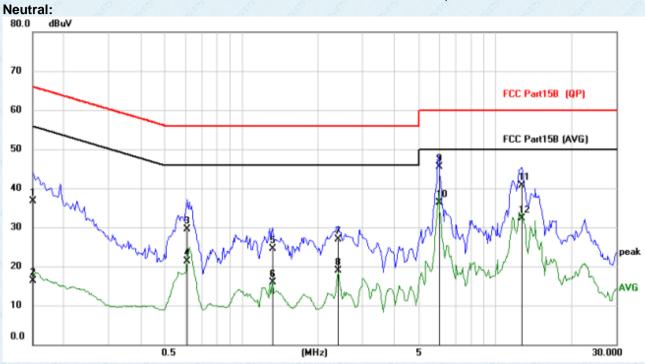
E.U.T Antenna:

The antenna is FPC antenna, the best case gain of the is 2.04dBi, reference to the appendix II for details

7.2 Conducted Emissions


FCC Part15 C Section 15.207		6	· · · · · ·			
ANSI C63.10:2013						
150KHz to 30MHz						
Class B		- 8	200			
RBW=9KHz, VBW=30KHz, Sv	weep time=auto	9 10	Ø 1			
Francisco (AUI)	Lim	it (dBuV)	A			
Frequency range (MHz)	Quasi-peak	Aver	age			
0.15-0.5	66 to 56*					
	7 20		7			
		50)			
AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	EMI Receiver		hrough a			
 50ohm/50uH coupling imperent to the peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are dinterference. In order to find positions of equipment and 	edance for the meast also connected to to n/50uH coupling im- to the block diagram checked for maximud the maximum emit all of the interface	suring equipments the main power pedance with some of the test set the conducted dission, the relacted test must be cables must be	ent. r through a 50ohm up and tive e changed			
Refer to section 6.0 for details						
Refer to section 6.0 for details Refer to section 5.2 for details						
Refer to section 5.2 for details		Press.:	1012mbar			
Refer to section 5.2 for details		Press.:				
	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Standard S	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment LUT Equipment Under Test LISN Test table height=0 8m 1. The E.U.T and simulators are connected to the line impedance stabilization network (L.I.S.N.). 500hm/50uH coupling impedance for the meast 2. The peripheral devices are also connected to the LISN that provides a 500hm/50uH coupling im termination. (Please refer to the block diagram photographs). 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emination.	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 56 to 0.5-5 56 44 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AC power E.U.T Equipment Under Test LISN Line impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.). This provides 500hm/50uH coupling impedance for the measuring equipmed 2. The peripheral devices are also connected to the main power LISN that provides a 500hm/50uH coupling impedance with 5 termination. (Please refer to the block diagram of the test set photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relapositions of equipment and all of the interface cables must be			

Remark: Adapter 1 and Adapter 2 all have been tested, only worse case Adapter 1 is reported.


Measurement data

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz, **Line:**

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	25.62	10.92	36.54	66.00	-29.46	QP
2		0.1500	5.70	10.92	16.62	56.00	-39.38	AVG
3		0.6258	21.17	10.92	32.09	56.00	-23.91	QP
4		0.6258	13.08	10.92	24.00	46.00	-22.00	AVG
5		1.2810	8.32	10.94	19.26	56.00	-36.74	QP
6		1.2810	0.21	10.94	11.15	46.00	-34.85	AVG
7		2.3925	15.60	10.98	26.58	56.00	-29.42	QP
8		2.3925	5.72	10.98	16.70	46.00	-29.30	AVG
9	*	5.9952	34.74	11.15	45.89	60.00	-14.11	QP
10		5.9952	23.25	11.15	34.40	50.00	-15.60	AVG
11		12.6915	28.94	11.42	40.36	60.00	-19.64	QP
12		12.6915	22.31	11.42	33.73	50.00	-16.27	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	25.78	10.92	36.70	66.00	-29.30	QP
2	0.1500	5.48	10.92	16.40	56.00	-39.60	AVG
3	0.6102	18.53	10.92	29.45	56.00	-26.55	QP
4	0.6102	10.37	10.92	21.29	46.00	-24.71	AVG
5	1.3239	13.52	10.94	24.46	56.00	-31.54	QP
6	1.3239	4.90	10.94	15.84	46.00	-30.16	AVG
7	2.3964	15.84	10.98	26.82	56.00	-29.18	QP
8	2.3964	7.86	10.98	18.84	46.00	-27.16	AVG
9	5.9952	34.40	11.15	45.55	60.00	-14.45	QP
10 *	5.9952	25.17	11.15	36.32	50.00	-13.68	AVG
11	12.7344	29.35	11.42	40.77	60.00	-19.23	QP
12	12.7344	20.93	11.42	32.35	50.00	-17.65	AVG

