Global United Technology Services Co., Ltd.

Report No.: GTSL202108000157F01

TEST REPORT

Guangdong Unis Technology, Co., Ltd **Applicant:**

Address of Applicant: Zheng An Road 1, West District, Zhongshan, GuangDong

Manufacturer/Factory: Guangdong Unis Technology, Co., Ltd

Address of Zheng An Road 1, West District, Zhongshan, GuangDong

Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: portal

Model No.: A-453

Trade Mark: UNIS

FCC ID: 2AQKM-A453

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Aug. 16,2021

Date of Test: Aug. 16,2021-Aug. 30,2021

Aug. 30,2021 Date of report issued:

PASS * **Test Result:**

Authorized Signature:

Robinson Lu **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date Date	Description		
00	Aug. 30,2021 Original			
	2 2 2			
	2 2 2 2 2 2	0 - 2 2 2 2		

Prepared By:	Santly	Date:	Aug. 30,2021	
	Project Engineer	9 B		
Check By:	Lotingon lund	Date:	Aug. 30,2021	
	Reviewer			40

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	9
_		
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	-
ŏ		
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	4.0
1		69
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.9 Spurious Emission	
	7.9 Sporious Emission	
	7.9.2 Radiated Emission Method	
0		
8	IEST SETUP PHUTU	4/
a	FUT CONSTRUCTIONAL DETAILS	47

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

ŭ.,	Ochicial Description of Lot	
	Product Name:	portal
-65	Model No.:	A-453
\$100 m	Test sample(s) ID:	GTSL202108000157-1
	Sample(s) Status:	Engineer sample
Ø.	Hardware Version:	UBMB32_V2.1
d d	Software Version:	7.1.2
200	Operation Frequency:	2402MHz~2480MHz
	Channel numbers:	79
9	Channel separation:	1MHz
· A	Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
i de la companya de l	Antenna Type:	FPC Antenna
	Antenna gain:	2.04dBi
D	Power supply:	DC 12V From External Circuit
	Adapter Information:	Adapter 1: Mode: KPL-060F-VI
65		Input: AC 100-240V, 50/60Hz, 1.7A
		Output: DC 12V, 5A, 60W
4		Adapter 2: Mode: PA-1061-81
		Input: AC100-240V, 50/60Hz, 1.6A
8		Output: DC 12V, 5A, 60W

Operation	Frequency eac	h of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	iated Emission:	6 6 6		6 6	() () () () () () () () () ()	
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna SCHWARZBECK MESS-ELEKTRONIK		VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022			

RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

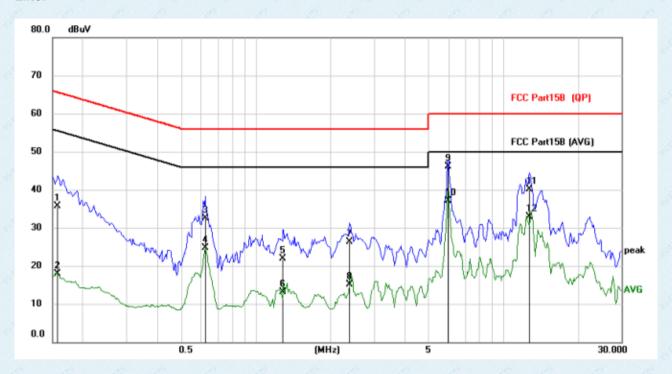
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is FPC antenna, the best case gain of the is 2.04dBi, reference to the appendix II for details

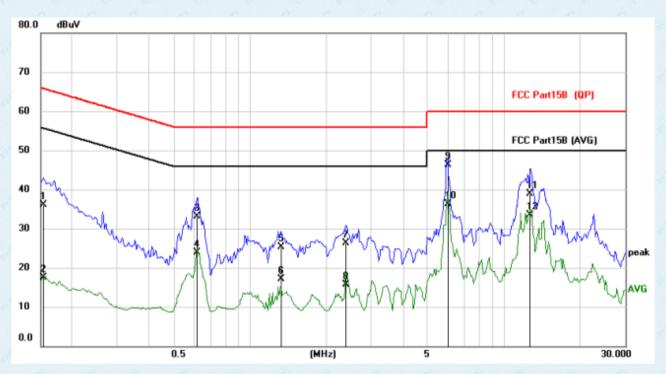
7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test setup:	* Decreases with the logarithn Reference Plane					
	Remark E.U.T Receiver Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.					
Test procedure:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization	n network (L.I.S.N.). Tedance for the measuralso connected to the	This provides a uring equipment. e main power through a			
, and the second	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: 	n network (L.I.S.N.). Tedance for the measuralso connected to the m/50uH coupling imperorments of the block diagram of the checked for maximum different the maximum emissional all of the interface care 2013 on conducted missions.	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed			
Test Instruments:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: Refer to section 6.0 for details	n network (L.I.S.N.). Tedance for the measuralso connected to the m/50uH coupling imperorment of the block diagram of the checked for maximum distribution of the interface care 2013 on conducted measurals.	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed			
, and the second	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: 	n network (L.I.S.N.). Tedance for the measuralso connected to the m/50uH coupling imperorment of the block diagram of the checked for maximum distribution of the interface care 2013 on conducted measurals.	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed			
Test Instruments:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: Refer to section 6.0 for details	n network (L.I.S.N.). Tedance for the measuralso connected to the m/50uH coupling imperorment of the block diagram of the checked for maximum distribution of the interface care 2013 on conducted measurals.	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed			
Test Instruments: Test mode:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: Refer to section 6.0 for details	n network (L.I.S.N.). Tedance for the measuralso connected to the m/50uH coupling imperorment of the block diagram of the checked for maximum distribution of the interface capping on conducted maximum emissing all of the interface capping on conducted maximum emissing all of the interface capping on conducted maximum emissing all of the interface capping on conducted maximum emissing all of the interface capping on conducted maximum emissing all of the interface capping on conducted maximum emissions.	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed neasurement.			


