

Page 1 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 15.247 2.4 GHz Test Report

for

EPS Bio Technology Corp.

NO.8, R&D RD.III, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, 30077,R.O.C.

Product Name	:	EasyMax Bluetooth Dongle
Model Name	:	EasyMax Bluetooth Dongle
Brand		EPS Bio
FCC ID	:	2AQBR-D059

: AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M1806054

Report Number: EM-F180278

Page 2 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	scrip	tion I	Page
TES	ST RE	EPORT CERTIFICATION	4
1.		ISION RECORD OF TEST REPORT	
2.		IMARY OF TEST RESULTS	
<i>2</i> . 3.		VERAL INFORMATION	
5.	3.1.	Description of Application	
	3.1.	Description of Application	
	3.3.	Antenna Information	
	3.4.	EUT Specifications Assessed in Current Report	
	3.5.	Descriptions of Key Components	
	3.6.	Data Rate Relative to Output Power	
	3.7.	Test Configuration	
	3.8.	Tested Supporting System List	11
	3.9.	Setup Configuration	
		Operating Condition of EUT	
		Description of Test Facility	
	3.12.	Measurement Uncertainty	12
4.	MEA	ASUREMENT EQUIPMENT LIST	
	4.1.	Radiated Emission Measurement	
	4.2.	RF Conducted Measurement	
5.	CON	NDUCTED EMISSION	14
6.	RAD	DIATED EMISSION	15
	6.1.	Block Diagram of Test Setup	15
	6.2.	Radiated Emission Limits	16
	6.3.	Test Procedure	
	6.4.	Measurement Result Explanation	
	6.5.	Test Results	18
7.	6dB	BANDWIDTH	19
	7.1.	Block Diagram of Test Setup	19
	7.2.	Specification Limits	
	7.3.	Test Procedure	19
	7.4.	Test Results	
8.	MAX	XIMUM PEAK OUTPUT POWER	20
	8.1.	Block Diagram of Test Setup	20
	8.2.	Specification Limits	20
	8.3.	Test Procedure	
	8.4.	Test Results	21
9.	EMI	ISSION LIMITATIONS	22
	9.1.	Block Diagram of Test Setup	22
	9.2.	Specification Limits	22
	9.3.	Test Procedure	
	9.4.	Test Results	23
10.	POV	VER SPECTRAL DENSITY	24
	10.1.	Block Diagram of Test Setup	24
File	Numb	er: C1M1806054 Report Number: EM-F1	80278

Audix Technology Corp.	Tel: +886 2 26099301	
No. 53-11, Dingfu, Linkou, Dist.,	Fax: +886 2 26099303	
New Taipei City244, Taiwan		
10.2. Specification Limits		
10.3. Test Procedure		
10.4. Test Results		
11. DEVIATION TO TEST SPECIFICATIONS		

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

File Number: C1M1806054

Report Number: EM-F180278

Page 4 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

TEST REPORT CERTIFICATION

Applicar	nt	:	EPS Bio Technology Corp.
Factory		:	EPS Bio Technology Corp.
EUT De	scription		
	(1) Product	:	EasyMax Bluetooth Dongle
	(2) Model	:	EasyMax Bluetooth Dongle
	(3) Brand	:	EPS Bio
	(4) Power Suppl	y:	DC 3V

Applicable Standards:

47 CFR FCC Part 15 Subpart C ANSI C63.10:2013 KDB 558074 D01 DTS Meas Guidance v04

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report:

2018.07.05

Reviewed by:

Approved by:

to the

(Annie Yu/Administrator)

(Ben Cheng/Manager)

File Number: C1M1806054

Report Number: EM-F180278

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Data	Revision Summary	Report Number
0	2018. 07. 05	Original Report	EM-F180278

File Number: C1M1806054

Report Number: EM-F180278

Page 6 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

2. SUMMARY OF TEST RESULTS

Rule	Description	Results			
15.207	Conducted Emission	N/A, Note			
15.247(d)/15.205	Radiated Band Edge and Radiated Spurious Emission	PASS			
15.247(a)(2)	6dB Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Output	PASS			
15.247(d)Conducted Band Edges and Conducted Spurious EmissionPASS					
15.247 (e)	Peak Power Spectral Density PASS				
15.203Antenna RequirementCompliance					
Note: The EUT only employs power via USB linked from EasyMax BT Self-Monitoring Blood Glucose System powered from battery for operation, so it is unnecessary to test.					