Notes:

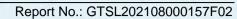
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mba
Test voltage:	AC 120V, 60Hz
Test results:	Pass

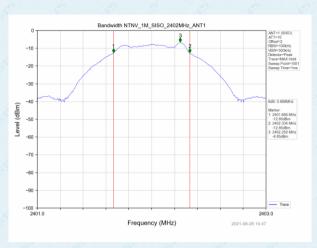
Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-6.54		
Middle	-6.74	30.00	Pass
Highest	-6.93		

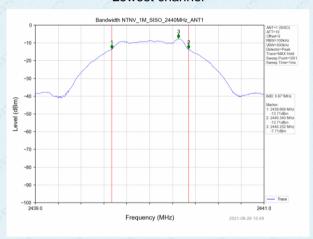

7.4 Channel Bandwidth

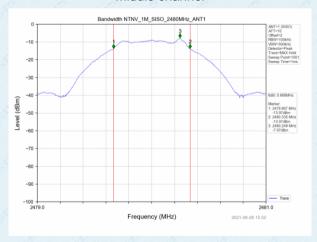
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass of the last o

Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.668		8 8 8 8
Middle	0.671	>500	Pass
Highest	0.668		2 2 2 2

Page 15 of 32

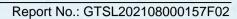



Test plot as follows:

Lowest channel

Middle channel

Highest channel

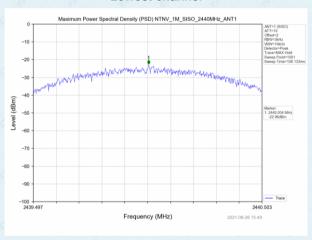

7.5 Power Spectral Density

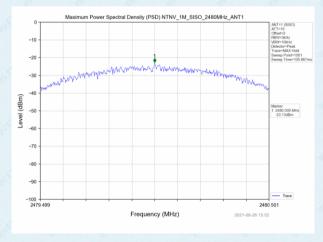
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mba
Test voltage:	AC 120V, 60Hz
Test results:	Pass of the pass o

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-22.13	9 29 29 29	9 2 6
Middle	-22.96	8.00	Pass
Highest	-23.13		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

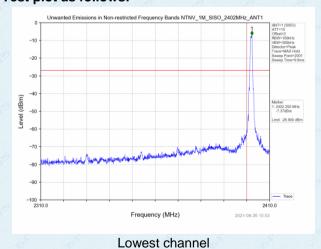


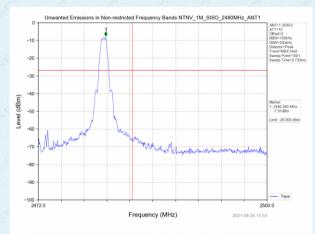

Test plot as follows:

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass // // // // // // // // // // // // /

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S		9 and 15.205					
Test Method:	ANSI C63.10:20	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict 2500MHz) data	was showed.	e tested, only	the wors	st band's	(2310MHz to		
Test site:	Measurement D	istance: 3m		68	45			
Receiver setup:	Frequency	Detector	RBW	VBW	2	Value		
	Above 1GHz	Peak	1MHz	3MHz		Peak		
	ABOVE TOTIZ	RMS	1MHz	3MHz		verage		
Limit:	Freque	ency	Limit (dBuV			Value		
	Above 1	GHz	54.0		P	verage		
Test setup:			74.0	00		Peak		
Test Procedure:	Tum Table EUT wa	< lm	Antenna-					
	determine the 2. The EUT was antenna, whistower. 3. The antennas ground to deshorizontal and measuremer 4. For each sussend then the and the rotathe maximum 5. The test-recesspecified Ba	e position of to see the set 3 meters of was mount the individual of the second the second to the second the s	ed from one reaximum valuarizations of the sion, the EUT tuned to heighed from 0 dewas set to Peamaximum Holler	diation. The interfer of a variation of a variation of the fine antenral was arrangrees to a district of the d	erence-rediable-heigerour meterield strengen are set anged to its 1 meter to 360 degreet Function	ceiving the antenna as above the oth. Both to make the s worst case of 4 meters ees to find		
Toot Instruments:	limit specified the EUT wou 10dB margin average met 7. The radiation And found th worst case m	d, then testing all be reported would be rehod as speciful measureme e X axis positioned is record.	tioning which led in the rep	pped and the emiss one usin eported i med in X it is worse	I the peak sions that ng peak, q in a data s f, Y, Z axis	values of did not have uasi-peak or sheet. s positioning.		
Test Instruments:	limit specified the EUT wou 10dB margin average met 7. The radiation And found th worst case m Refer to section	d, then testing ld be reported would be rehod as speciform measureme e X axis positioned is record 6.0 for detail	g could be sto d. Otherwise t tested one by ied and then i nts are perfor tioning which ded in the reports	pped and the emiss one usin eported i med in X it is worse	I the peak sions that ng peak, q in a data s f, Y, Z axis	values of did not have uasi-peak or sheet. s positioning.		
Test mode:	limit specified the EUT wou 10dB margin average met 7. The radiation And found th worst case m Refer to section	d, then testing ld be reported would be rehod as specific measureme e X axis positioned is record 6.0 for detail 5.2 for detail	g could be sto d. Otherwise the tested one by ied and then ints are perfor tioning which ded in the repose s	pped and the emiss one usin reported i med in X it is worse ort.	d the peak sions that ng peak, q in a data s , Y, Z axis e case, or	values of did not have uasi-peak or sheet. s positioning. ally the test		
Test mode: Test environment:	limit specified the EUT wou 10dB margin average met 7. The radiation And found the worst case margin Refer to section Refer to section Temp.: 25	d, then testing all be reported would be rehod as specific measureme e X axis positioned is record 6.0 for detail 5.2 for detail	g could be sto d. Otherwise t tested one by ied and then i nts are perfor tioning which ded in the reports	pped and the emiss one usin reported i med in X it is worse ort.	I the peak sions that ng peak, q in a data s f, Y, Z axis	values of did not have uasi-peak or sheet. s positioning.		
Test mode:	limit specified the EUT wou 10dB margin average met 7. The radiation And found th worst case m Refer to section	d, then testing all be reported would be rehod as specific measureme e X axis positioned is record 6.0 for detail 5.2 for detail	g could be sto d. Otherwise the tested one by ied and then ints are perfor tioning which ded in the repose s	pped and the emiss one usin reported i med in X it is worse ort.	d the peak sions that ng peak, q in a data s , Y, Z axis e case, or	values of did not have uasi-peak or sheet. s positioning. ally the test		

Measurement Data.

Report No.: GTSL202108000157F02

Test channel: Lowest channel

Peak value:

Frequer (MHz		Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	8	58.92	-5.68	53.24	74.00	-20.76	Horizontal
2390		58.98	-5.68	53.3	74.00	-20.70	Vertical
- 6	100	9 9	-,9	9 9 9	9 9	9 1	9

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	47.58	-5.68	41.9	54.00	-12.10	Horizontal
2390	46.28	-5.68	40.6	54.00	-13.40	Vertical
6' 6'	4	\C_1.		\S'\		57

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	58.77	-5.85	52.92	74.00	-21.08	Horizontal
2483.5	59.12	-5.85	53.27	74.00	-20.73	Vertical

