

中国认可 国际互认 检测 **TESTING CNAS L6791**

TEST REPORT

Applicant: Ugreen Group Limited

URGEEN Building, Longcheng Industrial Park, Address:

Longguanxi Road, Longhua, ShenZhen, China

Equipment Type: AX900 USB Dual Band Wi-Fi Adapter

Model Name: CM762

Brand Name: UGREEN

FCC ID: 2AQI5-CM762

FCC 47 CFR Part 2.1093 **Test Standard:**

(refer to section 3.1)

Body 2.4GHz(1 g@5mm): 0.50 W/kg **Maximum SAR:**

Body 5GHz(1 g@5mm): 1.11 W/kg

Sample Arrival Date: Jun. 21, 2024

Test Date: Jul. 19, 2024

Date of Issue: Aug. 06, 2024

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Xiong Lining Checked by: Xu Rui Approved by: Tolan Tu

Xu Rur

(Testing Director)

Liong Li Wing

Tolan In

Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 1 / 98 Web: www.titcgroup.com Template No.: TRP-FCC DASY-Body-3 (2023-01-30)

Revision History

Version

Issue Date

Revisions Content

Rev. 01 Aug. 06, 2024

Initial Issue

TABLE OF CONTENTS

1	GENER	RAL INFORMATION	4
	1.1	Test Laboratory	4
	1.2	Test Location	4
	1.3	Test Environment Condition	4
2	PRODU	JCT INFORMATION	5
	2.1	Applicant Information	5
	2.2	Manufacturer Information	5
	2.3	Factory Information	5
	2.4	General Description for Equipment under Test (EUT)	5
	2.5	Ancillary Equipment	5
	2.6	Technical Information	6
3	SUMMA	ARY OF TEST RESULT	7
	3.1	Test Standards	7
	3.2	Device Category and SAR Limit	8
	3.3	Test Result Summary	9
	3.4	Test Uncertainty	10
4	MEASU	JREMENT SYSTEM	11
	4.1	Specific Absorption Rate (SAR) Definition	11
	4.2	DASY SAR System	12
5	SYSTE	M VERIFICATION	19
	5.1	Purpose of System Check	19
	5.2	System Check Setup	19
6	TEST P	OSITION CONFIGURATIONS	20
	6.1	Body-worn Position Conditions	20

7	MEASU	JREMENT PROCEDURE	21
	7.1	Measurement Process Diagram	21
	7.2	SAR Scan General Requirement	22
	7.3	Measurement Procedure	23
	7.4	Area & Zoom Scan Procedure	23
8	COND	JCTED RF OUPUT POWER	24
	8.1	WIFI	24
9	TEST E	EXCLUSION CONSIDERATION	27
	9.1	Antenna location	27
	9.2	SAR Test Consideration Table	28
10	TEST F	RESULT	31
	10.1	WIFI 2.4GHz	32
	10.2	WIFI 5GHz	32
11	SAR M	easurement Variability	33
12	SIMUL	TANEOUS TRANSMISSION	34
	12.1	Simultaneous Transmission Mode Considerations	34
	12.2	Sum SAR of Simultaneous Transmission	35
13	TEST	EQUIPMENTS LIST	36
A۱	NEX A	SIMULATING LIQUID VERIFICATION RESULT	37
A۱	NNEX B	SYSTEM CHECK RESULT	38
A۱	NNEX C	TEST DATA	45
A۱	NNEX D	EUT EXTERNAL PHOTOS	51
A۱	NNEX E	SAR TEST SETUP PHOTOS	54
A۱	NNEX F	CALIBRATION REPORT	57
	F.1	E-Field Probe (EX3DV4 - SN:7510)	57
	F.2	Data Acquisition Electronics (DAE4 - SN:1711)	79
	F.3	2450 MHz Dipole	82
	F.4	5GHz Dipole	88
A۱	NEX G	TUNE-UP PROCEDURE	96

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.	
	☐ Block B, 1/F, Baisha Science and Technology Park, Shahe Xi	
	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China	
Location	1/F, Building B, Ganghongji High-tech Intelligent Industrial Park,	
	No. 1008, Songbai Road, Yangguang Community, Xili Sub-district,	
	Nanshan District, Shenzhen, Guangdong Province, P. R. China	
A core ditation Cartificate	The laboratory is a testing organization accredited by FCC as a	
Accreditation Certificate	accredited testing laboratory. The designation number is CN1196.	

1.3 Test Environment Condition

Ambient Temperature	18℃ to 25℃	
Ambient Relative	200/ to 700/	
Humidity	30% to 70%	

Page No. 5 / 98

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Ugreen Group Limited	
Address	URGEEN Building, Longcheng Industrial Park, Longguanxi Road,	
Address	Longhua, ShenZhen, China	

2.2 Manufacturer Information

Manufacturer	Ugreen Group Limited	
Address	URGEEN Building, Longcheng Industrial Park, Longguanxi Road,	
Address	Longhua, ShenZhen, China	

2.3 Factory Information

Factory	SHENZHEN TENDA TECHNOLOGY CO., LTD. DONGGUAN
Factory	BRANCH
Addross	No.3 Gongye West Road II, Songshanhu Park, Dongguan City,
Address	Guangdong Province, China

2.4 General Description for Equipment under Test (EUT)

EUT Name	AX900 USB Dual Band Wi-Fi Adapter	
Model Name Under Test	CM762	
Series Model Name	N/A	
Description of Model	N/A	
name differentiation		
Hardware Version	10056083 V3.1	
Software Version	6.40.60.192	
Dimensions (Approx.)	N/A	
Weight (Approx.)	N/A	

Remark:

- Product Number (P/N) code in the below table, for marketing purpose, will be marked on the marking plate.

35264	35264P	35264X	35264A	35264B	35264C
35264U	35264JP	35264EU	35264UK	35264US	

2.5 Ancillary Equipment

Note: Not applicable.

2.6 Technical Information

	2.4G WIFI 802.11b, 802.11g, 802.11n(HT20/40) and		
Network and Wireless	802.11ax(HE20/40)		
connectivity	5G WIFI 802.11a, 802.11n(HT20/40), 802.11ac(VHT20/40/80) and		
	802.11ax(HE20/40/80), U-NII-1/3		

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	2.4G WLAN, 5G WLAN		
	802.11b/g/n(HT20/HT40)	2412 MHz ~ 2462 MHz	
	802.11ax(HE20/HE40)	2412 MHz ~ 2462 MHz	
Frequency Range	802.11a/n(HT20/HT40)	5150 MHz ~ 5250 MHz	
Frequency Range	/ac(VHT20/VHT40/VHT80)	5725 MHz ~ 5850 MHz	
	802.11ax(HE20/HE40/HE80)	5150 MHz ~ 5250 MHz	
		5725 MHz ~ 5850 MHz	
Antenna Type	WLAN	Internal Antenna	
Hotspot Function	N/A		
Exposure Category	General Population/Uncontrolled exposure		
Product Type	Portable Device		
EUT Type		☐ Identical prototype	