Report Number: EM-F180278

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	EPS Bio Technology Corp. NO.8, R&D RD.III, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, 30077,R.O.C.	
Factory	EPS Bio Technology Corp. NO.8, R&D RD.III, HSINCHU SCIENCE PARK, HSINCHU, TAIWAN, 30077,R.O.C.	
Product	EasyMax Bluetooth Dongle	
Model	EasyMax Bluetooth Dongle	
Brand	EPS Bio	

Page 8 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

3.2. Description of EUT

Test Model	EasyMax Bluetooth Dongle	
Serial Number	N/A	
Power Rating	DC 3V	
RF Features	BLE	
Transmit Type	1T1R	
Sample Status	Production	
Date of Receipt	2018. 06. 6	
Date of Test	2018. 07. 03	
Interface Ports of EUT	• USB Port x1	
Accessories Supplied	• None	

3.3. Antenna Information

No.	Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Max Gain (dBi)
1			PCB Antenna	2400-2480	-5

3.4. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	1

	Channel List							
	BLE							
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
37	2402	09	2422	18	2442	28	2462	
00	2404	10	2424	19	2444	29	2464	
01	2406	38	2426	20	2446	30	2466	
02	2408	11	2428	21	2448	31	2468	
03	2410	12	2430	22	2450	32	2470	
04	2412	13	2432	23	2452	33	2472	
05	2414	14	2434	24	2454	34	2474	
06	2416	15	2436	25	2456	35	2476	
07	2418	16	2438	26	2458	36	2478	
08	2420	17	2440	27	2460	39	2480	

File Number: C1M1806054

Report Number: EM-F180278

3.5. Descriptions of Key Components

None

3.6. Data Rate Relative to Output Power

BLE					
Channel	ModulationDate Rate(Mbps)Power(dBm)				
0	GFSK	1	-1.5		

Note: Above results are assessed in peak power.

3.7. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BLE	0.03	0.260	15.23

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	Be appler typenese medijes = toget 26	TYPE WY DET P F
	ΔΜkr1 260.0 μs 10 dBuliv Ref 107.00 dBμV 0.26 dB 10 dBuliv Ref 107.00 dBμV	ΔMkr1 7.96 -26.7
	gg	
BLE		
	20 mainess langes my Uler de lange and stand and the stand and the second and the	and the state of the second second
	70 70	
	20) (Andread 1 and	Hillen Harrison

Item		Mode	Data Rate	Test Channel
Padiated Test Case	Radiated Band Edge ^{Note1}	BLE	1Mbps	37/39
Radiated Test Case	Radiated Spurious Emission ^{Note1}	BLE	1Mbps	37/17/39
	6dB Bandwidth	BLE	1Mbps	37/17/39
	Peak Output Power	BLE	1Mbps	37/17/39
Conducted Test	Band Edge	BLE	1Mbps	37/39
Case	Spurious Emission	BLE	1Mbps	37/17/39
	Peak Power Spectral Density	BLE	1Mbps	37/17/39

Note 1: Mobile Device

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow: Lie Side Stand

File Number: C1M1806054

Report Number: EM-F180278

3.8. Tested Supporting System List

3.8.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	Approval
1.	EasyMax BT Self-Monitoring Blood Glucose System	EPS Bio	EMBT	N/A	N/A

3.8.2. Cable Lists

None

3.9. Setup Configuration

3.9.1. EUT Configuration for Power Line & Radiated Emission

3.9.2. EUT Configuration for RF Conducted Test Items

3.10.Operating Condition of EUT

To Set EUT on RF function under continues transmitting and choosing channel.

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 12 of 25

3.11.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com		
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2005 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724 (3) FCC OET Designation No. TW1724 		
Test Facilities	 Semi-Anechoic Chamber (IC Test Site Registration No.: 5183B-1) Fully Anechoic Chamber (IC Test Site Registration No.: 5183B-4) 		

3.12.Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
Radiation Test	30MHz~1000MHz	± 3.68dB
(Distance: 3m)	Above 1GHz	± 5.82dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6dB Bandwidth	$\pm 0.05 \text{kHz}$
Maximum peak output power	± 0.33dB
Power spectral density	± 0.13dB
Conducted Emission Limitations	± 0.13dB

File Number: C1M1806054

Report Number: EM-F180278

4. MEASUREMENT EQUIPMENT LIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2017. 09. 13	1 Year
2.	Spectrum Analyzer	Agilent	N9030A-526	MY53310269	2018.01.04	1 Year
3.	Test Receiver	R & S	ESCS30	100338	2018.06.20	1 Year
4.	Amplifier	HP	8447D	2944A06305	2018.01.30	1 Year
5.	Amplifier	HP	8449B	3008A02678	2018.03.06	1 Year
6.	Bilog Antenna	CHASE	CBL6112D	33821	2018.01.21	1 Year
7.	Loop Antenna	R&S	HFH2-Z2	891847/27	2017. 12. 18	1 Year
8.	Double-Ridged Waveguide Horn	ETS-Lindgren	3117	00135902	2018. 03. 08	1 Year
9	Horn Antenna	EMCO	3116	2653	2017. 12. 19	1 Year
10.	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00	1	2017. 07. 26	1 Year
11.	3GHz Notch Filter	Microwave	H3G018G1	484798	2017. 08. 25	1 Year
12.	Digital Thermo-Hygro Meter	IMax	HTC-1	No.1 3m A/C	2018.04.20	1 Year
13.	Digital Thermo-Hygro Meter	EVERY DAY	E-512	RF-02	2018. 04. 20	1 Year
14.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.1. Radiated Emission Measurement

4.2. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2018. 04. 26	1 Year
4.	Digital Thermo-Hygro Meter	Shenzhen Datronn Electronics	KT-905	RF	2018. 04. 20	1 Year

