

Report No: CCISE190702701

FCC REPORT

Applicant:	Zhejiang Yihe Sanitary Ware Co., Ltd.		
Address of Applicant:	District A, No. 102 East Taihe Road, Haimen street, Jiaojiang, Taizhou, Zhejiang		
Equipment Under Test (EL	JT)		
Product Name:	Remote Control		
Model No.:	RC10-02, RC10-03		
FCC ID:	2AQBG-RC10-02		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249		
Date of sample receipt:	02 Jul., 2019		
Date of Test:	03 Jul., to 08 Jul., 2019		
Date of report issued:	09 Jul., 2019		
Test Result:	PASS*		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Jul., 2019	Original

Prepared By:

Carey Chen Project Engineer

Date:

09 Jul., 2019

Check By:

"ran" Wimer 2

Date:

09 Jul., 2019

Reviewer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
-		
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 Test Mode	6
	5.4 DESCRIPTION OF SUPPORT UNITS	-
	5.5 LABORITORY FACILITY	
	5.6 LABORITORY LOCATION	
	5.7 TEST INSTRUMENTS LIST	7
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT:	8
	6.2 CONDUCTED EMISSION	9
	6.3 RADIATED EMISSION	
	6.3.1 Field Strength Of The Fundamental Signal	
	6.3.2 Spurious Emissions	
	6.3.3 Band Edge	
	6.4 20DB OCCUPY BANDWIDTH	
7	TEST SETUP PHOTO	
8	EUT CONSTRUCTIONAL DETAILS	22
0		

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Conducted Emission	15.207	N/A
Field strength of the fundamental signal	15.249 (a)(e)	Pass
Spurious emissions	15.249 (d)/15.209	Pass
20dB Occupy Bandwidth	15.215	Pass

Pass: The EUT comply with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Zhejiang Yihe Sanitary Ware Co., Ltd.
Address:	District A, No. 102 East Taihe Road, Haimen street, Jiaojiang, Taizhou, Zhejiang
Factory:	WUXI DENVEL INTELLIGENT ELECNIC INC
Address:	Building A, NO.8 LianHe Road, WuXi, JiangSu, China

5.2 General Description of E.U.T.

Product Name:	Remote Control
Model No.:	RC10-02, RC10-03
Operation Frequency:	2407MHz~2477MHz
Channel numbers:	12
Modulation type:	GFSK
Antenna Type:	PCB antenna
Antenna gain:	2.5 dBi
Power supply:	DC 3V (2 × " AA" Battery)
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Item No.: RC10-02, RC10-03 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being:
	RC10-02 function: stop, Feminine Wash, Posterior Wash, Dryer, Flush, Nozzle forward, Strengh of cleaning, Nozzle backward, Strength of cleaning, Nozzle clean, C/H Massage, Night light, Wing temp, Water temp, Seat temp, ON/OFF cover,ON/OFF seat.
	RC10-03 cancels the on/off cover function, on/off circle function, based on RC10-02

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency							
0	2407MHz	4	2421MHz	8	2460MHz		
1	2410MHz	5	2428MHz	9	2469MHz		
2	2412MHz	6	2435MHz	10	2467MHz		
3	2414MHz	7	2442MHz	11	2477MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 7 & 11 were selected as Lowest, Middle and Highest channel.

5.3 Test mode

Transmitting mode:	Keep the EUT in transmit	Keep the EUT in transmitting mode with modulation. (New battery is used during all test) $% \left($				
Pre-Test Mode: (highest char	nel=2407MHz)					
CCIS has verified the constructions; i.e. X axis, Y a						
	RC	10-02				
Axis	Х	Y Z				
Field Strength(dBuV/m)	Field Strength(dBuV/m) 79.88 86.91 82.26		82.26			
	RC	10-03				
Axis	Х	Y	Z			
Field Strength(dBuV/m) 79.89 86.97 82.37						
Final Test Mode:						

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Z axis (see the test setup photo)

5.4 Description of Support Units

N/A

5.5 Laboritory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.6 Laboritory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.7 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	00044	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Simulated Station	Anritsu	MT8820C	6201026545	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		

