

Test report

Number:	T251-0765/21	Project file: Date: Pages:	C20212182 2022-06-23 9
Product:	E-bike control module	. 49001	Ū
Type reference:	Bonnie & Clyde		
Ratings:	9 - 45 Vdc Protection class: III		
Trademark:			
Applicant:	COMODULE OÜ Dunkri 9, 10123 Tallinn, Estonia		
Manufacturer:	COMODULE OÜ Dunkri 9, 10123 Tallinn, Estonia		
Place of manufacture:	COMODULE OÜ Dunkri 9, 10123 Tallinn, Estonia		
Summary of testing			
Testing method:	EN IEC 62311:2020		
Testing location:	SIQ Ljubljana, Mašer a- Spasićev a 10, SI-100	0 Ljubljana, Slove	enia
Remarks:	Date of receipt of test items: 2021-06-28 Number of items tested: 1 Date of performance of tests: 2021-10-26 The test results presented in this report relate The product complies with the requirements	e only to the items of the testing met	s tested. hods.

Tested by: Luka Tosetto

Approved by: Marjan Mak

The report shall not be reproduced except in full.

SIQ Ljubljana, Mašera-Spasićeva ulica 10, SI-1000 Ljubljana, Slovenia T +386 1 4778 100, F +386 1 4778 444, info@siq.si, www.siq.si T251-0765/21

Page: 2 (9)

SIQ

CC	INTENTS	page
<u>1</u>	GENERAL	3
1.1 1.2	EQUIPMENT UNDER TEST REVIEWED / REFERENCED DOCUMENTS	3 3
<u>2</u>	ASSESSMENT	4
<u>3</u>	RF EXPOSURE MEASUREMENT	5
3.1 3.2 3.3 3.4	INTRODUCTION COMPLIANCE CRITERIA NORMATIVE REFERENCE ROUTES TO SHOW COMPLIANCE WITH LOW-POWER EXCLUSION LEVEL IN EN 62479	5 5 5 6
<u>4</u>	RF-EXPOSURE CLASSIFICATIONS (REFERENCE LEVELS)	7
<u>5</u>	CALCULATIONS	8
<u>6</u>	TECHNICAL SPECIFICATIONS OF THE ANTENNA	9
<u>7</u>	ASSESSMENT RESULTS	9

1 GENERAL

History sheet					
Date Report No. Change					
2022-06-23	T251-0765 / 21	Initial test report issued.			

1.1 Equipment under test

E-bike control module

Type: Bonnie & Clyde

All batteries stated on first page contain identical RF module and are all covered by this report.

Environment: Uncontrolled / General Public Equipment falls under product for mobile use

1.2 Reviewed / referenced documents

- Test report T251-0747/21 from SIQ Ljubljana
- Test report EMC_CTSMC-003-18001_CEMPE from CETECOM Inc.

T251-0765/21

Page: 4 (9)

2 Assessment

The method used is taken from Clause 5 of standard EN IEC 62311:2020.

The assessment is performed according to below flowchart and Table 1 – List of possible assessment methods from clause 5.1 of EN IEC 62311. Compliance is determined based on reference limits given in 1999/519/EC according to the exposure category declared by customer.

3 **RF Exposure Measurement**

3.1 Introduction

This International Standard provides simple conformity assessment methods for low- power electronic and electrical equipment to an exposure limit relevant to electromagnetic fields (EMF). If such equipment cannot be shown to comply with the applicable EMF exposure requirements using the methods included in this standard for EMF assessment, then other standards, including IEC 62311 or other (EMF) product standards, may be used for conformity assessment.

3.2 Compliance Criteria

Compliance of electromagnetic emissions from electronic and electrical equipment with the basic restrictions usually is determined by measurements and, in some cases, calculation of the exposure level. If the electrical power used by or radiated by the equipment is sufficiently low, the electromagnetic fields emitted will be incapable of producing exposures that exceed the basic restrictions. This standard provides simple EMF assessment procedures for this low power equipment.

Any relevant compliance assessment procedure which is consistent with the state of the art, reproducible and gives valid results can be used.

For transmitters intended for use with more than one antenna configuration option, the combination of transmitter and antenna(s) which generates the highest available antenna power and/or average total radiated power shall be assessed.

3.3 Normative Reference

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Publication	Year	Title	EN/HD	Year
IEC 62311 (mod)	-	Assessment of	EN IEC 62311:2020	-
		electronic and		
		electrical equipment		
		related to human		
		exposure		
		restrictions for		
		electromagnetic		
		fields (0 Hz – 300		
		GHz)		

Note: When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

3.4 Routes To Show Compliance With Low-Power Exclusion Level in EN 62479

4 RF-Exposure classifications (Reference levels)

Guideline / Standard	deline / SAR limit, Averaging P _{max} Exposure tier ^a		Region of body [*]					
	W/kg	g	mW					
	2	10	20	General public	Head and trunk			
	4	10	40	General public	Limbs			
ICNIRP [1]	10	10	100	Occupational	Head and trunk			
	20	10	200	Occupational	Limbs			
	1,6	1	1,6	Uncontrolled environment	Head, trunk, arms, legs			
IEEE Std C95.1-1999 [2]	4	10	40	Uncontrolled environment	Hands, wrists, feet and ankles			
	8	1	8	Controlled environment	Head, trunk, arms, legs			
	20	10	200	Controlled environment	Hands, wrists, feet and ankles			
	2	10	20	Action level	Body except extremities and pinnae			
IEEE Std C95.1-2005 [3]	4	10	40	Action level	Extremities and pinnae			
	10	10	100	Controlled environment	Body except extremities and pinnae			
	20	10	200	Controlled environment	Extremities and pinnae			
^a Consult the appropriate standard for more information and definitions of terms.								