File Number: C1M1806054

Report Number: EM-F180278

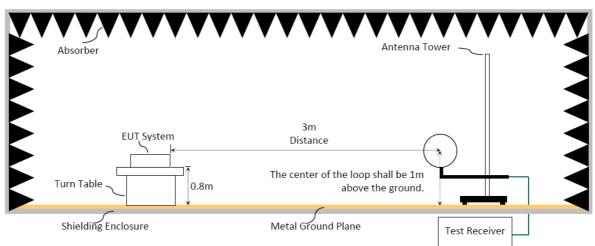
Page 14 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

5. CONDUCTED EMISSION

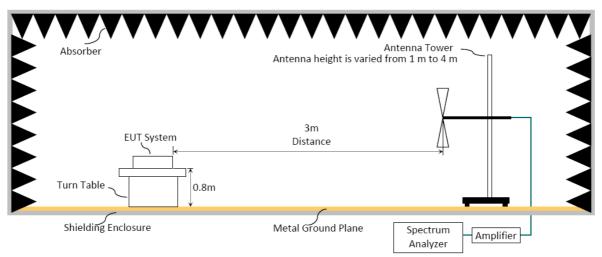
[The EUT only employs battery power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207]

File Number: C1M1806054

Report Number: EM-F180278

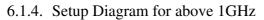

6. RADIATED EMISSION

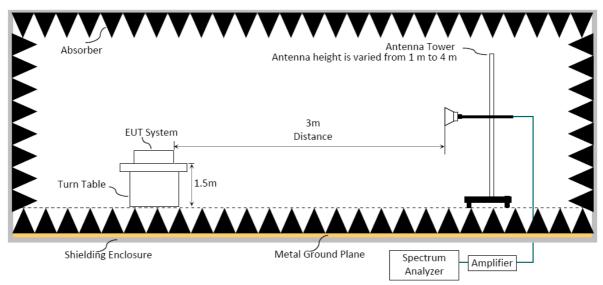
6.1. Block Diagram of Test Setup


6.1.1. Block Diagram of EUT

Indicated as section 3.9

6.1.2. Setup Diagram for 9kHz-30MHz




6.1.3. Setup Diagram for 30-1000 MHz

Report Number: EM-F180278

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified as below.

Eroquonov (MUz)	Distance (m)	Limits		
Frequency (MHz)	Distance (III)	dBµV/m	μV/m	
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz	
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

File Number: C1M1806054	Report Number: EM-F180278
This test report may be reproduced in full only. The document may	only be updated by Audix Technology
Corp. personnel. Any changes will be noted in the Document Histor	y section of the report.

Page 17 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW \geq 3 x RBW.

(3)Detector = Peak.

- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6)Allow sweeps to continue until the trace stabilizes.
- (7)When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.

Frequency above 1GHz to 10th harmonic (up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW \geq 3 x RBW.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6)Allow sweeps to continue until the trace stabilizes.
- (7)When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

Average Detector: Option 1: (1)RBW = 1MHz $(2)VBW \ge 1/T.$

Modulation Type	T (ms)	1/ T (kHz)	VBW Setting (kHz)
BLE	0.260	3.846154	3.9kHz

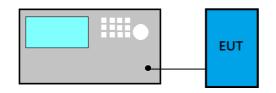
N/A: 1/ T is not implemented when duty cycle presented in section 3.7 is ≥98 %.
(1)Detector = Peak.
(2)Sweep time = auto.
(3)Trace mode = max hold.
(4)Allow sweeps to continue until the trace stabilizes.
□Option 2: Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= $20\log (TX_{on}/TX_{on+off})$ presented in section 3.7

ERP= Peak Emission Level-95.2dB-2.14dB


6.5. Test Results

Please refer to Appendix A.

7. 6dB BANDWIDTH

7.1. Block Diagram of Test Setup

7.2. Specification Limits

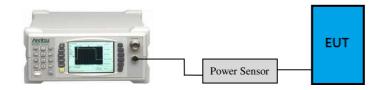
The minimum 6dB bandwidth shall be at least 500kHz.

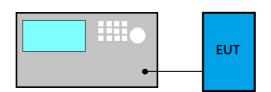
7.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v04:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 × RBW.
- (3) Detector = Peak.
- (4) Trace mode = max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -6 dB to record the final bandwidth.

7.4. Test Results


Please refer to Appendix A


8. MAXIMUM PEAK OUTPUT POWER

8.1. Block Diagram of Test Setup

• For WLAN Function

• For BLE Function

8.2. Specification Limits

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5MHz is : 1Watt. (30dBm), and E.I.R.P.: 4Watt (36dBm)

File Number: C1M1806054

Report Number: EM-F180278

Page 21 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

8.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v04:

PKPM1 Peak power meter method:

EUT is connected to power sensor and record the maximum output power.