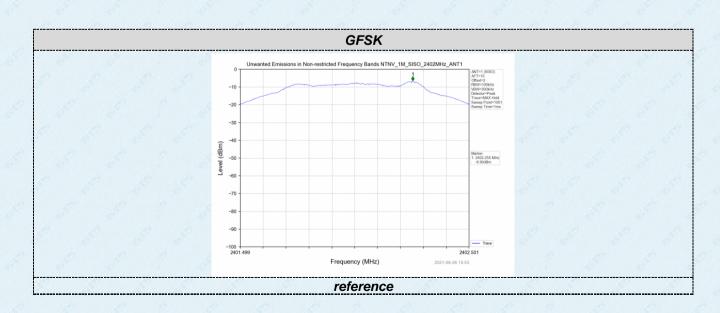
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequer (MHz		Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.	5	45.24	-5.85	39.39	54.00	-14.61	Horizontal
2483.	5	44.12	-5.85	38.27	54.00	-15.73	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

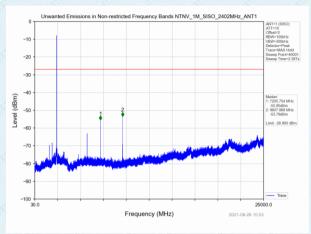
Remarks:


- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

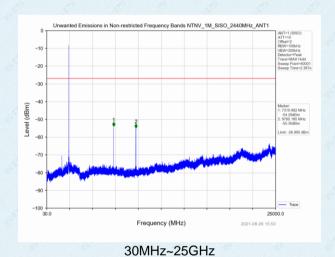
7.7 Spurious Emission

7.7.1 Conducted Emission Method

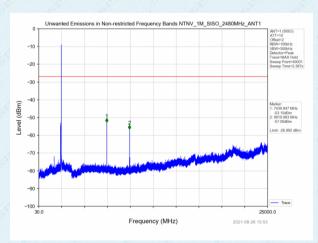
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass / / / / / / / / / / / / / / / / / /



Test plot as follows:


Lowest channel

Report No.: GTSL202108000157F02

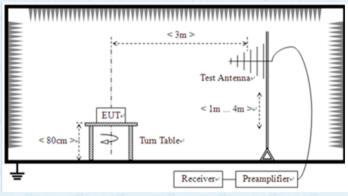


30MHz~25GHz

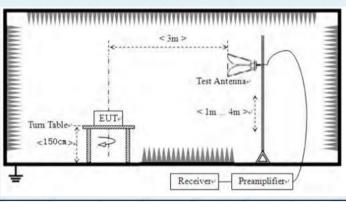
Middle channel

Highest channel

30MHz~25GHz



7.7.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section	on 15	5.209	Ø.	26	9 6		0 0	
Test Method:	ANSI C63.10:2013		4 4	·	***	9	3		
Test Frequency Range:	9kHz to 25GHz	6	· - 6	6			65		
Test site:	Measurement Distar	nce: 3	3m	48	6	45		8 8	
Receiver setup:	Frequency	_ [Detector	RBV	V	VBW		Value	
	9KHz-150KHz	Qı	ıasi-peak	200⊢	lz	600Hz	z	Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KH	z	30KH:	z	Quasi-peak	
	30MHz-1GHz	Qı	ıasi-peak	120KI	Hz	300KH	łz	Quasi-peak	
	Above 1GHz		Peak	1MH	z	3MHz	z	Peak	
	Above IGHZ	Peak 1M		1MH	Z	10Hz	2	Average	
Limit:	Frequency		Limit (u\	//m)	V	'alue	N	Measurement Distance	
	0.009MHz-0.490MHz		2400/F(k	(Hz)	2	QP		300m	
	0.490MHz-1.705MHz		24000/F(KHz) C		QP 30m		30m	
	1.705MHz-30MH	lz	30			QP	60	30m	
	30MHz-88MHz	8	100	8		QP			
	88MHz-216MHz	<u> </u>	150	4		QP	S.		
	216MHz-960MHz		200	2	, de	QP		3m	
	960MHz-1GHz		500		QP		Z.	OIII	
	Above 1GHz		500		Average		8		
	710010 10112	Above 1G112		5000 I		Peak		8 8	
Test setup:	For radiated emiss		<3m> Test An	······································	MH.	z			
				Receiver	\vdash				