Example values of SAR-based P_{max} for some cases described by ICNIRP, IEEE Std C95.1-1999 and IEEE Std C95.1-2005

Limits according to 1999/519/EC - exposure of the general public to electromagnetic fields

Frequency range	Electric field strength (V/m)	Magnetic field strength (A/m)	B-field (μT)	Equivalent plane wave power density S _{eq} (W/m2)		
0 – 1 Hz		3,2 x 10 ⁴	4 x 10 ⁴			
1 – 8 Hz	10000	3,2 x 10 ⁴ /f ²	4 x 10 ⁴ /f ²			
8 – 25 Hz	10000	4000/f	5000/f			
0,025 – 0,8 Hz	250/f	4/f	5/f			
0,82 – 3 Hz	250/f	5	6,25			
3 – 150 kHz	87	5	6,25			
0,15 – 1 MHz	87	0,73/f	0,92/f			
1 – 10 MHz	87/f ^{1/2}	0,73/f	0,92/f			
10 – 400 MHz	28	0,073	0,092	2		
400 – 2000 MHz	1,375 f ^{1/2}	0,0037 f ^{1/2}	0,0046 f ^{1/2}	f/200		
2 – 300 GHz	61	0,16	0,2	10		
• For frequencies between 100 kHz and 10 GHz, S _{eq} , E ² , H ² , and B ² are to be averaged over any six-minute period.						

• For frequencies exceeding 10 GHz, S_{eq}, E², H² and B² are to be averaged over any 68/f^{1.05} -minute period (f in GHz).

NOTE: unless otherwise specified stricter limits apply

Page: 8 (9)

5 Calculations

The calculations are to determine the far-field or radiating near-field or reactive near-field and/or value for r_c, the distance at which the far-field and cylindrical wave models produce the same value of power flux density. Calculation used depends on the position of the object for which the assessment is made.

Far-field Calculation

For calculating the field in the far-field region the free space formula below is used to determine the electric field or power flux density at a distance r from the transmitting antenna.

$$E = \frac{\sqrt{30PG}}{r}$$

Where:

E is Field Strength in V/m P is power in watts radiated from a point uniformly over the surface of sphere of radius R G is the antenna gain relative to an isotropic antenna r is the distance from observation point to the antenna

$$S = \frac{PG}{4\pi r^2}$$

Where: S is Power flux density W/m2 P is power in watts radiated from a poin

P is power in watts radiated from a point uniformly over the surface of sphere of radius R G is the antenna gain relative to an isotropic antenna r is the distance from observation point to the antenna

Radiating near field

Calculation methods are the synthetic model or cylindrical wave model. The synthetic model splits the antenna into n small sources and the field is calculated:

$$E = \sum \alpha_n \frac{\sqrt{30.P_n G_n}}{r_n} e^{j(\gamma_n + \frac{2\pi r_n}{\lambda})}$$

where E is Field Strength in V/m P_n is Power in Watts radiated by element n G_n is Gain of antenna element n r_n is Distance in meters from element n

The cylindrical wave model allows direct calculation of the power flux density, S, using:

$$S = \frac{P}{\pi Dr} \frac{180}{\delta}$$

where S is Power flux density W/m2 P is Power in watts radiated (W) D is Length of antenna (m) r is Distance in meters from the antenna

The cylindrical wave model is valid for a range of distances where r_c lies in the radiating near-field, and where the distance is less than r_c. At distances greater than r_c the far field model is more appropriate.

Reactive near field

When human exposure is in the reactive near-field the reference method is a SAR evaluation. Localized SAR evaluations are used. Localized SAR evaluations are limited to operating frequencies between 0.8 and 3 GHz, antenna apertures less than 0.6m x 0.3m and investigation distances of less than 40cm. The alternative to SAR measurements are E-field and H-field measurements.

6 Technical specifications of the antenna

Antennas have gain of 0 dBi. Length of the maximal GSM antenna is app. 4 cm.

7 Assessment results

a) evaluation @ 20 cm distance:

Evaluation for GSM, GPRS and LTE is performed in test report EMC_CTSMC-003-18001_CEMPE.

Frequency (MHz)	Condition	Max. EIRP (dBm)	Max. EIRP (mW)	Calculated E-field @ 20 cm (V/m)	Limit (V/m)	Result
2402	Extreme	7,2	5,25	1,98	61	PASS
2440	Normal	7,2	5,25	1,98	61	PASS
2480	Extreme	7,5	5,62	2,05	61	PASS
Maximal declared 2402-2480	/	8	6,31	2,18	61	PASS

Final result: Device complies with requirements at 20 cm distance.

b) obtaining smallest distance for compliance:

Lowest frequency (MHz)	Average conducted P _{OUT} (dBm)	Antenna gain (dBi)	Calculated min. distance for compliance (cm)	Calculated E-field (V/m)	Limit (V/m)	Result
880	28,15 @ 4Tx slot	0	11	40,24	40,79	PASS

NOTE: GSM result taken from test report EMC_CTSMC-003-18001_CEMPE.

Final result: Device still fulfills with requirements at minimum 11 cm distance.