Maximum peak conducted output power method:

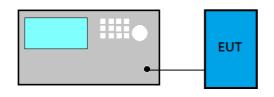
- (1) Set the RBW \geq DTS bandwidth
- (2) Set VBW \geq 3 × RBW
- (3) Set span $\geq 3 \times RBW$.
- (4) Sweep time = auto couple
- (5) Detector = peak.
- (6) Trace mode = max hold.
- (7) Allow trace to fully stabilize.
- (8) Use peak marker function to determine the peak amplitude level.

Method AVGPM (Measurement using an RF average power meter):

EUT is connected to power sensor and record the maximum average output power and duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.

Method AVGSA-2 (Spectrum channel power)

- (1) Set span to at least 1.5 times the OBW
- (2) Set RBW = 1 5% of OBW
- (3) Set the video bandwidth (VBW) \ge 3 × RBW.
- (4) Detector = RMS.
- (5) Trace mode = trace average at least 100 traces
- (6) Sweep = auto couple.
- (7) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
- (8) Duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.


8.4. Test Results

Please refer to Appendix A

Report Number: EM-F180278

9. EMISSION LIMITATIONS

9.1. Block Diagram of Test Setup

9.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (See Section 15.205(c)).

9.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v04:

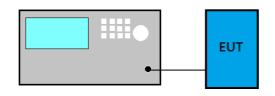
Reference Level

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize to find the max PSD as reference level.

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 23 of 25

Emission Level Measurement


- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize to find the max level.

9.4. Test Results

Please refer to Appendix A

10. POWER SPECTRAL DENSITY

10.1.Block Diagram of Test Setup

10.2.Specification Limits

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

10.3.Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v04:

Method PKPSD (peak PSD)

(1) Set analyzer center frequency to DTS channel center frequency.

- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- (4) Set the VBW $\geq 3 \times RBW$.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.

(10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.7 < 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

10.4.Test Results

Please refer to Appendix A

File Number: C1M1806054	Report Number: EM-F180278
This test report may be reproduced in full only. The document may only b	e updated by Audix Technology
Corp. personnel. Any changes will be noted in the Document History secti	on of the report.

Page 25 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

11.DEVIATION TO TEST SPECIFICATIONS

[NONE]

File Number: C1M1806054

Report Number: EM-F180278

APPENDIX A

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPDNDIX A

TEST DATA AND PLOTS

(Model: EasyMax Bluetooth Dongle)

File Number: C1M1806054

Report Number: EM-F180278

TABLE OF CONTENTS

A.1	RAD	IATED EMISSION	. 2
	A.1.1	Emissions within Restricted Frequency Bands	.2
	A.1.2	Emissions outside the frequency band:	.8
	A.1.3	Emissions in Non-restricted Frequency Bands:	.9
A.2	6dB H	SANDWIDTH 1	10
	A.2.1	6dB Bandwidth Result	10
	A.2.2	Measurement Plots	10
A.3	MAX	IMUM PEAK OUTPUT POWER 1	11
	A.3.1	Peak Output Power	11
	A.3.2	Measurement Plots	11
A.4	EMIS	SSION LIMITATIONS 1	12
A.5	POW	ER SPECTRAL DENSITY 1	15
	A.5.1	Power Spectral Density Result	15
	A.5.2	Measurement Plots	15

A.1 RADIATED EMISSION

Test Date	2018/07/03	Temp./Hum.	23°C/53%							
Test Voltage	DC 3V (Via EasyMax	DC 3V (Via EasyMax BT Self-Monitoring Blood Glucose System)								

A.1.1 Emissions within Restricted Frequency Bands

A.2.1.1 Frequency 9kHz~30MHz

The emissions (9kHz~30MHz) not reported for there is no emission be found.

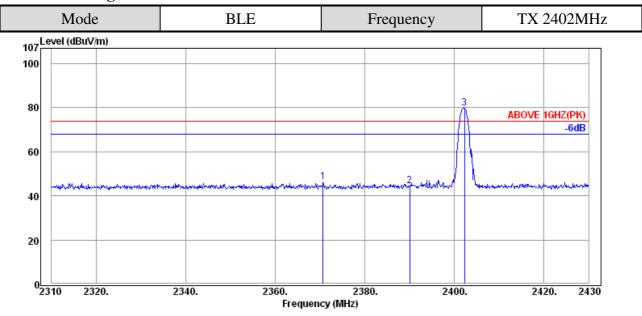
This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

APPENDIX A-Page 3 of 15

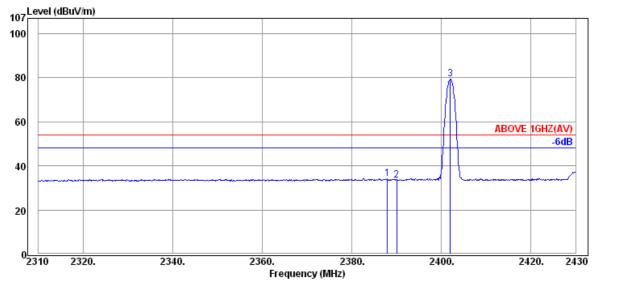
Tel: +886 2 26099301 *Fax:* +886 2 26099303