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to s	ection 6.0 for d	details	6 -	657	6	
Test mode:	Refer to s	ection 5.2 for o	details	450			8 8
Test environment:	Temp.:	25 °C	Humid.:	52%	Jan .	Press.:	1012mbar
Test voltage:	AC 120V,	60Hz	2 0	2		9 29	20
Test results:	Pass		6		60		

Measurement data:

Remark:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Adapter 1 and Adapter 2 all have been tested, only worse case Adapter 1 is reported.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz,

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		38.6160	33.88	-18.06	15.82	40.00	-24.18	QP
2		79.8003	41.76	-20.79	20.97	40.00	-19.03	QP
3		149.4857	34.80	-17.65	17.15	43.50	-26.35	QP
4	*	197.8928	45.45	-20.13	25.32	43.50	-18.18	QP
5		451.1350	41.37	-16.05	25.32	46.00	-20.68	QP
6		962.1623	30.91	-8.89	22.02	54.00	-31.98	QP

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	34.7602	52.76	-18.30	34.46	40.00	-5.54	QP
2		40.4172	50.79	-18.01	32.78	40.00	-7.22	QP
3		71.0803	47.97	-20.03	27.94	40.00	-12.06	QP
4		147.9214	49.16	-17.79	31.37	43.50	-12.13	QP
5		204.9551	44.86	-19.99	24.87	43.50	-18.63	QP
6		480.5276	38.72	-15.67	23.05	46.00	-22.95	QP

Final Level = Receiver Read level + Correct Factor

Above 1GHz

Report No.: GTSL202108000157F02

Test channel:	Lowest channel
---------------	----------------

_	_		_	
ᇚ	าไ	va		•

, e, e	1 <u></u> 6	,		,	# - #	<u> </u>
	8 4	EE	<i>&</i> 2	8 - <u>-</u> 8 -	8 _2	<i>6</i> 6
7206	58.12	-0.85	57.27	74	-16.73	Horizontal
4804	61.22	-3.61	57.61	74	-16.39	Horizontal
7206	58.69	-0.85	57.84	74	-16.16	Vertical
4804	61.20	-3.61	57.59	74	-16.41	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

4804	46.27	-3.61	42.66	54	-11.34	Horizontal
7206	45.72	-0.85	44.87	54	-9.13	Horizontal
7206	45.72	-0.85	44.87	54	-9.13	Horizontal

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880	62.21	-3.49	58.72	74	-15.28	Vertical
7320	58.92	-0.80	58.12	74	-15.88	Vertical
4880	61.99	-3.49	58.50	74	-15.50	Horizontal
7320	58.93	-0.80	58.13	74	-15.87	Horizontal
8 - 8	7 - 8	\$	~ ~ <i>&</i>	- E E	- ? <i>&</i>	4
		8 <u>-</u> 8 -	g = 0		, <u></u>	\$ ₀ 8

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880	45.59	-3.49	42.10	54	-11.90	Vertical
7320	43.28	-0.80	42.48	54	-11.52	Vertical
4880	45.66	-3.49	42.17	54	-11.83	Horizontal
7320	43.64	-0.80	42.84	54	-11.16	Horizontal
	8 <u>4</u>	8 8 -	££	8 - <u>-</u> 2	6 <u>-2</u>	8 8
, 8 <u>-</u> , 8	B	, 6 <u></u> , 6	<u> </u>	, 8 <u>-</u> , 8	, -, s	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest

Peak value:

4960 7440	61.24 59.86	-3.41 -0.72	57.83 59.14	74	-16.17 -14.86	Horizontal Horizontal
7440	59.58	-0.72	58.86	74	-15.14	Vertical
4960	61.33	-3.41	57.92	74	-16.08	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	46.25	-3.41	42.84	54	-11.16	Vertical
7440	44.82	-0.72	44.10	54	-9.90	Vertical
4960	46.26	-3.41	42.85	54	-11.15	Horizontal
7440	44.71	-0.72	43.99	54	-10.01	Horizontal
4	8 4	e e	8 -4	8 - 2 -	₹ <u>2</u> °	d d
é		, ° , °	- 6	, e , e	- 6	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----