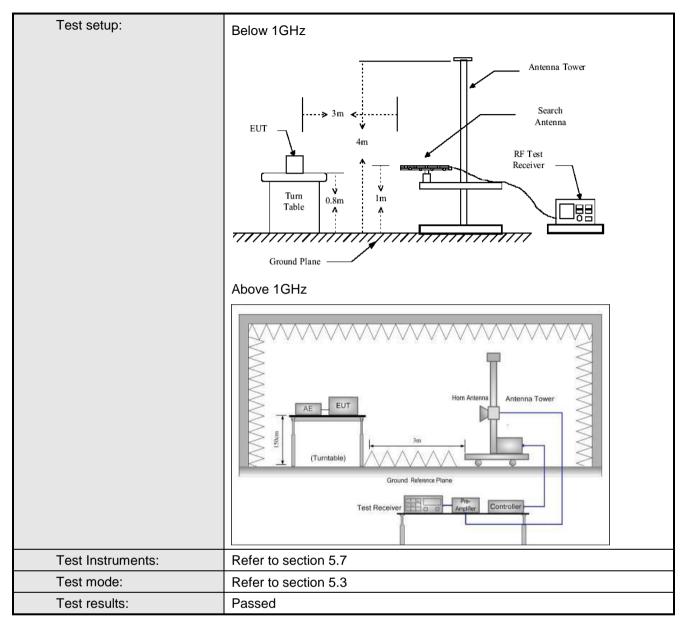
6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited.
E.U.T Antenna:	
The antenna is PCB antenna 2.5 dBi.	a which cannot detachable . The best case gain of the antenna is

6.2 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.20)7		
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit	(dBµV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56* 56	56 to 46* 46	
	0.5-30	60		
	* Decreases with the logarith			
Test setup:	Reference Plar			
	LISN 40cm 80cm Filter AC power Full Filter AC power Equipment E.U.T EMI Test table/Insulation plane EMI Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for detai	ls		
Test results:	The power supply of the EUT is by the "AA" Battery, so not need to be tested.			



6.3 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.249 and 15.209							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	30MHz to 25000MHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detecto	or	RBW	VBV	V	Remark	
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kł	Ηz	Iz Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MH	z	z Peak Value	
	Above IGHZ	RMS		1MHz	3MH	z	Average Value	
Limit:	Frequer	су	Lin	nit (dBuV/m	@3m)		Remark	
(Field strength of the	2400-2483.	5MU-7		94.00			Average Value	
fundamental signal)	2400-2403.	SIVILIZ		114.00			Peak Value	
Limit:	Frequen	су	Lir	mit (dBuV/m	@3m)		Remark	
(Spurious Emissions)	30MHz-88	MHz		40.00			Quasi-peak Value	
	88MHz-216	6MHz		43.50			Quasi-peak Value	
	216MHz-96			46.00		-	Quasi-peak Value	
	960MHz-1	GHz		54.00			Quasi-peak Value	
	Above 10	Hz		54.00			Average Value	
Limit:				74.00			Peak Value	
frequency band) Test Procedure:	 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							

Report No: CCISE190702701

6.3.1 Field Strength Of The Fundamental Signal

RC10-02:

			Peak v	value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2407	53.36	27.13	4.71	85.2	114.00	-28.80	Vertical
2407	55.07	27.13	4.71	86.91	114.00	-27.09	Horizontoal
	52.13	27.13	4.71	83.97	114.00	-30.03	Vertical
2442	54.25	27.13	4.71	86.09	114.00	-27.91	Horizontoal
	52.48	27.13	4.71	84.32	114.00	-29.68	Vertical
2477	54.64	27.13	4.71	86.48	114.00	-27.52	Horizontoal
			Average	value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2407	49.14	27.13	4.71	80.98	94.00	-13.02	Vertical
2407	50.86	27.13	4.71	82.7	94.00	-11.30	Horizontoal
	48.04	27.13	4.71	79.88	94.00	-14.12	Vertical
2442	50.15	27.13	4.71	81.99	94.00	-12.01	Horizontoal
	48.23	27.13	4.71	80.07	94.00	-13.93	Vertical
2477	50.19	27.13	4.71	82.03	94.00	-11.97	Horizontoal

NOTE: Field strength of the fundamental signal test, RBW >20dB BW, VBW>=3XRBW.