Remark: Adapter 1 and Adapter 2 all have been tested, only worse case Adapter 1 is reported.

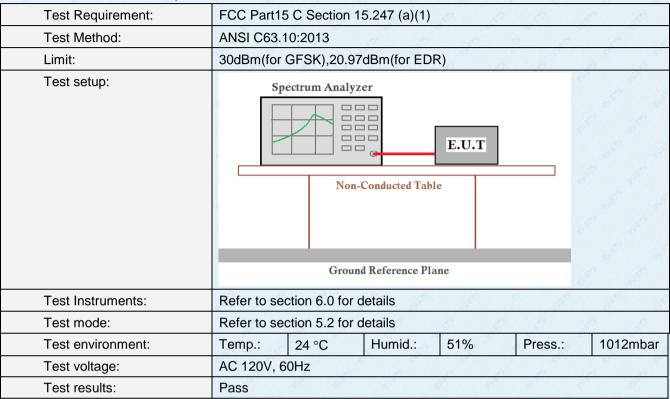
Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz


Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1578	24.80	10.93	35.73	65.58	-29.85	QP
2		0.1578	6.95	10.93	17.88	55.58	-37.70	AVG
3		0.6219	21.57	10.92	32.49	56.00	-23.51	QP
4		0.6219	13.80	10.92	24.72	46.00	-21.28	AVG
5		1.2888	10.95	10.94	21.89	56.00	-34.11	QP
6		1.2888	2.26	10.94	13.20	46.00	-32.80	AVG
7		2.3925	15.24	10.98	26.22	56.00	-29.78	QP
8		2.3925	4.19	10.98	15.17	46.00	-30.83	AVG
9		5.9913	34.91	11.15	46.06	60.00	-13.94	QP
10	*	5.9913	26.01	11.15	37.16	50.00	-12.84	AVG
11		12.7305	28.60	11.42	40.02	60.00	-19.98	QP
12		12.7305	21.48	11.42	32.90	50.00	-17.10	AVG

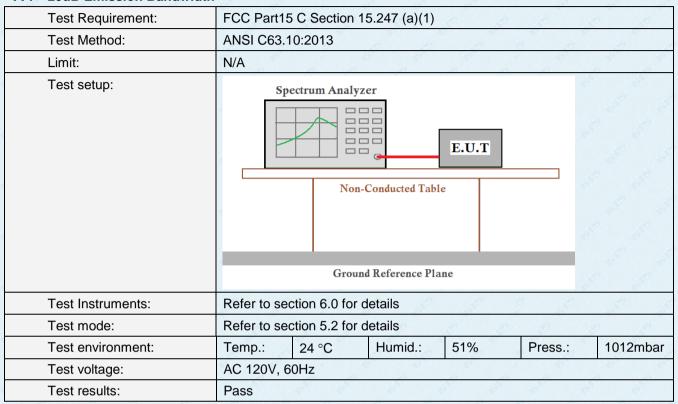
Neutral:


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.1539	25.16	10.92	36.08	65.79	-29.71	QP
	0.1539	6.60	10.92	17.52	55.79	-38.27	AVG
	0.6180	22.14	10.92	33.06	56.00	-22.94	QP
	0.6180	13.05	10.92	23.97	46.00	-22.03	AVG
	1.3239	14.31	10.94	25.25	56.00	-30.75	QP
	1.3239	6.14	10.94	17.08	46.00	-28.92	AVG
	2.3925	15.35	10.98	26.33	56.00	-29.67	QP
	2.3925	4.79	10.98	15.77	46.00	-30.23	AVG
*	5.9952	35.24	11.15	46.39	60.00	-13.61	QP
	5.9952	25.23	11.15	36.38	50.00	-13.62	AVG
	12.7149	27.48	11.42	38.90	60.00	-21.10	QP
	12.7149	22.15	11.42	33.57	50.00	-16.43	AVG
		MHz 0.1539 0.1539 0.6180 0.6180 1.3239 1.3239 2.3925 2.3925 * 5.9952 5.9952 12.7149	Mk. Freq. Level MHz dBuV 0.1539 25.16 0.1539 6.60 0.6180 22.14 0.6180 13.05 1.3239 14.31 1.3239 6.14 2.3925 15.35 2.3925 4.79 * 5.9952 35.24 5.9952 25.23 12.7149 27.48	Mk. Freq. Level Factor MHz dBuV dB 0.1539 25.16 10.92 0.1539 6.60 10.92 0.6180 22.14 10.92 0.6180 13.05 10.92 1.3239 14.31 10.94 1.3239 6.14 10.94 2.3925 15.35 10.98 2.3925 4.79 10.98 * 5.9952 35.24 11.15 5.9952 25.23 11.15 12.7149 27.48 11.42	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1539 25.16 10.92 36.08 0.1539 6.60 10.92 17.52 0.6180 22.14 10.92 33.06 0.6180 13.05 10.92 23.97 1.3239 14.31 10.94 25.25 1.3239 6.14 10.94 17.08 2.3925 15.35 10.98 26.33 2.3925 4.79 10.98 15.77 * 5.9952 35.24 11.15 46.39 5.9952 25.23 11.15 36.38 12.7149 27.48 11.42 38.90	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV dBuV dBuV 0.1539 25.16 10.92 36.08 65.79 0.1539 6.60 10.92 17.52 55.79 0.6180 22.14 10.92 33.06 56.00 0.6180 13.05 10.92 23.97 46.00 1.3239 14.31 10.94 25.25 56.00 1.3239 6.14 10.94 17.08 46.00 2.3925 15.35 10.98 26.33 56.00 * 5.9952 35.24 11.15 46.39 60.00 5.9952 25.23 11.15 36.38 50.00 12.7149 27.48 11.42 38.90 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1539 25.16 10.92 36.08 65.79 -29.71 0.1539 6.60 10.92 17.52 55.79 -38.27 0.6180 22.14 10.92 33.06 56.00 -22.94 0.6180 13.05 10.92 23.97 46.00 -22.03 1.3239 14.31 10.94 25.25 56.00 -30.75 1.3239 6.14 10.94 17.08 46.00 -28.92 2.3925 15.35 10.98 26.33 56.00 -29.67 2.3925 4.79 10.98 15.77 46.00 -30.23 * 5.9952 35.24 11.15 46.39 60.00 -13.61 5.9952 25.23 11.15 36.38 50.00 -13.62 12.7149 27.48 11.42 38.90

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

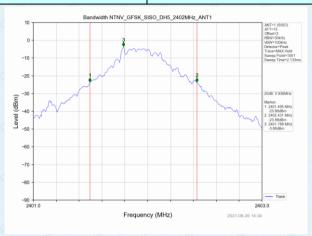
7.3 Conducted Peak Output Power



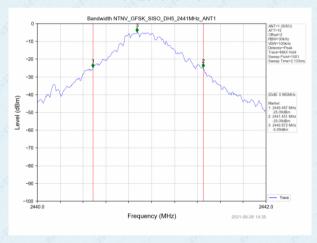
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-1.87	6 6	6 6	
GFSK	Middle	-2.57	30.00	Pass	
	Highest	-2.45	8 8 6		
8 8	Lowest	-1.66		Pass	
π/4-DQPSK	Middle	-2.18	20.97		
	Highest	-2.38		2 2	
9 9 9	Lowest	-1.76	9 9 2		
8-DPSK	Middle	-1.90	20.97	Pass	
	Highest	-2.09			

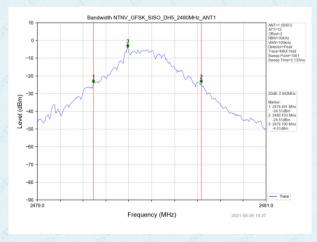
7.4 20dB Emission Bandwidth


Measurement Data

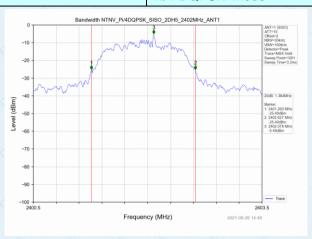
Mode Test channel		20dB Emission Bandwidth (MHz)	Result	
*	Lowest	0.936		
GFSK	Middle	0.965	Pass	
	Highest	0.942	P. B. B.	
	Lowest	1.364		
π/4-DQPSK	Middle	0 1.315	Pass	
	Highest	1.323		
6 6	Lowest	1.308		
8-DPSK	Middle	1.309	Pass	
	Highest	1.297	8 8 8	

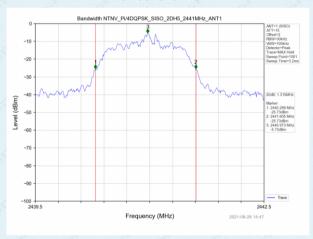


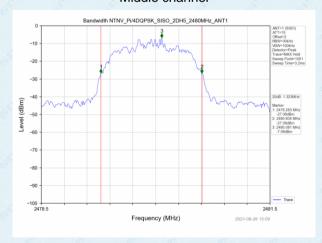
Test plot as follows:


Test mode: GFSK mode

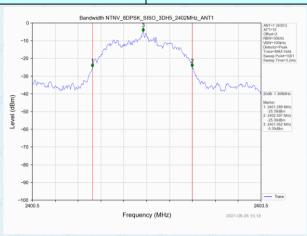
Lowest channel

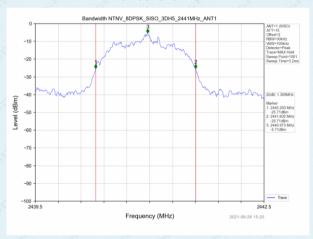

Middle channel

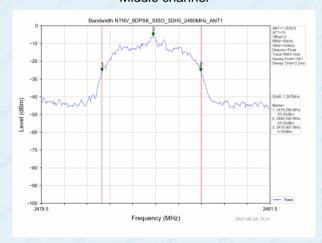

Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

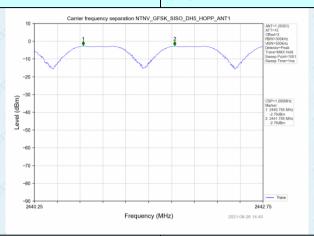
Middle channel

Highest channel

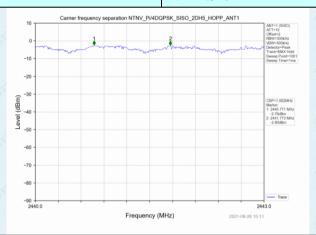
7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak				
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

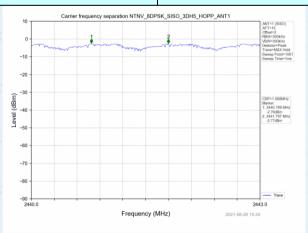
Measurement Data


Mode	Carrier Frequencies Separation (MHz)	20dB bandwidth (MHz) (worse case)	Limit (MHz)	Result
GFSK	1.000	0.965	≥0.965	8 - 8 -
π/4-DQPSK	1.002	1.364	≥0.909	Pass
8-DPSK	1.008	1.309	≥0.873	2 0

Note: According to section 7.4


Test plot as follows:

Modulation mode: GFSK


Modulation mode:

π/4-DQPSK

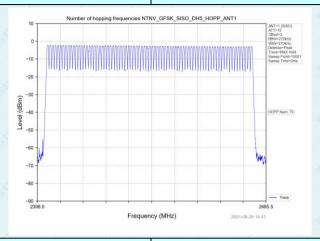
Modulation mode:

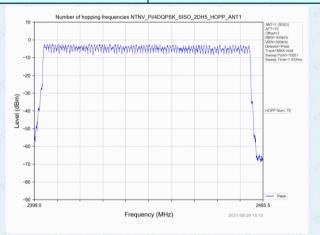
8-DPSK

7.6 Hopping Channel Number

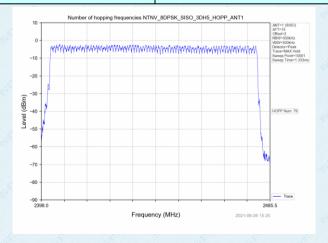
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				


Measurement Data:


Mode	Hopping channel numbers	Limit	Result	
GFSK	79	≥15	Pass	
π/4-DQPSK	79	≥15	Pass	
8-DPSK	79	≥15	Pass	


Test plot as follows:

Report No.: GTSL202108000157F01



Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	O.4 Second Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Measurement Data

Report No.: GTSL202108000157F01

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	125.686	400	Pass
2441MHz	DH3	246.900	400	Pass
2441MHz	DH5	322.344	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.394(ms)*(1600/(2*79))*31.6=125.686ms DH3 time slot=1.646(ms)*(1600/(4*79))*31.6=246.900ms DH5 time slot=2.904(ms)*(1600/(6*79))*31.6=322.344ms

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	131.289	400	Pass
2441MHz	2DH3	282.370	400	Pass
2441MHz	2DH5	302.536	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.409(ms)*(1600/ (2*79))*31.6=131.289ms

DH3 time slot=1.661(ms)*(1600/ (4*79))*31.6=282.370ms

DH5 time slot=2.909(ms)*(1600/ (6*79))*31.6=302.536ms

8-DPSK mode:

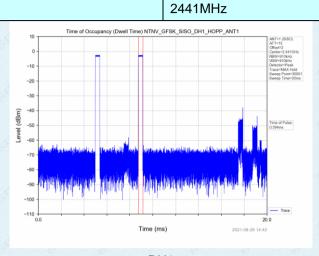
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	131.520	400	Pass
2441MHz	3DH3	247.489	400	Pass
2441MHz	3DH5	326.144	400	Pass