3 SUMMARY OF TEST RESULT

3.1 Test Standards

No.	Identity	Document Title		
1	47 CFR Part 2.1093	Radiofrequency radiation exposure evaluation: portable devices		
2	ANSI C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure		
	ANSI 095. 1-1992	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz		
3	KDB 447498 D04	447409 D04 Interim Coneral DE Evaceure Cuidence v01		
☆	v01	447498 D04 Interim General RF Exposure Guidance v01		
4	KDB 447498 D02	SAR MEASUREMENT PROCEDURES FOR USB DONGLE		
☆	v02r01	TRANSMITTERS		
5	KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz		
☆	v01r04	SAR Measurement 100 MHZ to 6 GHZ		
6	KDB 865664 D02	RF Exposure Reporting		
☆	v01r02	RF Exposure Reporting		
7	KDB 248227 D01	SAR Cuidance for IEEE 902 11 (Mi Ei) Transmitters		
☆	v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters		

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

	SAR Value (W/Kg)			
Body Position	General Population/	Occupational/		
	Uncontrolled Exposure	Controlled Exposure		
Whole-Body SAR	0.08	0.4		
(averaged over the entire body)	0.08	0.4		
Partial-Body SAR	1.60	8.0		
(averaged over any 1 gram of tissue)	1.00	8.0		
SAR for hands, wrists, feet and				
ankles	4.0	20.0		
(averaged over any 10 grams of tissue)				

NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR (1 g Value)

		Maximum Scaled SAR (W/kg)	Maximum Report SAR (W/kg)
Equipment Class	Band	Body (5mm)	Body (5mm)
		1g SAR	1g SAR
DTS	2.4G WLAN	0.50	4.44
NII	5G WLAN	1.11	1.11
Limit (W/kg)		1.6	
Verdict		PA	SS

3.3.2 Highest Simultaneous Transmission SAR Values (1 g Value)

	Maximum Report SAR (W/kg)	
Equipment Class	Body(5mm)	SPLSR
	1g SAR	
DTS	1.51	/
NII	1.51	/
Limit (W/Kg)	1.6	0.04
Verdict	PASS	PASS

Note: The simultaneous transmission SAR detail please refer to section 12.

3.4 Test Uncertainty

According to KDB 865664 D01, when the highest measured 1 g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval.

The maximum 1 g SAR for the EUT in this report is 1.11 W/kg, which is lower than 1.5 W/kg, so the extensive SAR measurement uncertainty analysis is not required in this report.

4 MEASUREMENT SYSTEM

4.1 Specific Absorption Rate (SAR) Definition

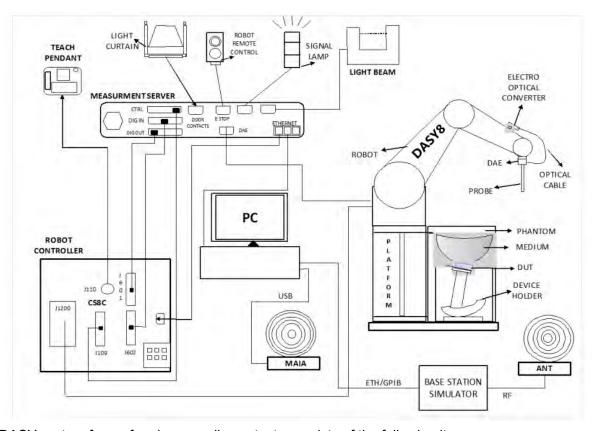
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

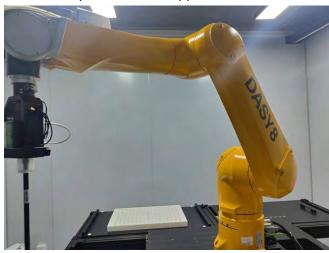
$$SAR = \frac{\sigma E^2}{\rho}$$


Where: σ is the conductivity of the tissue,

pis the mass density of the tissue and E is the RMS electrical field strength.

4.2 DASY SAR System

4.2.1 DASY SAR System Diagram


The DASY system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is
 battery powered with standard or rechargeable batteries. The signal is optically transmitted to the
 EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server.
- 6. The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
- 7. DASY software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

4.2.2 Robot

The Dasy SAR system uses the high precision robots. Symmetrical design with triangular core Built-in optical fiber for surface detection system For the 6-axis controller system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Low maintenance costs
 (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brush less synchron motors; no stepper motors)
- Low ELF interference (motor control _elds shielded via the closed metallic construction shields)

4.2.3 E-Field Probe

The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4-SN: 7510 with following specifications is used.

Construction Symmetrical design with triangular core Built-in optical fiber for surface detection system

Built-in shielding against static charges PEEK enclosure material (resistant to organic

solvents, e.g., glycolether)

Calibration ISO/IEC 17025 calibration service available

Frequency 4 MHz to 10 GHz; Linearity: ± 0.2 dB

Directivity ± 0.2 dB in HSL (rotation around probe axis); ± 0.4 dB in HSL (rotation normal to probe

axis)

Dynamic range $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Dimensions Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from

probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic

scanning in arbitrary phantoms (EX3DV4)


E-Field Probe Calibration Process

Probe calibration is realized, in compliance with IEC/IEEE 62209-1528 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC/IEEE 62209-1528 annexe technique using reference guide at the five frequencies.

4.2.4 Data Acquisition Electronics

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

- Input Impedance: 200MOhm
- The Inputs: Symmetrical and Floating
- Commom Mode Rejection: Above 80dB

4.2.5 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

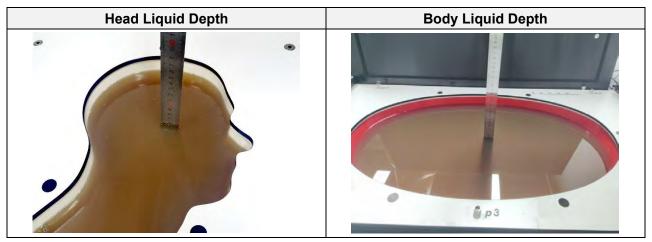
- ·Left head
- ·Right head
- ·Flat phantom

Photo of Phantom SN1859

Serial Number	Material	Length	Height
SN 1859 SAM	Vinylester, glass fiber reinforced	1000	500

4.2.6 Device Holder

The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA"s only. If necessary an additional support of polystyrene material is used. Larger DUT"s (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.



The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°.

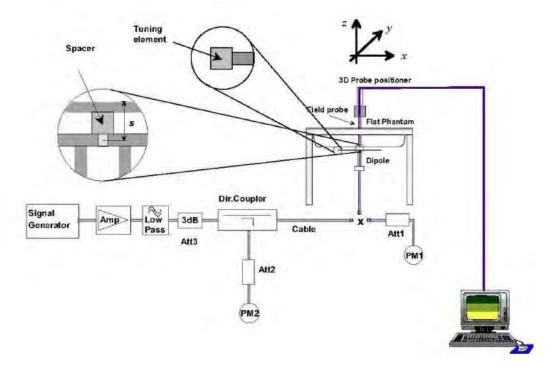
4.2.7 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

The following table gives the recipes for tissue simulating liquid.