RC10-03:

			Peak v	value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2407	53.52	27.13	4.71	85.36	114.00	-28.64	Vertical
2407	55.13	27.13	4.71	86.97	114.00	-27.03	Horizontoal
	52.31	27.13	4.71	84.15	114.00	-29.85	Vertical
2442	54.52	27.13	4.71	86.36	114.00	-27.64	Horizontoal
	52.63	27.13	4.71	84.47	114.00	-29.53	Vertical
2477	54.87	27.13	4.71	86.71	114.00	-27.29	Horizontoal
			Average	e value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2407	49.25	27.13	4.71	81.09	94.00	-12.91	Vertical
2407	50.76	27.13	4.71	82.60	94.00	-11.40	Horizontoal
	48.44	27.13	4.71	80.28	94.00	-13.72	Vertical
2442	50.12	27.13	4.71	81.96	94.00	-12.04	Horizontoal
	48.33	27.13	4.71	80.17	94.00	-13.83	Vertical
2477	50.06	27.13	4.71	81.90	94.00	-12.10	Horizontoal

NOTE: Field strength of the fundamental signal test, RBW >20dB BW, VBW>=3XRBW.

6.3.2 Spurious Emissions

Measurement Data (worst case):

RC10-02

Below 1GHz:

Product Name:		Remote C	Control		P	roduct M	odel:	RC1	0-02	
Test By:		Carey			Т	est mode	:	2.4G	Tx mode	
Test Frequency	' :	30 MHz ~ 1	GHz		P	olarizatio	n:	Vertic	al	
Test Voltage:		DC 3V			E	invironme	ent:	Temp	: 24 ℃	Huni: 579
80 Leve	el (dBuV/i	m)								
70		_								
60										
								FCC P	ART15 CL	ASSB
50										
40										
30							4		5	6 Manual
20				and the	1	2 3	uponghanull	Whiterman	Query Int	
10 mil	templaterations	White the state of	monolin	Marine was well	- the second with	- Ulfray prive				
030		50	10	0	20	0		500		1000
			Intenna		equency (N Preamp		Limit	Over		
	Fre		Factor			Level			Remark	c .
	MH	z dBuV		dB	<u>ab</u>	dBuV/m	dBuV/m			
	144.33		9.24	2.45	29.25	20.26		-23.24		
	210.78 281.99		11.08 13.31	2.86 2.89	28.76 28.48	21.41 21.97		-22.09		
4 4	406.08		15.43	3.09	28.79	26.82		-19.18		
	691.98 836.24		20.28 22.29	4.13 4.23	28.69 28.06	29.12 29.77		-16.88 -16.23		
Remark:										

GHz		Po	est mode: plarization nvironmer		2.4G T Horizor Temp:	ntal 24°C	Huni: 57%
GHz					Temp:	24°C	
		En	nvironmer	nt:	FCC PAF		
and the second s						RT15 CLA	ASSB
						RT15 CL4	ASSB
						RT15 CL/	ASSB
						RT15 CLA	ASSB
www.ewdu						RT15 CL	ASSB
						RT15 CL	ASSB
						15 CL	
www.endur							
www.endu							
www.ender							
www.adu		-					
10 mm and m					E		6
Nown and				4		and a particulated	highlight
Now and			23	ally use march	AVAD ALLOW		
	Worker denter and	markening	Andrewant	With			
mant				-	_		
100		200			500		1000
100	Frequen		z)		500		1000
Antenna C	Cable Pro		• 134 - 55657	Limit	Over		
Factor	Loss Fa	ctor	Level	Line	Limit	Remark	k
dB/m	dB	dB	dBuV/m	dBuV/m	dB		
11 56	2 07 20	9 45	24 21	43 50 -	10 20	ΩP	
			31.12				
	Factor <u>dB/m</u> 11.56 11.75 12.42 14.17	Factor Loss Factor Loss Factor Loss Factor dB/m dB 11.56 2.07 20 11.75 2.84 20 12.42 2.82 20 14.17 3.03 20 18.21 3.64 20	Factor Loss Factor dB/m dB dB 11.56 2.07 29.45 11.75 2.84 28.67 12.42 2.82 28.58 14.17 3.03 28.51 18.21 3.64 28.96	Factor Loss Factor Level dB/m dB dB dBuV/m 11.56 2.07 29.45 24.21 11.75 2.84 28.67 21.68 12.42 2.82 28.58 20.11 14.17 3.03 28.51 25.18 18.21 3.64 28.96 27.97	Factor Loss Factor Level Line dB/m dB dB dBuV/m dBuV/m dBuV/m 11.56 2.07 29.45 24.21 43.50 - 11.75 2.84 28.67 21.68 46.00 - 12.42 2.82 28.58 20.11 46.00 - 14.17 3.03 28.51 25.18 46.00 - 18.21 3.64 28.96 27.97 46.00 -	Factor Loss Factor Level Line Limit dB/m dB dB dBuV/m dBuV/m dB 11.56 2.07 29.45 24.21 43.50 -19.29 11.75 2.84 28.67 21.68 46.00 -24.32 12.42 2.82 28.58 20.11 46.00 -25.89 14.17 3.03 28.51 25.18 46.00 -20.82 18.21 3.64 28.96 27.97 46.00 -18.03	Factor Loss Factor Level Line Limit Remark dB/m dB dB dBuV/m dBuV/m dB 11.56 2.07 29.45 24.21 43.50 -19.29 QP 11.75 2.84 28.67 21.68 46.00 -24.32 QP 12.42 2.82 28.58 20.11 46.00 -25.89 QP 14.17 3.03 28.51 25.18 46.00 -20.82 QP 18.21 3.64 28.96 27.97 46.00 -18.03 QP