A.2.1.2 F	A.2.1.2 Frequency Below 1 GHz												
Mode BLE		BLE		Frequency		TX 2402M							
Antenna at Hori	Antenna at Horizontal Polarization												
Emission	Antenna	Cable	Meter	Emission	Limits	Margin							
Frequency	Factor	Loss	Reading	Level			Detector						
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)							
41.64	18.66	1.43	3.03	23.12	40.00	16.88	Peak						
93.05	16.17	2.18	6.39	24.74	43.50	18.76	Peak						
448.07	22.61	6.00	3.05	31.66	46.00	14.34	Peak						
588.72	24.50	6.72	2.61	33.83	46.00	12.17	Peak						
868.08	26.55	8.00	3.00	37.55	46.00	8.45	Peak						
982.54	27.66	8.72	2.78	39.16	54.00	14.84	Peak						

Antenna at Vertical Polarization


Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
44.55	17.11	1.47	2.57	21.15	40.00	18.85	Peak
119.24	18.79	2.50	3.38	24.67	43.50	18.83	Peak
397.63	22.01	5.53	3.42	30.96	46.00	15.04	Peak
536.34	23.72	6.55	3.03	33.30	46.00	12.70	Peak
871.96	26.57	8.02	3.16	37.75	46.00	8.25	Peak
984.48	27.69	8.74	2.58	39.01	54.00	14.99	Peak

This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

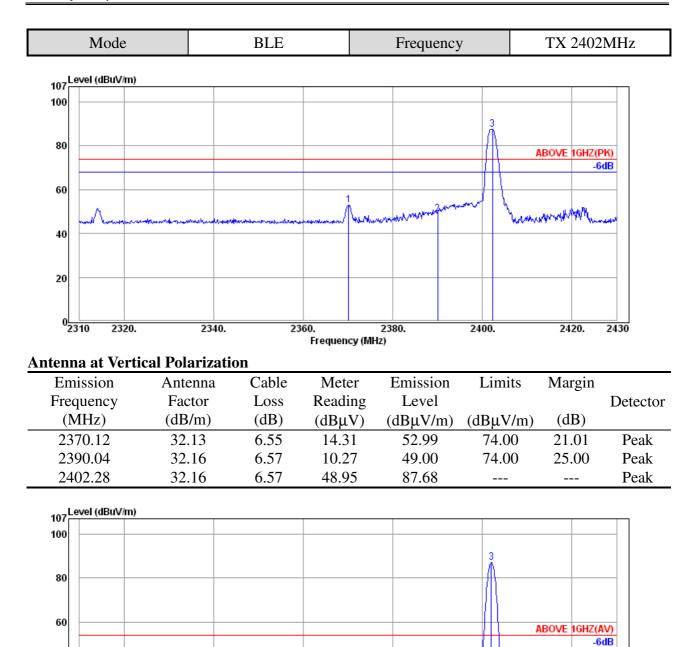

A.2.1.3 Frequency Above 1 GHz to 10th harmonics

Band Edge:

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
2370.72	32.13	6.55	7.74	46.42	74.00	27.58	Peak
2390.04	32.16	6.57	5.64	44.37	74.00	29.63	Peak
2402.28	32.16	6.57	40.90	79.63			Peak

Antenna at Horizontal Polarization


Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
2388.00	32.16	6.57	-4.46	34.27	54.00	19.73	Average
2390.04	32.16	6.57	-5.16	33.57	54.00	20.43	Average
2402.04	32.16	6.57	40.56	79.29			Average

File Number: C1M1806054

Report Number: EM-F180278

Tel: +886 2 26099301 Fax: +886 2 26099303

Antenna at Verti	Antenna at Vertical Polarization												
Emission	Antenna	Cable	Meter	Emission	Limits	Margin							
Frequency	Factor	Loss	Reading	Level			Detector						
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)							
2369.88	32.13	6.55	-4.03	34.65	54.00	19.35	Average						
2390.04	32.16	6.57	-4.85	33.88	54.00	20.12	Average						
2402.04	32.16	6.57	48.30	87.03			Average						

Frequency (MHz)

2380.

2400.

2360.

File Number: C1M1806054

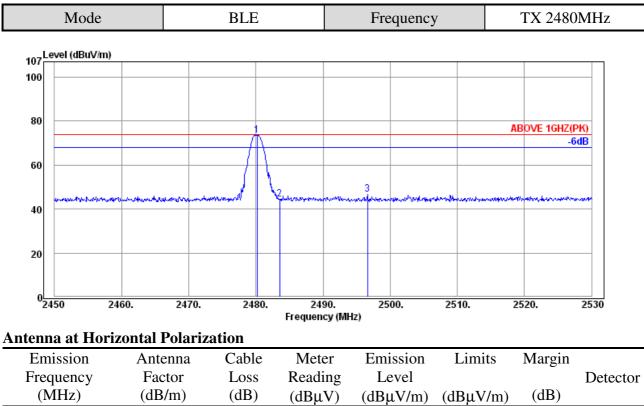
40

20

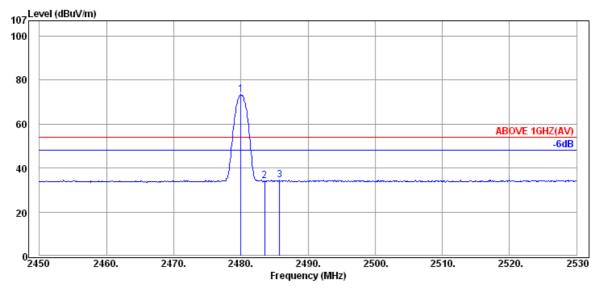
⁰2310

2320.