TSL	Manufacturer / Model	Freq Range (MHz)	Main Ingredients
Head WideBand	SPEAG HBBL600- 10000V6	600-10000	Ethanediol, Sodium petroleum sulfonate, Hexylene Glycol / 2-Methyl-pentane-2.4- diol, Alkoxylated alcohol

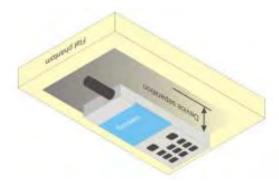

SYSTEM VERIFICATION

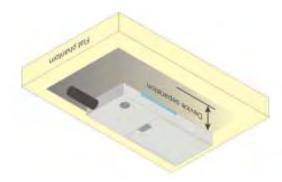
5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.2 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

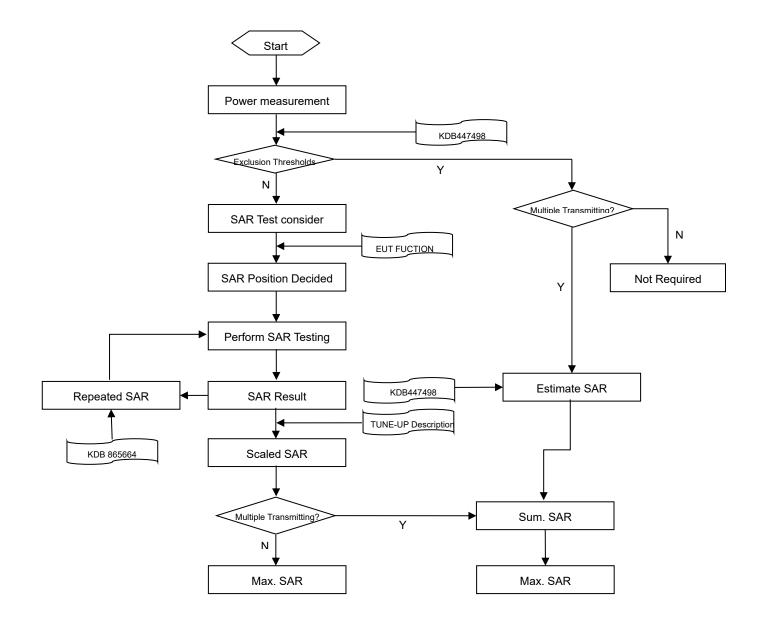

6 TEST POSITION CONFIGURATIONS


6.1 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.



7 MEASUREMENT PROCEDURE

7.1 Measurement Process Diagram

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Boththe probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz
Maximum distance from o	closest meas	surement point	5±1 mm	½·δ·ln(2)±0.5 mm
(geometric center of prob	e sensors) t	o phantom surface	02111111	72 0 III(2)±0.0 IIIIII
Maximum probe angle from	om probe ax	s to phantom surface	30°±1°	20°±1°
normal at the measureme	ent location		00 21	
		≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm	
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
			When the x or y dimension of t	he test device, in the
Maximum area scan spat	ial resolution	n: Δx Area , Δy Area	measurement plane orientation	n, is smaller than the above,
			the measurement resolution m	ust be ≤ the corresponding x or
			y dimension of the test device	with at least one measurement
		point on the test device.		
Maximum zoom scan sna	Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom		≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*
Maximum 200m Scan Spa	iliai resolulio	л. дх 200m , ду 200m	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*
	uniform grid: Δz Zoom (n)		≤ 5 mm	3–4 GHz: ≤ 4 mm
				4–5 GHz: ≤ 3 mm
Maximum zoom scan				5–6 GHz: ≤ 2 mm
spatial resolution,		Δz Zoom (1): between		3–4 GHz: ≤ 3 mm
normal to phantom		1st two points closest	≤ 4 mm	4–5 GHz: ≤ 2.5 mm
surface	graded	to phantom surface		5–6 GHz: ≤ 2 mm
grid Δz Zoom (n>1): between subsequent points		≤ 1.5·Δz Zoom (n-1)		
Minimum zoom				3–4 GHz: ≥ 28 mm
scan volume		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm
Joan Volumo				5–6 GHz: ≥ 22 mm

Note:

- 1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- 2. * When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 Measurement Procedure

The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 *32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

8.1 WIFI

8.1.1 2.4G WIFI

Band	Mada	01	Freq.	Average	Tune-up Power	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
		1	2412	16.09	16.60	Yes
	802.11b	6	2437	16.01	16.60	Yes
		11	2462	14.80	16.60	Yes
		1	2412	16.26	16.60	No
	802.11g	6	2437	16.23	16.60	No
		11	2462	15.34	16.60	No
	802.11n(HT20)	1	2412	14.81	15.60	No
		6	2437	15.53	15.60	No
2.4		11	2462	14.62	15.60	No
(2.4~2.4835)		3	2422	13.85	14.60	No
	802.11n(HT40)	6	2437	13.65	14.60	No
		9	2452	14.49	14.60	No
		1	2412	15.27	15.60	No
	802.11ax(HE20)	6	2437	14.92	15.60	No
		11	2462	15.28	15.60	No
		3	2422	13.84	14.60	No
	802.11ax(HE40)	6	2437	13.57	14.60	No
		9	2452	14.32	14.60	No

Note: According KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Adjusted SAR = Report SAR * (max power (OFDM)/ max power (DSSS)) = 0.500 * (45.71mW/45.71mW) = 0.500 W/Kg, so the 2.4G OFDM SAR test is not required.

8.1.2 5G WIFI

Band	Mode	Channel	Freq.	Average	Tune-up Power	SAR Test
(GHz)	iviode	Channe	(MHz)	Power(dBm)	Limit (dBm)	Require.
		36	5180	15.79	16.00	No
	802.11a	44	5220	15.66	16.00	No
		48	5240	15.17	16.00	No
		36	5180	15.83	16.00	No
	802.11n(HT20)	44	5220	15.67	16.00	No
		48	5240	15.56	16.00	No
	902 44p/UT40)	38	5190	15.43	16.00	Yes
	802.11n(HT40)	46	5230	15.55	16.00	Yes
		36	5180	15.80	16.00	No
5.2	802.11ac(VHT20)	44	5220	15.76	16.00	No
(5.15~5.25)		48	5240	15.28	16.00	No
	000 44 () (38	5190	14.42	15.00	No
	802.11ac(VHT40)	46	5230	14.61	15.00	No
	802.11ac(VHT80)	42	5210	13.75	14.00	No
		36	5180	15.62	16.00	No
	802.11ax(HE20)	44	5220	15.43	16.00	No
		48	5240	15.22	16.00	No
	802.11ax(HE40)	38	5190	13.42	14.00	No
		46	5230	13.46	14.00	No
	802.11ax(HE80)	42	5210	13.54	14.00	No
	,	149	5745	15.14	16.00	No
	802.11a	157	5785	15.08	16.00	No
		165	5825	15.68	16.00	No
		149	5745	15.58	16.00	No
	802.11n(HT20)	157	5785	15.36	16.00	No
		165	5825	15.67	16.00	No
	202.44 (UT.42)	151	5755	15.15	16.00	Yes
	802.11n(HT40)	159	5795	15.04	16.00	Yes
		149	5745	15.28	16.00	No
5.8	802.11ac(VHT20)	157	5785	15.44	16.00	No
(5.725~5.850)		165	5825	15.84	16.00	No
		151	5755	14.45	15.00	No
	802.11ac(VHT40)	159	5795	14.32	15.00	No
	802.11ac(VHT80)	155	5775	13.12	14.00	No
	, ,	149	5745	15.31	16.00	No
	802.11ax(HE20)	157	5785	15.19	16.00	No
		165	5825	15.82	16.00	No
		151	5755	13.42	14.00	No
	802.11ax(HE40)	159	5795	13.21	14.00	No

802.11ax(HE80)	155	5775	13.41	14.00	No

Note: When multiple channel bandwidth configurations in a frequency band have the same maximum tune-up output power, the test configuration is determined by applying the following steps sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same maximum tune-up output power.
- 2) When multiple transmission modes (802.11a/n/ac/ax) have the same maximum tune-up output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n, and 802.11n chosen over 802.11ac then 802.11ax.

9 TEST EXCLUSION CONSIDERATION

9.1 Antenna location

Antenna	Band	
Ant.1	2.4G WiFi; 5G WiFi	

9.2 SAR Test Consideration Table

According with FCC KDB 447498 D04, Appendix B, The SAR-based exemption formula applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). The following table shows the power threshold from 5mm to 50mm.

Power Thresholds (mW)							
Eroguanav	At separation						
Frequency	distance of						
(MHz)	≤5 mm	10 mm	15 mm	20 mm	25 mm		
300	39 mW	65 mW	88 mW	110 mW	129 mW		
450	22 mW	44 mW	67 mW	89 mW	112 mW		
835	9 mW	25 mW	44 mW	66 mW	90 mW		
1900	3 mW	12 mW	26 mW	44 mW	66 mW		
2450	3 mW	10 mW	22 mW	38 mW	59 mW		
3600	2 mW	8 mW	18 mW	32 mW	49 mW		
5800	1 mW	6 mW	14 mW	25 mW	40 mW		
F=====================================	At separation						
Frequency	distance of						
(MHz)	30 mm	35 mm	40 mm	45 mm	50 mm		
300	148 mW	166 mW	184 mW	201 mW	217 mW		
450	135 mW	158 mW	180 mW	203 mW	226 mW		
835	116 mW	145 mW	175 mW	207 mW	240 mW		
1900	92 mW	122 mW	157 mW	195 mW	236 mW		
2450	83 mW	111 mW	143 mW	179 mW	219 mW		
3600	71 mW	96 mW	125 mW	158 mW	195 mW		
5800	58 mW	80 mW	106 mW	136 mW	169 mW		

9.2.1 SAR Test Consideration

This host is a AX900 USB Wireless Adapter, under normal use the RF exposure scenarios are shown in the table below:

RF exposure Position	RF exposure scenarios
Front Side	Body
Back Side	Body
Left Edge	Body
Right Edge	Body
Top Edge	Body

Body RF exposure scenarios

Test Position Configurations	Mode	WIFI 2.4GHz	U-NII-2A	U-NII-4		
Calculated Fr	requency(MHz)	2462	5320	5885		
	Distance to User (mm)	5.00				
	Max. Peak Power (dBm)	16.60	16.00	16.00		
Front Side	Max. Peak Power (mW)	45.71	39.81	39.81		
	Exclusion Threshold (mW)	2.73	1.47	1.37		
	SAR Test Required	Yes	Yes	Yes		
	Distance to User (mm)		5.00			
	Max. Peak Power (dBm)	16.60	16.00	16.00		
Back Side	Max. Peak Power (mW)	45.71	39.81	39.81		
	Exclusion Threshold (mW)	2.73	1.47	1.37		
	SAR Test Required	Yes	Yes	Yes		
	Distance to User (mm)	5.00				
	Max. Peak Power (dBm)	16.60	16.00	16.00		
Left Edge	Max. Peak Power (mW)	45.71	39.81	39.81		
	Exclusion Threshold (mW)	2.73	1.47	1.37		
	SAR Test Required	Yes	Yes	Yes		
	Distance to User (mm)					
	Max. Peak Power (dBm)	16.60	16.00	16.00		
Right Edge	Max. Peak Power (mW)	45.71	39.81	39.81		
	Exclusion Threshold (mW)	2.73	1.47	1.37		
	SAR Test Required	Yes	Yes	Yes		
	Distance to User (mm)		5.00			
	Max. Peak Power (dBm)	16.60	16.00	16.00		
Top Edge	Max. Peak Power (mW)	45.71	39.81	39.81		
	Exclusion Threshold (mW)	2.73	1.47	1.37		
	SAR Test Required	Yes	Yes	Yes		

Page No. 30 / 98

Note:

- Maximum power is the source-based time-average power and represents the maximum RF output power including tuneup tolerance among production units
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D04, for separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive), the threshold Pth (mW) is given by Following:

$$P_{t,k}(mW) = \begin{cases} ERP_{20cm}(d/20cm)^x & d \le 20cm \\ ERP_{20cm} & 20cm < d \le 40cm \end{cases}$$

where

$$x = -log_{10} \left(\frac{60}{ERP_{20cm} \sqrt{f}} \right)$$

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. d is the separation distance (cm), The result is rounded to one decimal place for comparison
- c. ERP_{20cm} are determined by:

$$ERP_{20cm}(mW) = f(x) = \begin{cases} 2040f & 0.3GHz \le f < 1.5GHz \\ 3060 & 1.5GHz \le f \le 6GHz \end{cases}$$

- 5. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate
- 6. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D04 SAR test exclusion applies to the OFDM configuration.
 - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- 7. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
 - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

10 TEST RESULT

- 1. The reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WIFI signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".
 - c. For WIFI/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D04, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the midband or highest output power channel is:
 - $\cdot \leq 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - $\cdot \leqslant 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - $\cdot \leqslant 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is $\geqslant 200$ MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg

10.1WIFI 2.4GHz

Antenna	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas. SAR (W/Kg)	Duty Cycle (%)	Duty Cycle Factor	Meas. Power (dBm)	Max. tune-up Power (dBm)	Scaling Factor	1g Scaled SAR (W/Kg)	Meas. No.
Body														
		Front Side	5	1	2412	-0.09	0.381	98.21	1.018	16.09	16.60	1.125	0.436	1
		Back Side	5	1	2412	0.03	0.437	98.21	1.018	16.09	16.60	1.125	0.500	1#
		Left Edge	5	1	2412	0.02	0.419	98.21	1.018	16.09	16.60	1.125	0.480	1
Ant.1	802.11 b	Right Edge	5	1	2412	-0.02	0.291	98.21	1.018	16.09	16.60	1.125	0.333	1
		Top Edge	5	1	2412	-0.19	0.052	98.21	1.018	16.09	16.60	1.125	0.060	1
		Back Side	5	6	2437	0.11	0.423	98.21	1.018	16.01	16.60	1.146	0.493	/
		Back Side	5	11	2462	0.18	0.315	98.21	1.018	14.80	16.60	1.514	0.485	/
Note: Refe	r to ANNEX C	for the detaile	ed test da	ta for ea	ch test con	figuration.								

10.2WIFI 5GHz

Antenna	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	10 g Meas. SAR (W/Kg)	Duty Cycle (%)	Duty Cycle Factor	Meas. Power (dBm)	Max. tune-up Power (dBm)	Scaling Factor	10 g Scaled SAR (W/Kg)	Meas. No.
Body														
		Front Side	5	46	5230	-0.09	0.594	95.54	1.047	15.55	16.00	1.109	0.690	1
		Back Side	5	46	5230	-0.07	0.683	95.54	1.047	15.55	16.00	1.109	0.793	2#
Ant.1	5.2G	Left Edge	5	46	5230	-0.01	0.544	95.54	1.047	15.55	16.00	1.109	0.632	1
Ant. I	802.11n40	Right Edge	5	46	5230	-0.19	0.344	95.54	1.047	15.55	16.00	1.109	0.399	1
		Top Edge	5	46	5230	-0.02	0.465	95.54	1.047	15.55	16.00	1.109	0.540	1
		Back Side	5	38	5190	-0.13	0.617	95.54	1.047	15.43	16.00	1.140	0.736	1
		Front Side	5	151	5755	0.18	0.841	95.54	1.047	15.15	16.00	1.216	1.071	1
		Back Side	5	151	5755	0.11	0.564	95.54	1.047	15.15	16.00	1.216	0.718	1
Ant.1	5.8G	Left Edge	5	151	5755	0.15	0.311	95.54	1.047	15.15	16.00	1.216	0.396	1
Ant.1	802.11n40	Right Edge	5	151	5755	-0.19	0.370	95.54	1.047	15.15	16.00	1.216	0.471	1
		Top Edge	5	151	5755	0.02	0.869	95.54	1.047	15.15	16.00	1.216	1.106	3#
		Top Edge	5	159	5795	-0.16	0.842	95.54	1.047	15.04	16.00	1.247	1.099	1
Note: Refer	r to ANNEX C for	the detailed te	st data fo	or each te	est configu	ation.								

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissueequivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Frequency Band (MHz)	Wireless Band	RF Exposure Conditions	Test Position	Highest Measured SAR (W/kg)	Repeated SAR (Yes/No)	Repeated ^{1th} Measured SAR (W/kg)	Largest to Smallest SAR Radio
5755	WIFI 5.8G 802.11n40	Body	Front Side	0.841	Yes	0.822	1.02
5755	WIFI 5.8G 802.11n40	Body	Top Edge	0.869	Yes	0.838	1.04
5795	WIFI 5.8G 802.11n40	Body	Top Edge	0.842	Yes	0.819	1.03

Note: The ratio of largest to smallest SAR for the original and first repeated measurements is < 1.20, the second repeated measurement. is not required.

12 SIMULTANEOUS TRANSMISSION

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR). According KDB 447498 D04, simultaneous transmission:

- a) SPLSR = (SAR1 + SAR2)^{A1.5} / R_i (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. SAR1 is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition. SAR2 is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition as the first.
- b) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
- c) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

12.1 Simultaneous Transmission Mode Considerations

No.	Simultaneous Tx Combination	Body
1	2.4G WiFi + 5G WiFi	Yes

Note:

1. The maximum SAR summation is calculated based on the same configuration and test position.

12.2Sum SAR of Simultaneous Transmission

12.2.1 Body Simultaneous Transmission SAR Evaluation for WLAN

			SUM SAR	
Antenna	Position	1	2	SUWI SAR
		2.4GWIFI Max.	5GWIFI Max.	1+2
	Front Side 5mm	0.436	1.071	1.507
	Back Side 5mm	0.500	0.793	1.293
Ant.1	Left Edge 5mm	0.480	0.632	1.112
	Right Edge 5mm	0.333	0.471	0.804
	Top Edge 5mm	0.060	1.106	1.166

Note:

^{1:} The highest Summed 1g SAR is 1.507 W/Kg < 1.6 W/kg, so Simultaneous Transmission SAR test is not required.

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
Test Software	Speag	DASY8	16.2.2.1588	N/A	N/A
2450MHz Validation Dipole	Speag	D2450V2	SN: 952	2024/05/07	2027/05/06
5GHz Validation Dipole	Speag	D5GHzV2	SN: 1200	2024/05/09	2027/05/08
Data Acquisition Electronicsr	Speag	DAE4	SN: 1711	2024/03/18	2025/03/17
E-Field Probe	Speag	EX3DV4	SN: 7510	2024/06/25	2025/06/24
Signal Generator	R&S	SMB100A	177746	2024/04/24	2025/04/23
Power Meter	R&S	NRVD-B2	835843/014	2023/09/05	2024/09/04
Power Sensor	R&S	NRV-Z4	100381	2023/09/05	2024/09/04
Power Sensor	R&S	NRV-Z2	100211	2023/09/05	2024/09/04
Network Analyzer	Agilent	E5071C	MY46103472	2023/11/14	2024/11/13
Thermometer	Elitech	RC-4	EF5238001628	2023/10/09	2024/10/08
Thermometer	Elitech	RC-4HC	EF7239002652	2023/11/17	2024/11/16
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	Speag	DAK3.5	SN: 1312	N/A	N/A
Phantom	Speag	SAM	SN: 1859	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

Note: For dipole antennas, BALUN has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss in within 20% of calibrated measurement.
- 4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement.

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using a DAK3.5 Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp. (°C)	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ε)	Target Conductivity (σ) (S/m)	Target Permittivity (ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2024.07.19	Head	2450	21.3	1.80	39.70	1.80	39.20	0.00	1.28
2024.07.19	Head	5250	21.3	4.81	35.21	4.71	35.93	2.12	-2.00
2024.07.19	Head	5750	21.3	5.18	35.55	5.22	35.36	-0.77	0.54
Note: The tole	erance lim	nit of Cond	ductivity a	nd Permittivity is	s± 5%.				

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SPEAG, the validation data should be within itsspecification of 10 %(for 1 g).

Data	Liquid	Freq.	Power	Measured	Normalized SAR	Dipole SAR	Tolerance
Date	Туре	(MHz)	(mW)	SAR (W/kg)	(W/kg)	(W/kg)	(%)
2024.07.19	Head	2450	100	5.37	53.70	52.60	2.09
2024.07.19	Head	5250	100	7.98	79.80	77.70	2.70
2024.07.19	Head	5750	100	7.96	79.60	77.60	2.58
Note: The tolerand	e limit of Svst	em validation	±10%.	•			

System Performance Check Data (2450MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
D2450V2 , SPEAG	10.0 x 10.0 x 3.0	Dipole

Exposure Conditions

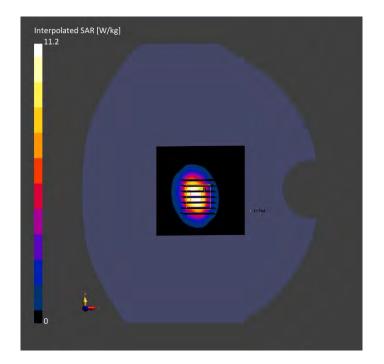
Phantom	Position,	Band	Group,	Frequency	Conversion	TSL	TSL	Ambient	Liquid
Section,	Test		UID	[MHz],	Factor	Conductivi	Permittivit	Temperatu	Temperatu
TSL	Distance			Channel		ty [S/m]	у	re	re
	[mm]			Number				[°C]	[°C]
Flat,	[mm]	D2450	CW,	Number 2450.0,	7.75	1.8	39.7	[°C]	[°C] 21.3

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18
tilt) - 1859			

Scan Setup

Measurement Results


	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	80.0 x 80.0	30.0 x 30.0 x 30.0	Date	2024-07-19	2024-07-19
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5	psSAR1g [W/kg]	5.32	5.37
Sensor Surface	3.0	1.4	psSAR10g	2.41	2.49
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	-0.07	0.02
Grading Ratio	1.5	1.5	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor		
Surface Detection	VMS + 6p	VMS + 6p	[dB]		
Scan Method	Measured	Measured	TSL Correction	No correction	No correction
			M2/M1 [%]		81.6
			Dist 3dB Peak		8.9
			[mm]		

Tel: +86-755-66850100

E-mail: qc@baluntek.com

Page No. 39 / 98

System Performance Check Data (5250MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
D5GHZV2, SPEAG	10.0 x 10.0 x 3.0	Dipole

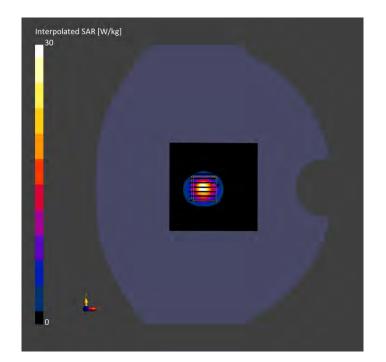
Exposure Conditions

Phantom	Position,	Band	Group,	Frequency	Conversion	TSL	TSL	Ambient	Liquid
Section,	Test		UID	[MHz],	Factor	Conductivi	Permittivit	Temperatu	Temperatu
TSL	Distance			Channel		ty [S/m]	у	re	re
	[mm]			Number				[°C]	[°C]
	F			Nullibei				[V]	[4]
Flat,		Validatio	CW,	5250.0,	5.74	4.81	35.2	22.2	21.3

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18
tilt) - 1859			

Scan Setup


Measurement Results

ooun ootup			iniououi omonit i t	, cuito	
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	80.0 x 80.0	22.0 x 22.0 x 22.0	Date	2024-07-19	2024-07-19
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	7.84	7.98
Sensor Surface	3.0	1.4	psSAR10g	2.20	2.23
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	-0.02	0.02
Grading Ratio	1.5	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor		
Surface Detection	VMS + 6p	VMS + 6p	[dB]		
Scan Method	Measured	Measured	TSL Correction	No correction	No correction
			M2/M1 [%]		63.5
			Dist 3dB Peak		6.2
			[mm]		

Tel: +86-755-66850100 Web: www.titcgroup.com E-mail: qc@baluntek.com

Page No. 41 / 98

System Performance Check Data (5750MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
D5GHZV2, SPEAG	10.0 x 10.0 x 3.0	Dipole

Exposure Conditions

Phantom	Position,	Band	Group,	Frequency	Conversio	TSL	TSL	Ambient	Liquid
Section,	Test		UID	[MHz],	n Factor	Conductiv	Permittivit	Temperatu	Temperatu
TSL	Distance			Channel		ity [S/m]	у	re	re
	[mm]			Number				[°C]	[°C]
Flat,	[mm]	Validati	CW,	Number 5750.0,	5.04	5.18	35.5	[°C]	[°C]

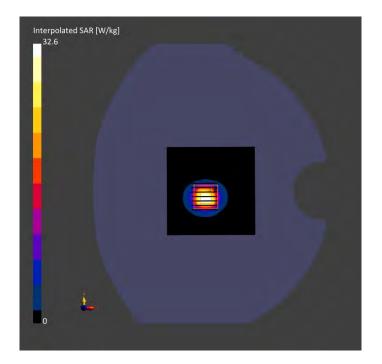
Hardware Setup

Phantom TSL, Measured Date		Probe, Calibration Date	DAE, Calibration Date	
Twin-SAM V5.0 (30deg probe	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18	
tilt) - 1859				

Scan Setup

Measurement Results

•					
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	80.0 x 80.0	22.0 x 22.0 x 22.0	Date	2024-07-19	2024-07-19
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	7.85	7.96
Sensor Surface	3.0	1.4	psSAR10g	2.22	2.24
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	-0.01	-0.08
Grading Ratio	1.5	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor		
Surface Detection	VMS + 6p	VMS + 6p	[dB]		
Scan Method	Measured	Measured	TSL Correction	No correction	No correction
			M2/M1 [%]		61.4
			Dist 3dB Peak		7.4
			[mm]		


Tel: +86-755-66850100

E-mail: qc@baluntek.com

Page No. 43 / 98

Web: www.titcgroup.com

ANNEX C TEST DATA

Meas.1 Body Plane with Back Side 5mm on 1 Channel in IEEE802.11b mode with Antenna 1

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type		
CM762	35.0 x 20.0 x 7.0	AX900 USB		

Exposure Conditions

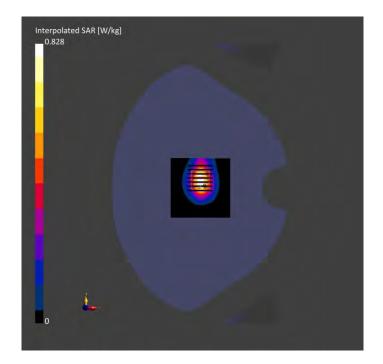
Phanto	Position	Band	Group	Frequenc	Conversio	TSL	TSL	Ambient	Liquid
m	, Test		,	y [MHz],	n Factor	Conductivit	Permittivit	Temperatur	Temperatur
Section,	Distanc		UID	Channel		y [S/m]	у	е	е
TSL	e [mm]			Number				[°C]	[°C]
Flat,	BACK,	WLAN	WLAN	2412.0,	7.75	1.75	39.9	22.2	21.3
HSL	5.00	2.4GH	,	1					
		z	10012-						
			CAB						

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
Twin-SAM V5.0 (30deg	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18	
probe tilt) - 1859				

Scan Setup Measurement Results

	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents	72.0 x 72.0	30.0 x 30.0 x 30.0	Date	2024-07-19	2024-07-19
[mm]			psSAR1g	0.416	0.437
Grid Steps [mm]	12.0 x 12.0	5.0 x 5.0 x 5.0	[W/kg]		
Sensor Surface	3.0	1.4	psSAR10g	0.200	0.210
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	0.06	0.03
Grading Ratio	1.5	1.5	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor		
Surface	VMS + 6p	VMS + 6p	[dB]		
Detection			TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		53.1
			Dist 3dB Peak		10.0
			[mm]		


Tel: +86-755-66850100

E-mail: qc@baluntek.com

Page No. 45 / 98

Web: www.titcgroup.com

Meas.2 Body Plane with Back Side 5mm on 46 Channel in IEEE802.11n40 mode with Antenna 1

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type		
CM762	35.0 x 20.0 x 7.0	AX900 USB		

Exposure Conditions

Phanto	Position	Band	Group	Frequenc	Conversio	TSL	TSL	Ambient	Liquid
m	, Test		,	y [MHz],	n Factor	Conductivit	Permittivit	Temperatur	Temperatur
Section,	Distanc		UID	Channel		y [S/m]	у	е	е
TSL	e [mm]			Number				[°C]	[°C]
Flat,	BACK,	WLA	WLAN,	5230.0,	5.74	4.66	36.2	22.2	21.3
HSL	5.00	N	10114-	46					
		5GHz	CAD						

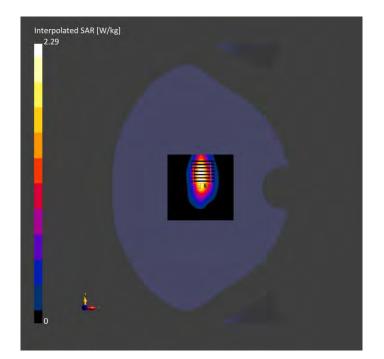
Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
Twin-SAM V5.0 (30deg	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18	
probe tilt) - 1859				

Scan Setup

Measurement Results

	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents	80.0 x 80.0	24.0 x 24.0 x 22.0	Date	2024-07-19	2024-07-19
[mm]			psSAR1g	0.778	0.683
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 2.0	[W/kg]		
Sensor Surface	3.0	1.4	psSAR10g	0.288	0.248
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	-0.03	-0.07
Grading Ratio	1.5	1.4	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor		
Surface	VMS + 6p	VMS + 6p	[dB]		
Detection			TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		54.4
			Dist 3dB Peak		8.4
			[mm]		


Tel: +86-755-66850100

E-mail: qc@baluntek.com

Page No. 47 / 98

Web: www.titcgroup.com

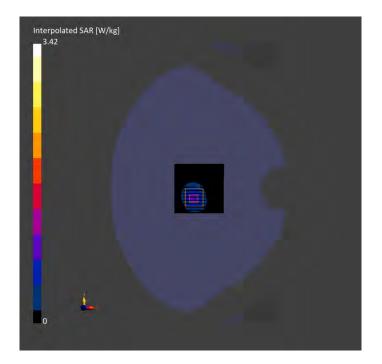
Meas.3 Body Plane with Top Edge 5mm on 151 Channel in IEEE802.11n40 mode with Antenna 1

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	DUT Type
CM762	35.0 x 20.0 x 7.0	AX900 USB

Exposure Conditions

Phanto	Position	Band	Group	Frequenc	Conversio	TSL	TSL	Ambient	Liquid
m	, Test		,	y [MHz],	n Factor	Conductivit	Permittivit	Temperatur	Temperatur
Section,	Distanc		UID	Channel		y [S/m]	у	е	е
TSL	e [mm]			Number				[°C]	[°C]
Flat,	EDGE	WLA	WLAN,	5755.0,	5.04	5.19	35.5	22.2	21.3
HSL	TOP,	N	10402-	151					
	5.00	5GHz	AAE						


Hardware Setup

Phantom TSL, Measured Date		Probe, Calibration Date	DAE, Calibration Date	
Twin-SAM V5.0 (30deg	HBBL-600-10000 2024-07-19	EX3DV4 - SN7510, 2024-06-25	DAE4 Sn1711, 2024-03-18	
probe tilt) - 1859				

Scan Setup

Scan Setup			Measurement R	lesults	
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents	60.0 x 60.0	24.0 x 24.0 x 22.0	Date	2024-07-19	2024-07-19
[mm]			psSAR1g	0.759	0.869
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 2.0	[W/kg]		
Sensor Surface	3.0	1.4	psSAR10g	0.271	0.274
[mm]			[W/kg]		
Graded Grid	Yes	Yes	Power Drift [dB]	-0.18	0.02
Grading Ratio	1.5	1.4	Power Scaling	Disabled	Disabled
MAIA	Υ	N/A	Scaling Factor		
Surface	VMS + 6p	VMS + 6p	[dB]		
Detection			TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		49.4
			Dist 3dB Peak		7.2
			[mm]		

ANNEX D EUT EXTERNAL PHOTOS

FRONT VIEW OF EUT

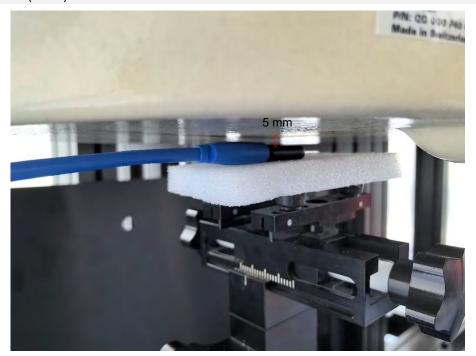
REAR VIEW OF EUT

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

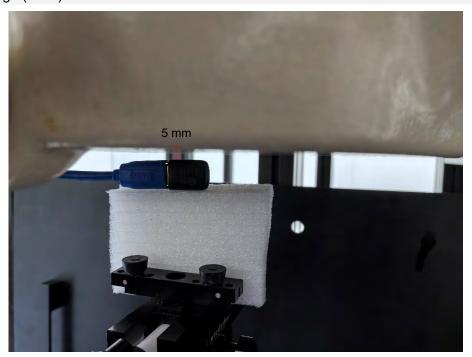
TOP VIEW OF EUT

BOTTOM VIEW OF EUT

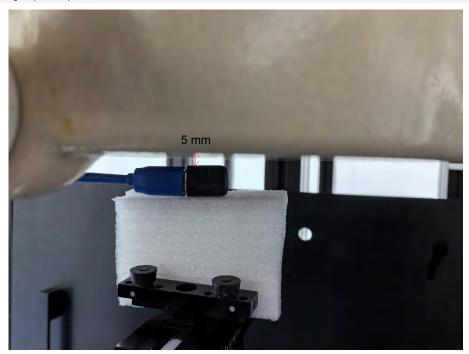


ANNEX E SAR TEST SETUP PHOTOS

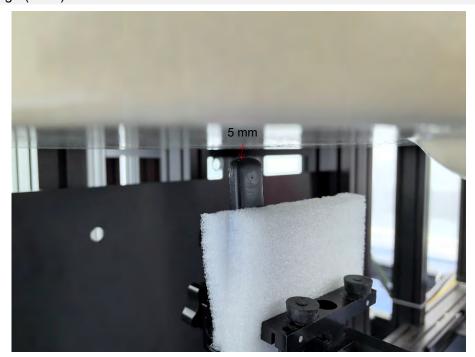
Front Side (5mm)



Back Side (5mm)



Left Edge (5mm)



Right Edge (5mm)

Top Edge (5mm)

ANNEX F CALIBRATION REPORT

F.1 E-Field Probe (EX3DV4 - SN:7510)

CNAS L0570

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

baluntek Certificate No: 24J02Z000311 Client

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7510

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: June 25, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID# Ca	Date(Calibrated by, Certificate No.) Scheduled	Calibration
Power Meter NRP2	106277	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104291	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104292	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 7464	22-Jan-24(SPEAG, No.EX-7464_Jan24)	Jan-25
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-24(CTTL, No.24J02X005419)	Jun-25
SignalGenerator APSIN26G	181-33A6D0700-1	959 26-Mar-24(CTTL, No.24J02X002468)	Mar-25
Network Analyzer E5071C	MY46110673	25-Dec-23(CTTL, No.J23X13425)	Dec-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-12	SN 1174	25-Oct-23(SPEAG, No.OCP-DAK12-1174_O	ct23) Oct-24

Name Calibrated by: SAR Test Engineer Yu Zongying Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z000311

Page 1 of 22

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:24J02Z000311

Page 2 of 22

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

http://www.caict.ac.cn E-mail: emf@caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7510

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) A	0.64	0.55	0.41	±10.0%
DCP(mV) ⁸	97.4	98.6	100.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Dev.	Max Unc E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	204.3	±2.3%	±4.7%
		Y	0.0	0.0	1.0		187.2		
		Z	0.0	0.0	1.0		158.9		
10352-AAA	Pulse Waveform (200Hz, 10%)	X	1.81	62.02	7.52		60	±5.0%	±9.6%
		Y	1.65	60.79	6.42	10.00	60		- (()
		Z	1.80	62.62	7.55		60		
10353-AAA Pul	Pulse Waveform (200Hz, 20%)	X	1.24	61.03	6.19		80	±3.1%	±9.6%
	The state of the s	Y	1.05	60.00	5.21	6.99	80		Grant Control
		Z	0.81	60.00	5.10		80		
10354-AAA	Pulse Waveform (200Hz, 40%)	X	0.71	60.23	4.98	3.98	95	±1.9%	±9.6%
		Y	0.67	60.00	4.31		95		
		Z	0.47	60.00	3.81	100	95		
10355-AAA	Pulse Waveform (200Hz, 60%)	X	0.42	60.00	4.19	2.22	120	±2.1%	±9.6%
		Y	0.47	60.00	3.45		120		
		Z	0.44	60.00	2.44		120		
10387-AAA	QPSK Waveform, 1 MHz	X	1.85	68.41	16.29		150	±2.7%	±9.6%
	200 200 200 200 200 200 200 200 200 200	Y	1.51	64.96	13.68	1.00	150		
		Z	1.59	68.19	15.14	TAKE	150		
10388-AAA	QPSK Waveform, 10 MHz	X	2.60	70.93	17.28		150	±2.2%	±9.6%
		Y	2.10	67.10	14.83	0.00	150		
		Z	2.16	68.95	16.17		150		
10396-AAA	64-QAM Waveform, 100 kHz	X	3.02	72.87	21.67		150	±2.1%	±9.6%
		Y	2.59	68.94	18.64	3.01	150		
		Z	2.32	71.05	22.65	100000	150		
10414-AAA	WLAN CCDF, 64-QAM, 40MHz	X	5.02	66.24	16.11		150	±3.5%	±9.6%
		Y	4.80	65.49	15.41	0.00	150		
		Z	4.74	66.11	15.91	1000	150		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:24J02Z000311