RC10-03 Below 1GHz:

Product Name:	:	Rei	mote C	ontr	ol		P	roduct Mo	odel:	RC10)-03		
Гest By:		Car	еу				т	est mode	:	2.4G	Tx m	ode	
Test Frequency	y:	30 N	MHz ~ 1	GHz	2		Р	olarizatio	n:	Vertic	al		
Test Voltage:		DC	3V				E	nvironme	nt:	Temp	: 24°	С	Huni: 5
80 Leve	el (dBuV/i	n)											
70					_								
60													_
00										FCC PA	RT1	5 CLA	SSB
50													
40		-		-	1								
30		_	_						3	4	- 6	e	
1000						-	0	2	ment was	Uniter materia	man	Anala	- Briterin
20	1. Autor	wi ustan	admirth w	Ander	win	a loging have	a marting	2 with marked with	umplum	Werker Crister and	que	Sandan.	- Burlie Harri
1000	drug ger and	rihutrio-u	and wanted	Mar	ren	allowing march	harmelius	2 When any out	word	Une and again		Anadan	
20 10-1-1-1	transferre	50	at the second	Antorn	100	h Paring have all	Law within the	villenervert	word word	500		Annalan	1000
20	Angelia			Mar	100	Fre	20 equency (M	With any set			que		1000
20 10-10-1		50			enna	Fre Cable	20	o Hz)	Limit	500 Over Limit	Rei	nark	
20 10-10-1	Fr	50 ∋q	Read. Level	Fac	enna ctor	Fre Cable Loss	20 equency (M Preamp Factor	0 Hz) Level	Limit Line	Over Limit	Rei	nark	
20 10 0 30	Fr	50 eq Hz	Read. Level dBuV	Fac	enna ctor 187m	Fre Cable Loss dB	20 equency (M Preamp Factor dB	0 Hz) Level dBuV/m	Limit Line dBuV/m	Over Limit <u>d</u> B		nark	
20 10 0 30	Fr. M 144. 3 262. 8	50 ∋q Hz 35 96	Read. Level dBuV 36.82 35.60	Fac	enna ctor 18/m 9.24 2.95	Fre Cable Loss dB 2.45 2.84	20 equency (M Preamp Factor 	0 Hz) Level dBuV/m 19.26 22.87	Limit Line dBuV/m 43.50 46.00	Over Limit dB -24.24 -23.13	QP QP	nark	
20 10 0 1 2 3	Fr M 144. 3 262. 8 356. 6	50 ≥q Hz 35 96 76	Read. Level dBuV 36.82 35.60 37.12	Fac 12 14	enna ctor 187m 9.24 2.95 1.69	Fre Cable Loss dB 2.45 2.84 3.10	20 equency (M Preamp Factor 29.25 28.52 28.59	0 Hz) Level dBuV/m 19.26 22.87 26.32	Limit Line dBuV/m 43.50 46.00 46.00	Over Limit 	QP QP QP	nark	
20 10 0 30	Fr. M 144. 3 262. 8	50 ≥q Hz 35 36 76 10	Read. Level dBuV 36.82 35.60	Fac 9 12 14 18 20	enna ctor 18/m 9.24 2.95	Fre Cable Loss dB 2.45 2.84	20 equency (M Preamp Factor 29.25 28.52 28.59 28.96 28.69	dBuV/m 19.26 22.87 26.32 28.60 27.12	Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00	Over Limit -24.24 -23.13 -19.68 -17.40	QP QP QP QP	nark	