2340.


Report Number: EM-F180278

2420.

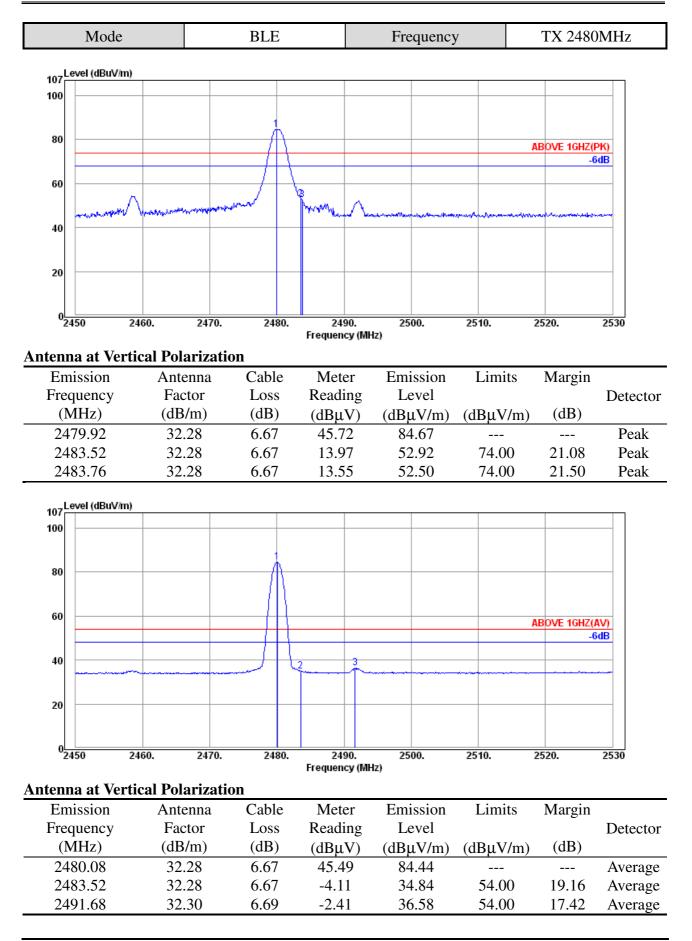

2430

Tel: +886 2 26099301 *Fax:* +886 2 26099303

(MHZ)	(ud/iii)	(ub)	(αβμν)	(abµv/m)	(aBµv/m)	(ав)	
2480.16	32.28	6.67	34.77	73.72			Peak
2483.52	32.28	6.67	5.66	44.61	74.00	29.39	Peak
2496.64	32.30	6.69	7.59	46.58	74.00	27.42	Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
2480.00	32.28	6.67	34.46	73.41			Average
2483.52	32.28	6.67	-4.93	34.02	54.00	19.98	Average
2485.76	32.28	6.67	-4.24	34.71	54.00	19.29	Average


File Number: C1M1806054

Report Number: EM-F180278

APPENDIX A-Page 7 of 15

Tel: +886 2 26099301 *Fax:* +886 2 26099303

File Number: C1M1806054

Report Number: EM-F180278

A.1.2 Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

Mode BLE		Frequency			TX 2402MHz					
Antenna at Horizontal Polarization										
Emission	Ante	enna	Cable	Mete	r	Emission	Limi	ts	Margin	
Frequency	Fac	ctor	Loss	Readi	ng	Level				Detector
(MHz)	(dB	/m)	(dB)	(dBµ'	V)	(dBµV/m)	(dBµV	/m)	(dB)	
4805.00	34.	.22	9.54	1.74	-	45.50	54.0	0	8.50	Peak
7205.00	35.	.80	11.80	0.18	5	47.78	54.0	0	6.22	Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
4805.00	34.22	9.54	3.82	47.58	54.00	6.42	Peak
7205.00	35.80	11.80	-0.14	47.46	54.00	6.54	Peak

Mode		BLE		Frequency		Frequency TX 2440MF)MHz
Antenna at Horiz	zontal Pola	rization						
Emission	Antenna	Cable	Meter	Emission	Limits	Margin		
Frequency	Factor	Loss	Reading	Level			Detector	
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)		
4880.00	34.25	9.56	0.20	44.01	54.00	9.99	Peak	
7320.00	35.80	11.92	1.49	49.21	54.00	4.79	Peak	

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
4880.00	34.25	9.56	-0.54	43.27	54.00	10.73	Peak
7320.00	35.80	11.92	-0.72	47.00	54.00	7.00	Peak

File Number: C1M1806054

Report Number: EM-F180278

Tel: +886 2 26099301 Fax: +886 2 26099303

Mode		BLE		Frequency		TX 2480MHz	
Antenna at Horiz	zontal Polari	ization					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
4960.00	34.29	9.60	0.19	44.08	54.00	9.92	Peak
7440.00	35.80	12.04	-0.43	47.41	54.00	6.59	Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
4960.00	34.29	9.60	0.76	44.65	54.00	9.35	Peak
7440.00	35.80	12.04	0.69	48.53	54.00	5.47	Peak

A.1.3 Emissions in Non-restricted Frequency Bands:

Pursuant to KDB 558074 D01 DTS Meas Guidance v04 that emission levels below the FCC 15.209(a) general radiated emissions limits is not required.