Page 3 of 22

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7510

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V-2	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	Т6
Х	47.93	374.32	38.61	16.12	0.00	4.98	0.00	0.35	1.03
Υ	43.72	338.07	37.54	14.17	0.00	4.93	0.17	0.34	1.02
z	32.56	250.23	37.40	5.37	0.00	4.98	0.00	0.03	1.04

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	34
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:24J02Z000311

Page 4 of 22

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7510

Calibration Parameter Determined in Head Tissue Simulating Media

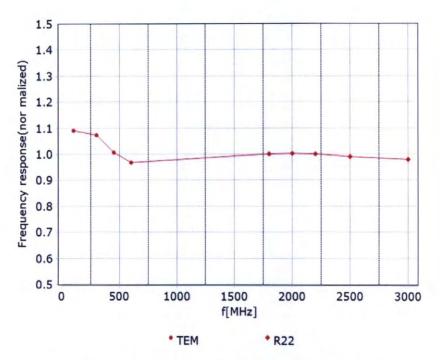
f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.29	10.29	10.29	0.15	1.34	±12.7%
835	41.5	0.90	9.99	9.99	9.99	0.15	1.38	±12.7%
1750	40.1	1.37	8.67	8.67	8.67	0.24	1.08	±12.7%
1900	40.0	1.40	8.33	8.33	8.33	0.24	1.12	±12.7%
2000	40.0	1.40	8.26	8.26	8.26	0.24	1.07	±12.7%
2300	39.5	1.67	7.93	7.93	7.93	0.49	0.80	±12.7%
2450	39.2	1.80	7.75	7.75	7.75	0.65	0.69	±12.7%
2600	39.0	1.96	7.59	7.59	7.59	0.65	0.68	±12.7%
3300	38.2	2.71	7.28	7.28	7.28	0.53	0.88	±13.9%
3500	37.9	2.91	7.11	7.11	7.11	0.46	1.08	±13.9%
3700	37.7	3.12	6.94	6.94	6.94	0.44	1.04	±13.9%
3900	37.5	3.32	6.85	6.85	6.85	0.35	1.35	±13.9%
4100	37.2	3.53	6.76	6.76	6.76	0.35	1.30	±13.9%
4400	36.9	3.84	6.56	6.56	6.56	0.35	1.35	±13.9%
4600	36.7	4.04	6.50	6.50	6.50	0.45	1.22	±13.9%
4800	36.4	4.25	6.45	6.45	6.45	0.45	1.25	±13.9%
5200	36.0	4.66	5.74	5.74	5.74	0.40	1.48	±13.9%
5300	35.9	4.76	5.50	5.50	5.50	0.55	1.15	±13.9%
5500	35.6	4.96	5.11	5.11	5.11	0.55	1.20	±13.9%
5600	35.5	5.07	5.00	5.00	5.00	0.55	1.20	±13.9%
5800	35.3	5.27	5.04	5.04	5.04	0.50	1.28	±13.9%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No:24J02Z000311

Page 5 of 22

F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:24J02Z000311

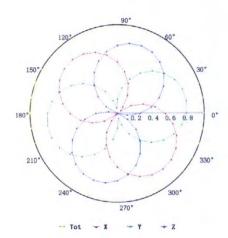
Page 6 of 22

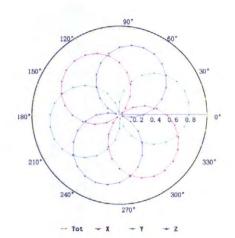
Tel: +86-755-66850100

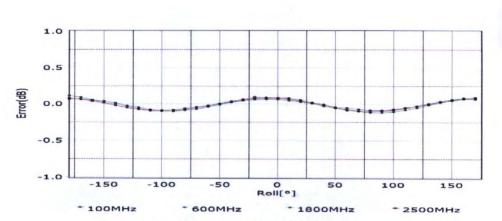
E-mail: qc@baluntek.com

Page No. 62 / 98

Web: www.titcgroup.com

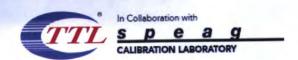





Receiving Pattern (Φ), θ=0°

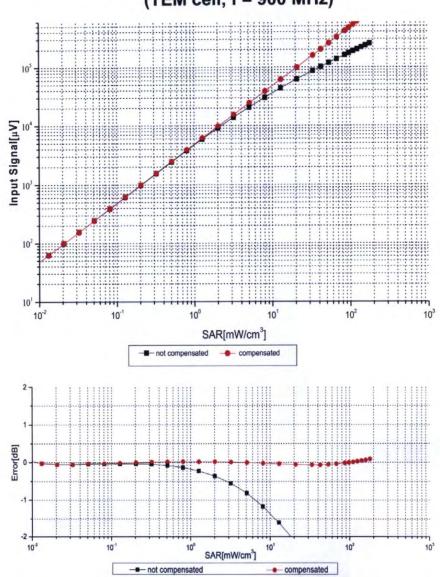
f=600 MHz, TEM

f=1800 MHz, R22



Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:24J02Z000311

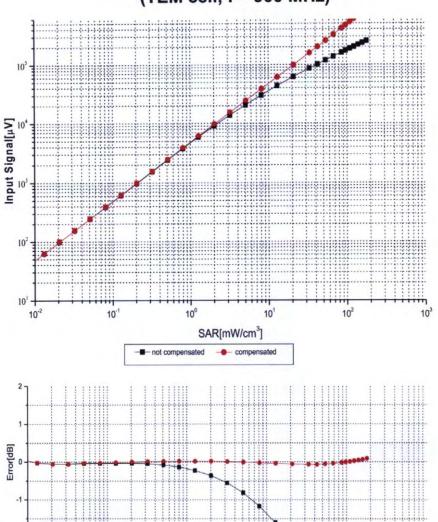

Page 7 of 22

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No:24J02Z000311

Page 8 of 22

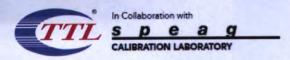


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

compensated


Certificate No:24J02Z000311

Page 8 of 22

SAR[mW/cm3]

-- not compensated

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	UncE (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 9
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 9
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
				4.77	
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth		± 9.6 9
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 9
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 9
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 9
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.69
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 9
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.69
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 9
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 9
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 9
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 9
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 9
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 9
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 9
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 9
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 9
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 9
10090	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	
10097	DAC				± 9.6 9
		UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 9
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 9
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 9
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 9

Certificate No:24J02Z000311

Page 10 of 22