Product Nar	ne:	Remote C	Control		Р	roduct Mo	odel:	RC10	-03	
Fest By:		Carey			т	est mode:	:	2.4G T	x mode	!
Test Freque	ncy:	30 MHz ~ 1	GHz		Р	olarizatio	n:	Horizo	ntal	
Test Voltage	:	DC 3V			E	nvironme	nt:	Temp:	24 ℃	Huni: 57%
		21.								
80	Level (dBuV/n	1)					-			
70										
10										
60								FCC PAR	T15 CLA	SSB
50										T T
100					3				_	
40										
30							2	3 4 6	5 6 	- all 1 1 ale
20				-		1	a hand haven	1 marches bour	and a start of the	
20	le user	with set in a	me and when	and where	Hennesseller	all and a station				
10	the second second second	annor ready	and and a second							
0	30									
	30	50	10	-	200 equency (Mi			500		1000
			Intenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remai	ck
	MH2	dBuV		dB	₫₿	dBuV/m	dBuV/m			
1	260.144	35.64	12.89	2.84	28.52	22.85	46.00	-23.15	QP	
2 3	352.943	37.24	14.64	3.10	28.57	26.41	46.00	-19.59	QP	
	459.114		16.84	3.27	28.89	27.87				
4 5	566.622 627.274		18.78 19.62	3.91 3.90	29.05 28.85	27.64	46.00	-18.36		
6	737.071		20.55	4.31	28.53	28.78		-17.22		
									0.022	
Remark:										
		er Read lev								

RC10-02 Above 1GHz

			Test cl	hannel: Low	est channel			
			De	tector: Peak	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4814.00	49.74	31.62	6.81	41.82	46.35	74.00	-27.65	Vertical
4814.00	49.07	31.62	6.81	41.82	45.68	74.00	-28.32	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4814.00	38.48	31.62	6.81	41.82	35.09	54.00	-18.91	Vertical
4814.00	38.95	31.62	6.81	41.82	35.56	54.00	-18.44	Horizontal
			Test ch	nannel: Mido	lle channel			
			De	tector: Peak	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	51.46	31.72	6.86	41.84	48.20	74.00	-25.80	Vertical
4884.00	49.31	31.72	6.86	41.84	46.05	74.00	-27.95	Horizontal
			Dete	ector: Average	ge Value			-
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	41.12	31.72	6.86	41.84	37.86	54.00	-16.14	Vertical
4884.00	39.55	31.72	6.86	41.84	36.29	54.00	-17.71	Horizontal
			Test ch	annel: High	est channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4954.00	53.76	31.84	6.91	41.87	50.64	74.00	-23.36	Vertical
4954.00	50.47	31.84	6.91	41.87	47.35	74.00	-26.65	Horizontal
			Dete	ector: Average	ge Value			-
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4954.00	44.56	31.84	6.91	41.87	41.44	54.00	-12.56	Vertical
4954.00	40.94	31.84	6.91	41.87	37.82	54.00	-16.18	Horizontal
		r Read level + f other freque				nplifier Factor. not show in tes	t report.	