Remarks:

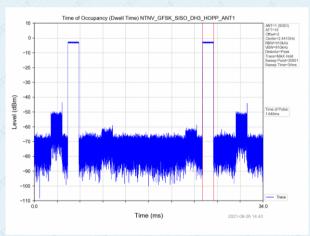
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

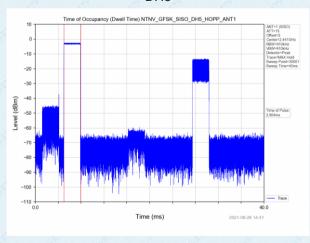
DH1 time slot=0.411(ms)*(1600/ (2*79))*31.6=131.520ms DH3 time slot=1.661(ms)*(1600/ (4*79))*31.6=247.489ms DH5 time slot=2.912(ms)*(1600/ (6*79))*31.6=326.144ms



Test plot as follows:

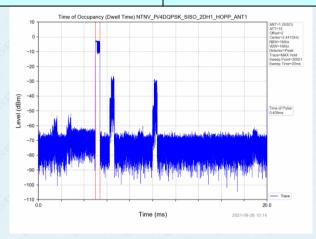

GFSK mode:

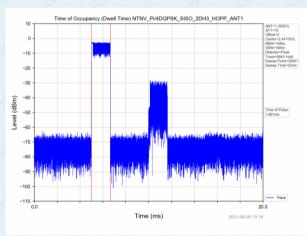
Test channel:


Report No.: GTSL202108000157F01

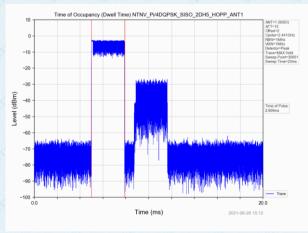
DH1

DH3



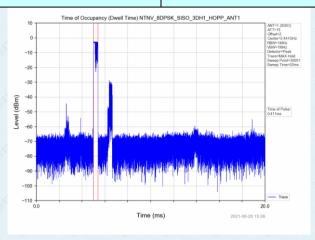

π/4-DQPSK mode:

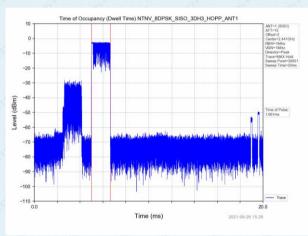
Report No.: GTSL202108000157F01


Test channel: 2441MHz

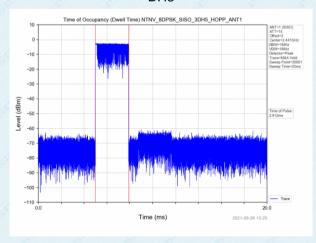
DH1

DH3




8-DPSK mode:

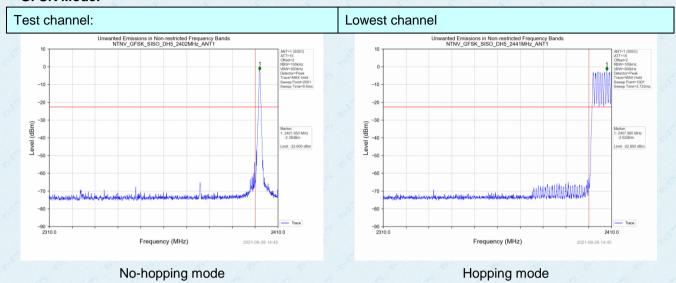
Report No.: GTSL202108000157F01


Test channel: 2441MHz

DH1

DH3

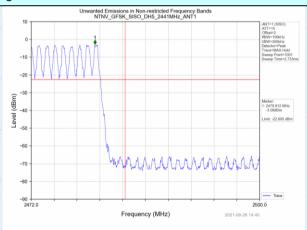
7.8 Band Edge


7.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass // // // // // // // // // // // // /

Test plot as follows:

GFSK Mode:



Test channel:

No-hopping mode

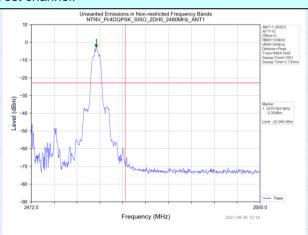
Highest channel


Hopping mode

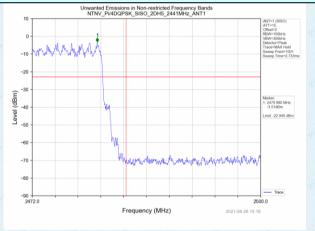
π/4-DQPSK Mode:

Unwanted Emissions in Non-restricted Frequency Bands NTNV_FN40OFSK_SISO_20H5_2402Mstz_ANT1 ATT-16 BISO_ATT-16 BIS

Lowest channel



No-hopping mode

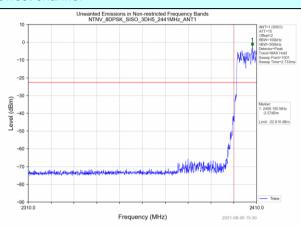

Frequency (MHz)

Hopping mode

Test channel:

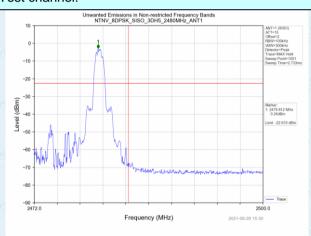
Highest channel

No-hopping mode

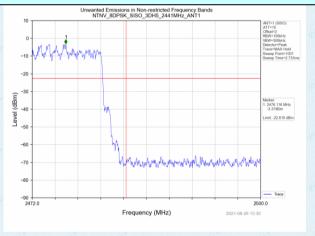

Hopping mode

8-DPSK Mode:

Lowest channel



No-hopping mode


Frequency (MHz)

Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205	5	49	9 9			
Test Method:	ANSI C63.10:20	7.53		9 (9				
Test Frequency Range:	All of the restriction 2500MHz) data	ct bands we		ly the wors	t band's	(2310MHz to			
Test site:	Measurement D	Cell Colonia			6				
Receiver setup:	Frequency	Detector	RBW	VBW	6	Remark			
Trooping: Gotap:	Above 1GHz	Peak	1MHz	3MHz		eak Value			
	Above 1GHZ	Peak	1MHz	10Hz	Ave	rage Value			
Limit:	Freque	ency	Limit (dBu	V/m @3m)		Remark			
	Above 1	Above 1GHz 54.00 Average Value							
	7.5510		74	.00	Pe	eak Value			
	Tum Table <	_	st Antenna- lm 4m >v						
Test Procedure:	maximum re 5. The test-rece Bandwidth w 6. If the emissic limit specified	a meter camble position of set 3 meter check was mour theight is varietermine the rid vertical point. Spected emis antenna was table was turading. Seriver system on level of the did, then testing the reported. Of the re-tested the position of the reported. Of the re-tested the position of the reported.	the highest rass away from the highest rass away from the total feet from one haximum valuatizations of the stuned to heighed from 0 downs set to Per Hold Mode. The EUT in pear ground be stotal from the stune of t	e was rotated adiation. The interfere op of a varial meter to foue of the fiethe antennation of was arranging from 1 egrees to 36 eak Detect Fix mode was opped and the emissions susing peak,	d 360 de ence-rec ble-heigl ur meter de are set ged to its meter to 60 degre function s 10dB lotte peak that did it, quasi-p	eiving et antenna es above the eth. Both eto make the es worst case of 4 meters ees to find the eand Specified ewer than the values of the not have 10dB eak or			
Test Instruments:	Refer to section	No.	300	10 10					
Test mode:	Refer to section				67	- 6			
Test environment:	307	37	377)% F	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz	2 2	- S	2 2					
Test results:	Pass	0	0 0	2	19	2 2			
						and the same of th			

Measurement Data

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:

Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	59.82	-5.68	54.14	74	-19.86	Horizontal
2390	59.47	-5.68	53.79	74	-20.21	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	45.36	-5.68	39.68	54	-14.32	Horizontal
2390	45.32	-5.68	39.64	54	-14.36	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel:

Highest channel

Peak value:

Frequency (MHz)			Factor (dB) Level (dBuV/m) Limit (dBuV		Over Limit (dB)	Polarization	
2483.5	59.78	-5.85	53.93	74	-20.07	Horizontal	
2483.5	59.83	-5.85	53.98	74	-20.02	Vertical	

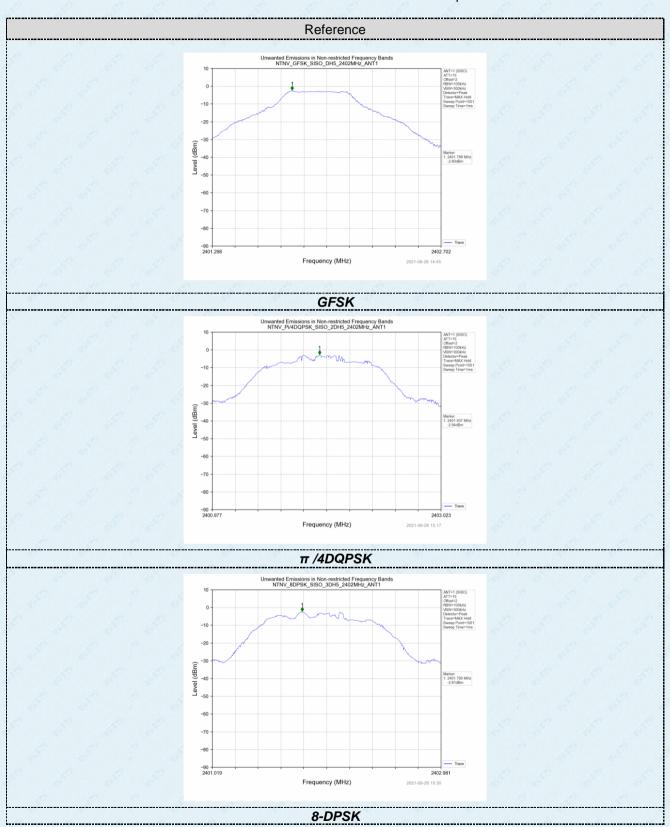
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