This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

A.2 6dB BANDWIDTH

Test Date	2018/07/03	Temp./Hum.	22°C/51%
Cable Loss		Test Voltage	DC 3V (Via EasyMax BT Self-Monitoring Blood Glucose System)

A.2.1 6dB Bandwidth Result

Mode	Centre Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz) (Reference only)	Limit
	2402	0.5115	0.99191	
BLE	2440	0.5123	1.2886	>500kHz
	2480	0.5223	1.4825	

A.2.2 Measurement Plots

File Number: C1M1806054

Report Number: EM-F180278

A.3 MAXIMUM PEAK OUTPUT POWER

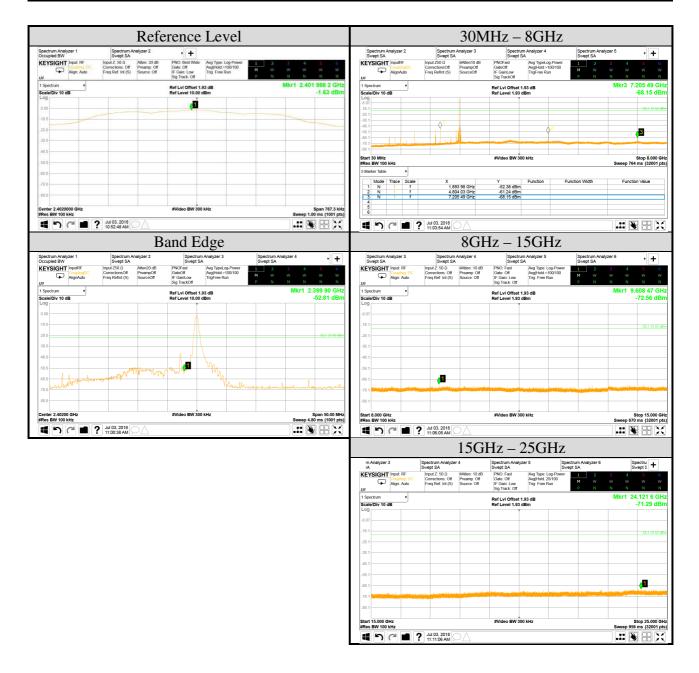
Test Date	2018/07/03	Temp./Hum.	22°C/51%
		Test Voltage	DC 3V (Via EasyMax BT
Cable Loss	1.93dB		Self-Monitoring Blood Glucose
			System)

A.3.1 Peak Output Power

Mode	Contro Fraguency (MHz)	MAX Out	Limit	
Mode	Centre Frequency (MHz)	(dBm)	(W)	Liiiit
	2400	-1.60	0.000692	
BLE	2440	-2.31	0.000587	< 30dBm (1W)
	2480	-3.79	0.000418	

Note: The results have been included cable loss.

A.3.2 Measurement Plots

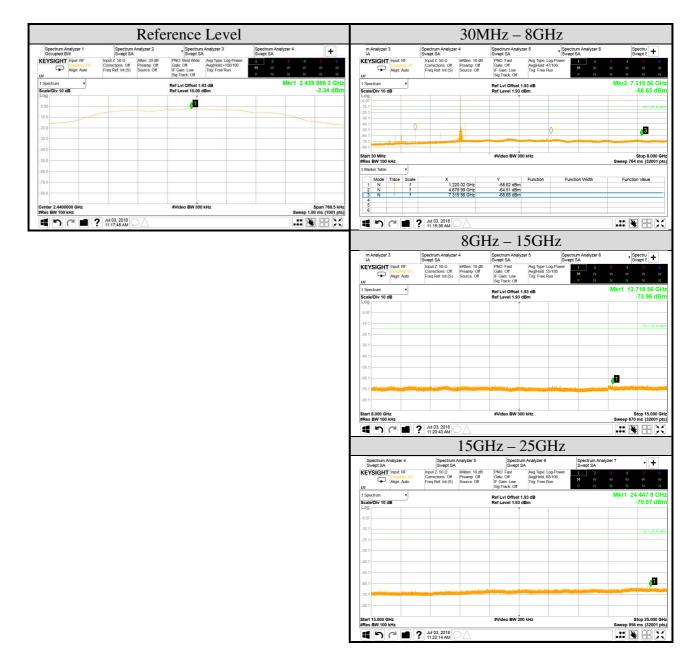

File Number: C1M1806054

Report Number: EM-F180278

A.4 EMISSION LIMITATIONS

Test Date	2018/07/03	Temp./Hum.	22°C/51%
			DC 3V (Via EasyMax BT
Cable Loss	1.93dB	Test Voltage	Self-Monitoring Blood Glucose
			System)
Mode	BLE	Frequency	TX 2402MHz
Simultaneous Factor10 log(n) (Note: "n" is antenna number)			0

File Number: C1M1806054

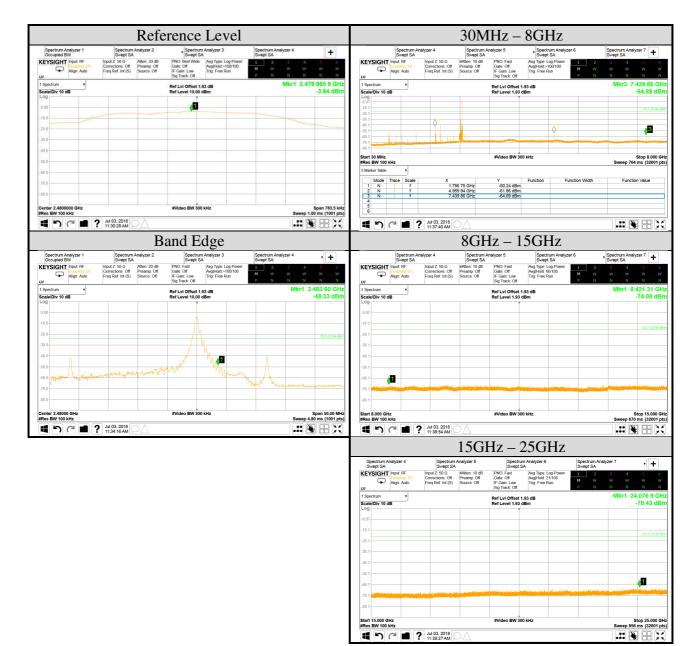

Report Number: EM-F180278

APPENDIX A-Page 13 of 15

Tel: +886 2 26099301 *Fax:* +886 2 26099303

Test Date	2018/07/03	Temp./Hum.	22°C/51%
			DC 3V (Via EasyMax BT
Cable Loss	1.93dB	Test Voltage	Self-Monitoring Blood Glucose
			System)
Mode	BLE	Frequency	TX 2440MHz
Simultaneous Fact	tor10 log(n) (Note: "n" is ante	0	

File Number: C1M1806054


Report Number: EM-F180278

APPENDIX A-Page 14 of 15

Tel: +886 2 26099301 *Fax:* +886 2 26099303

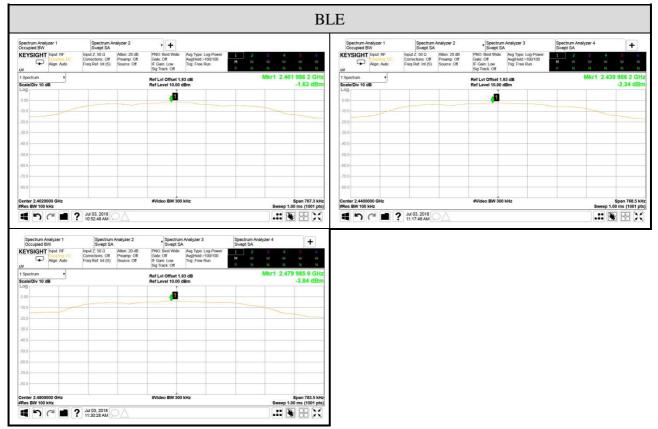
Test Date	2018/07/03	Temp./Hum.	22°C/51%
			DC 3V (Via EasyMax BT
Cable Loss	1.93dB	Test Voltage	Self-Monitoring Blood Glucose
			System)
Mode	BLE	Frequency	TX 2480MHz
Simultaneous Fact	tor10 log(n) (Note: "n" is ante	0	

File Number: C1M1806054

Report Number: EM-F180278

A.5 POWER SPECTRAL DENSITY

Test Date	2018/07/03	Temp./Hum.	22°C/51%
Cable Loss	1.93dB	Test Voltage	DC 3V (Via EasyMax BT Self-Monitoring Blood Glucose System)
Simultaneous Factor10 log(n) (Note: "n" is antenna number)			0


A.5.1 Power Spectral Density Result

Mode	Centre Frequency (MHz)	Power Spectral Density (dBm)	Limit
BLE	2402	-1.63	< 8 dBm/3kHz
	2440	-2.34	
	2480	-3.84	

Note: 1. All results have been included cable loss and Simultaneous Factor.

2. For KDB558074 D01V04, in the test result, when RBW set at 100kHz is stricter than 3kHz.

A.5.2 Measurement Plots

Note: All results have been included cable loss and Simultaneous Factor.

File Number: C1M1806054

Report Number: EM-F180278

APPENDIX B

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPDNDIX B

TEST PHOTOGRAPHS

(Model: EasyMax Bluetooth Dongle)

File Number: C1M1806054

Report Number: EM-F180278