RC10-03 Above 1GHz

			Test cl	hannel: Low	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4814.00	50.29	31.62	6.81	41.82	46.90	74.00	-27.10	Vertical
4814.00	49.21	31.62	6.81	41.82	45.82	74.00	-28.18	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4814.00	39.67	31.62	6.81	41.82	36.28	54.00	-17.72	Vertical
4814.00	38.84	31.62	6.81	41.82	35.45	54.00	-18.55	Horizontal
			Test ch	nannel: Mido	lle channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	51.17	31.72	6.86	41.84	47.91	74.00	-26.09	Vertical
4884.00	49.32	31.72	6.86	41.84	46.06	74.00	-27.94	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	41.24	31.72	6.86	41.84	37.98	54.00	-16.02	Vertical
4884.00	39.57	31.72	6.86	41.84	36.31	54.00	-17.69	Horizontal
				annel: High				
	Deed	Antonno		tector: Peak			Over	1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4954.00	54.46	31.84	6.91	41.87	51.34	74.00	-22.66	Vertical
4954.00	50.07	31.84	6.91	41.87	46.95	74.00	-27.05	Horizontal
T		1	Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4954.00	44.55	31.84	6.91	41.87	41.43	54.00	-12.57	Vertical
4954.00	40.56	31.84	6.91	41.87	37.44	54.00	-16.56	Horizontal
						nplifier Factor. not show in test	t report.	

6.3.3 Band Edge

Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	205 and 15.209			
Test Method:	ANSI C63.10:	2013				
Test Frequency Range:	2.3GHz to 2.5	GHz				
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	V	/BW	Remark
	Above 1GHz	Peak	1MHz	3	MHz	Peak Value
		RMS	1MHz		MHz	Average Value
Limit:	Frequer	icy L	imit (dBuV/m @3	3m)		Remark
	Above 10	GHz –	54.00 74.00			/erage Value Peak Value
Test Procedure:	 the groun to determ 8. The EUT antenna, tower. 9. The anter the groun Both hori: make the 10. For each case and meters ar to find the 11. The test-r Specified 12. If the emi the limit s of the EU have 10 c 	d at a 3 mete ine the position was set 3 meters which was meters and height is a d to determinate contal and ver measurement suspected ent then the anter a maximum re- receiver systers Bandwidth w ssion level of pecified, then T would be re- dB margin wo	nission, the EUT enna was tuned to ble was turned fro	ble wa radiation of a neter value s of the was a b heigor of a was a b heigor of a was a b heigor of a was a b heigor of a ak De d Mode stopp the the bone by	as rotate tion. erference variable to four r of the fi- he anter arranged thes fron degrees tect Fur de. e was 10 bed and emission y one us	ed 360 degrees ce-receiving e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 to 360 degrees action and 0 dB lower than the peak values ons that did not sing peak, quasi-
Test setup:		urntable)	3m +	Antenna Tr	ower	
Test Instruments:	Refer to section	on 5.7 for deta	ails			
Test Instruments: Test mode:	Refer to section					

Product Name:	Remot	e Control			Product I	Model:	RC1	0-02
Test By:	Carey				Test mod	le:	2.4G	-Tx mode
Test Channel:	Lowest	channel			Polarizati	ion:	Vertio	cal
Test Voltage:	DC 3V				Environm	nent:	Temp	o: 24℃ Huni: 57%
110 Level (dBu	IV/m)							
110								
100								
80							FCC	C PART 15 (PK)
60							FC	PART 15 (AV)
m	mm	man	many	m	mm	m	man rul	PARI IS (AV)
	Concern and the							•
40								
40								
								-
40 20								
20								
20	320		2350					2409
20		dantenna	Fre	equency (M		Limit	Over	
20 0 2310 2		dAntenna 1 Factor	Fr Cable	Preamp		Limit Line		
20 0 2310 2 F	Rea	l Factor	Fr Cable	Preamp Factor		Line	Limit	N25 22
20 0 2310 2 F	Rea req Leve MHz dBu	l Factor V	Fr Cable Loss	Preamp Factor dB	Level	Line dBuV/m	Limit dB	Remark

Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor. 1.

roduct Name:	R	emote C	ontrol		Pro	oduct Mod	del:	RC10-02	2
est By:	Ca	arey			Те	st mode:		2.4G-Tx m	node
est Channel:	Lo	west char	nnel	Polarization:				Horizontal	
est Voltage:	D	C 3V			En	vironmen	t:	Temp: 24°	C Huni: 579
			han a second because		ur whether and the			- 7.5	
110 Leve	l (dBuV/m)								
100									
80								FC	C PART 15 (PK)
60								FC	C PART 15 (AV)
m		have	- Company	mont		m	m		rutur
40									<u> </u>
20									
0 ²³¹⁰	2320			2350					2409
		Readu	Intenna		equency (A		Limit	Over	
	Freq		Factor		Factor				Remark
	MHz	dBu∛		ā	ā	dBuV/m	dBuV/m	<u>a</u> B	
1 24	00.000	21.41	27.11	4.70	0.00	53.22	74.00	-20.78	Peak
	00.000	8.92	27.11	4.70				-13.27	Average