2	requency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
0	2483.5	45.01	-5.85	39.16	54	-14.84	Horizontal
	2483.5	44.78	-5.85	38.93	54	-15.07	Vertical

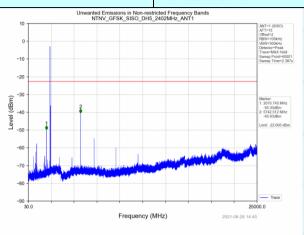
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

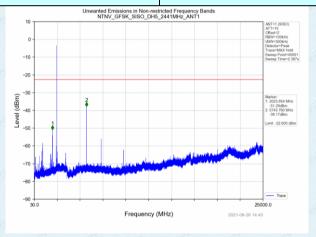
Remarks:


- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

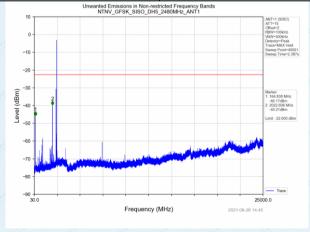
7.9 Spurious Emission

7.9.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Ground Reference Plane Refer to section 6.0 for details
Test Instruments: Test mode:	
	Refer to section 6.0 for details
Test mode:	Refer to section 6.0 for details Refer to section 5.2 for details


GFSK mode:

Test channel: Lowest channel

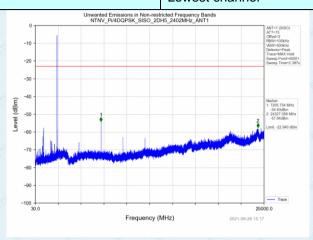

30MHz~25GHz

Test channel: Middle channel

30MHz~25GHz

Test channel: Highest channel

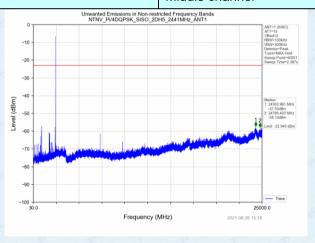
30MHz~25GHz



π/4-DQPSK mode:

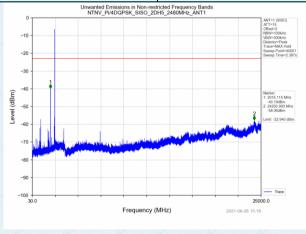
Test channel:

Report No.: GTSL202108000157F01


Lowest channel

30MHz~25GHz

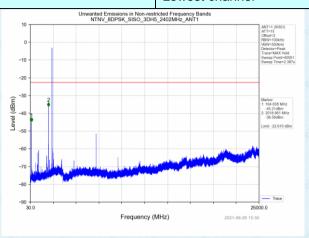
Test channel:


Middle channel

30MHz~25GHz

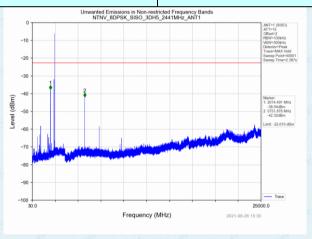
Test channel:

Highest channel



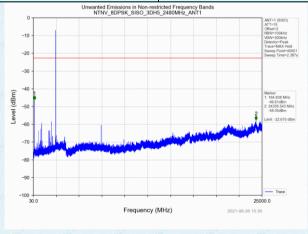
30MHz~25GHz

8-DPSK mode: Test channel: Report No.: GTSL202108000157F01


Lowest channel

30MHz~25GHz

Test channel:


Middle channel

30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013			(C)	**	9	3	· · · · · · · · · · · · · · · · · · ·	
Test Frequency Range:	9kHz to 25GHz	6		6	2	4	60		
Test site:	Measurement Distar	nce: 3	3m	48	68	68			
Receiver setup:	Frequency	C	etector	RBW		VBW		Value	
	9KHz-150KHz	Qu	asi-peak	200H	lz	600H	z	Quasi-peak	
	150KHz-30MHz	Qu	asi-peak	9KH	z	30KH	Z	Quasi-peak	
	30MHz-1GHz	Qu	asi-peak	120KI	Hz	300KH	łz	Quasi-peak	
	Above 1GHz		Peak	1MH	z	3MHz	<u>z</u>	Peak	
	Above IGIIZ	e di	Peak	1MH	z	10Hz	60	Average	
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	(QΡ		300m	
	0.490MHz-1.705M	0.490MHz-1.705MHz		/F(KHz)		QP		30m	
	1.705MHz-30MHz		30	30		QP 30m		30m	
	30MHz-88MHz		100	E San	(QP 🧪			
	88MHz-216MHz	150		(QΡ	S			
	216MHz-960MH	Z	200	10		QΡ		3m	
	960MHz-1GHz		500		QP			SIII	
	Above 1GHz	4	500		Average		6		
	Above Toriz		5000		Р	eak		8 8	
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz	7			
		111111	***************************************	111111111	*****	********	IIIII		
Test Antenna EUT- Tum Table-									
			L	Receiver					

Report No.: GTSL202108000157F01 For radiated emissions from 30MHz to1GHz 4m > EUT-Tum Table Receiver. Preamplifier. For radiated emissions above 1GHz Test Antenna-< 1m ... 4m > EUT. Turn Table <150cm> Receiver Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	81	Report No.:	GTSL202108	000157F01		
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V,	60Hz	8 8		7 8	8 8
Test results:	Pass	0 0		10 10	9	0 0

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Adapter 1 and Adapter 2 all have been tested, only worse case Adapter 1 is reported.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		39.1616	32.83	-18.03	14.80	40.00	-25.20	QP
2	*	79.2426	41.01	-20.74	20.27	40.00	-19.73	QP
3		149.4857	34.80	-17.65	17.15	43.50	-26.35	QP
4		198.5880	41.45	-20.15	21.30	43.50	-22.20	QP
5		451.1350	41.15	-16.05	25.10	46.00	-20.90	QP
6		962.1623	30.91	-8.89	22.02	54.00	-31.98	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	34.8823	51.19	-18.30	32.89	40.00	-7.11	QP
2		40.4172	48.70	-18.01	30.69	40.00	-9.31	QP
3		79.2426	48.04	-20.74	27.30	40.00	-12.70	QP
4		147.9214	48.12	-17.79	30.33	43.50	-13.17	QP
5		202.8104	44.41	-20.08	24.33	43.50	-19.17	QP
6		480.5276	38.01	-15.67	22.34	46.00	-23.66	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency	Read Level	20 20	10 - 10	Limit Line	Over Limit	20
(MHz)	(dBuV)	Factor (dB)	Level (dBuV/m)	(dBuV/m)	(dB)	polarization
4804	60.28	-3.61	56.67	74	-17.33	Vertical
7206	60.33	-0.85	59.48	74	-14.52	Vertical
4804	60.89	-3.61	57.28	74	-16.72	Horizontal
7206	60.14	-0.85	59.29	74	-14.71	Horizontal
\$ \$	2 8	<u> </u>	9 9 8	g g	2- 5	
4	£ <u>\$</u>	8 <u></u> 8	\$ <u></u> \$	g <u>.</u> g	£ _£	8 6

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

4	8 4		S3	£ 4	S <u></u> S	ê ê
8-8	2-8	_ 8 6	? ? <u>-</u> &	_88	?- <i>&</i>	2
7206	46.01	-0.85	45.16	54	-8.84	Horizontal
4804	46.74	-3.61	43.13	54	-10.87	Horizontal
7206	46.22	-0.85	45.37	54	-8.63	Vertical
4804	46.77	-3.61	43.16	54	-10.84	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel: Middle channel

Peak value:

Later Control	VAN VAN	68	(4)	68		68
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	60.27	-3.49	56.78	74	-17.22	Vertical
7326	59.36	-0.80	58.56	74	-15.44	Vertical
4882	60.25	-3.49	56.76	74	-17.24	Horizontal
7326	59.55	-0.80	58.75	74	-15.25	Horizontal
9 - 20	g 2	g" g"	8-8	g g	gg	gg g
8 8	2- 8	g <u>a</u>	? <u></u> \$	8 8	2 \$	
9 19	19 19	9 19	10 10	0 0	19 19	29

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	46.24	-3.49	42.75	54	-11.25	Vertical
7326	45.21	-0.80	44.41	54	-9.59	Vertical
4882	46.28	-3.49	42.79	54	-11.21	Horizontal
7326	45.57	-0.80	44.77	54	-9.23	Horizontal
) <u></u> 2		g g	gg	2 2	g	g g
8-8	2- \$	_ & &	?—	_88	2- 8	3

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel: Highest channel

Peak value:

8-8	2 8	<i>\$ \$</i>	7 8	& &	? \$	 2
· · ·	gg	g g "	8 8	g g	gg	g g
7440	59.82	-0.72	59.10	74	-14.90	Horizontal
4960	61.22	-3.41	57.81	74	-16.19	Horizontal
7440	59.83	-0.72	59.11	74	-14.89	Vertical
4960	61.32	-3.41	57.91	74	-16.09	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	46.28	-3.41	42.87	54	-11.13	Vertical
7440	44.85	-0.80	44.05	54	-9.95	Vertical
4960	46.12	-3.41	42.71	54	-11.29	Horizontal
7440	44.91	-0.80	44.11	54	-9.89	Horizontal
	8 -9	g g	8 6	g -g	9 9	8 8
8-8	2 B	- E E	° ? &°	- 8 8	? <i>\$</i>	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----