Product Name:	Remote	Control			Product N	Model:	RC1	0-02	
ſest By:	Carey				Test mod	le:	2.4G	-Tx mode	
Fest Channel:	Highest cl	hannel			Polarizati	ion:	Vertio	cal	
Fest Voltage:	DC 3V				Environm	nent:	Temp	: 24 ℃	Huni: 57%
Louol (dDu)	(22.)			ŀ					
110 Level (dBuV	10)								
100									
80							FC	C PART 15 (PK)
60									
		4					FC	C PART 15 (AV)
60/	<u> </u>			~					
40		2							
		2							
40		2							
40		2							2500
40	Pand	2		equency (M		Tinit	0.000		
40 20 0 2475	Read/	2 Antenna Factor	Cable	Preamp		Limit Line	Over Limit		
40 20 0 2475	eq Level	Factor	Cable	Preamp Factor		Line	Limit		
40 20 0 2475 Fre	eq Level Iz dBuV 00 21.52	Factor 	Cable Loss	Preamp Factor dB 0.00	Level dBuV/m	Line dBuV/m 74.00	Limit dB -20.31	Remark	2500

	e: Remote Control				Pro	oduct Mod	lel:	RC10-02		
st By:	Ca	arey			Tes	st mode:		2.4G-Tx m	ode	
st Channel	l: Hi	Highest channel			Polarization:			Horizontal		
st Voltage:	D	DC 3V			Environment:			Temp: 24℃ Huni: 57%		ni: 57%
ام	vol (dRuV/m)									
diama.	evel (dBuV/m)									
100										
	-									
80	/							FC	C PART 15 (P	K)
60										
60		L					\sim	FC	C PART 15 (A	V)
40			2							
40										
20										
20						_				
	175									2500
20 0	175			Fn	equency (I)	147)	T.2.24	0		2500
		Read	Antenna Factor	Cable	Preamp		Limit Line			2500
		Read Level	Factor	Cable	Preamp Factor	Level		Limit		2500
0_24	Freq	Level	Factor dB/m	Cable Loss dB	Preamp Factor dB	Level dBuV/m	Line dBuV/m	Limit	Remark	2500

RC10-03:

Product Name:	Remote	e Control			Product	Model:	RC1	0-03		
Test By:	Carey				Test mod	le:	2.4G	-Tx mode	9	
Test Channel:	Lowest o	hannel			Polarizat	ion:	Verti	cal		
Test Voltage:	DC 3V				Environn	nent:	Tem	Temp: 24°C Huni: 579		
Level (dB	ul lim)									
110 Level (db	uv/m)									
100										
80							FC	C PART 1	5 (PK)	
1.2									11	
60	mann	m	man	m	num	mar	1 FC	C PART 1	5 (AV)	
						Ĩ	2			
40										
20										
20										
0										
2310	2320		2350 Fr	equency (M	(Hz)				2409	
80 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		lAntenna		Preamp		Limit	Over			
		l Factor			Level		Limit	Remark		
	MHz dBu	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
1 2390.			4.69				-20.31			
2 2390.	000 9.0	5 27.07	4.69	0.00	40.81	54.00	-13.19	Averag	te	
Remark: 1. Final Level = Re			_							

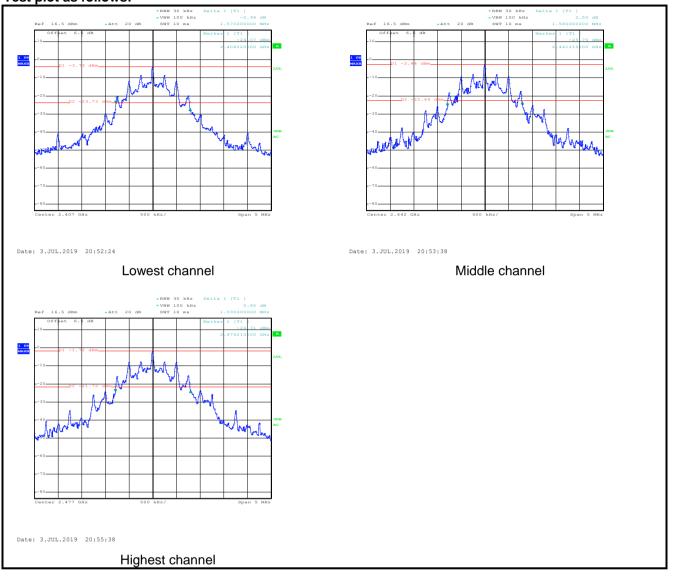
Product Name:	R	emote C	ontrol		Pr	oduct Mo	del:	RC10-0	3	
Test By:	С	arey			Те	est mode:		2.4G-Tx	mode	
Test Channel:	Lo	owest cha	nnel		Po	olarization	ו:	Horizontal		
Test Voltage:	D	DC 3V			Er	nvironme	nt:	Temp: 24°C Huni: 579		
110 Level (d <mark>Bu</mark> V/m)									
110										
80								FC	C PART 15 (PK
60								1 FC	C PART 15 (AV)
mm		have	where	- manager	man	- Andrew	and a second	- margine	Comment	
40										
20										
0	2320			2350					Carl.	2409
		ReadA	ntenna		equency(M Preamp	1HZ)	Limit	Over		
	Freq	Level	Factor		Factor	Level		Limit	Remark	
	MHz	₫₿u℣		dB	₫₿	dBu∛/m	dBuV/m	āĒ		
).000).000	22.37 9.11	27.08 27.08	4.69 4.69				-19.86 -13.12	Peak Average	
Remark:										

	e: Remote Control					Model:	RC1	RC10-03		
Test By:	Carey				Test mod	le:	2.4G	-Tx mode		
Test Channel:	Highest	channel			Polarizat	ion:	Verti	Vertical		
Test Voltage:	Itage: DC 3V				Environn	nent:	Temp	Temp: 24℃ Huni: 579		
110 Level (dB	uV/m)				1				-	
100										
80							FC	C PART 15 (F	PK)	
1										
60		1					FC	C PART 15 (A	V)	
		2								
40										
20										
20										
20			Fr	equency (N	IHz)				2500	
20 0 2475		lAntenna	Cable	Preamp		Limit			2500	
20 0 2475 F	req Level	l Factor	Cable Loss	Preamp Factor	Level	Line	Limit		2500	
20 0 2475 F		L Factor	Cable	Preamp Factor		Line	Limit		2500	
20 0 2475 F	req Level MHz dBuV 500 22.52	L Factor 7	Cable Loss dB	Preamp Factor dB 0.00	Level dBuV/m 54.69	Line dBuV/m 74.00	Limit dB -19.31	Remark	2500	

roduct Name:	e: Remote Control			Pro	oduct Mod	lel:	RC10-03		
est By:	Carey			Tes	st mode:		2.4G-Tx m	ode	
est Channel:	Highest channel			Po	arization:		Horizontal		
est Voltage:	DC 3V			En	Environment: Te			C Hu	uni: 57%
Lovol /	(Dull/m)								
110 Level (abuv/m)								
100									_
80							FC	C PART 15 (PK)
1									
	1	4			-	~ ~	FC	C PART 15 (AV)
60					a man				
40		2	<u> </u>	-~-					
40		2							
		2							
40		2							
40		2			11-1				2500
40	Read	Antenna		requency (N Preamp		Limit	Over		
40 20 0 2475	Read Freq Level		Cable	Preamp		Limit Line		Remark	
40 20 0 2475		Factor	Cable	Preamp Factor		Line	Limit		
40 20 0 2475	Freq Level	Factor B/m	Cable Loss	Preamp Factor dB	Level dBuV/m	Line dBuV/m	Limit	Remark	

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.215
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Transmitting mode
Test results:	Pass


Measurement Data:

20dB Occupy Bandwidth (MHz)							
Lowest channel	Middle channel	Highest Highest					
1.57	1.58	1.59					

Report No: CCISE190702701

Test plot as follows:

