

# **TEST REPORT**

| Applicant:                                                                                                 | Fujian Youtong Industries Co., Ltd.                                                          |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:                                                                                      | North part of 1st 2nd & 3rd floor Building 1 No.18 Majiang Road<br>Mawei Fuzhou Fujian China |  |  |
| Manufacturer:                                                                                              | Fujian Youtong Industries Co., Ltd.                                                          |  |  |
| Address ofNorth part of 1st 2nd & 3rd floor Building 1 No.18 MajiangManufacturer:Mawei Fuzhou Fujian China |                                                                                              |  |  |
| Factory:                                                                                                   | Fujian Youtong Industries Co., Ltd.                                                          |  |  |
| Address of Factory:                                                                                        | North part of 1st 2nd & 3rd floor Building 1 No.18 Majiang Road<br>Mawei Fuzhou Fujian China |  |  |
| Equipment Under Test (                                                                                     | EUT)                                                                                         |  |  |
| Product Name:                                                                                              | 7-1 wireless sensor                                                                          |  |  |
| Model No.:                                                                                                 | R53                                                                                          |  |  |
| Trade Mark:                                                                                                | N/A                                                                                          |  |  |
| FCC ID:                                                                                                    | 2AQBD-R53                                                                                    |  |  |
| Applicable standards:                                                                                      | FCC CFR Title 47 Part 15 Subpart C Section 15.249                                            |  |  |
| Date of sample receipt:                                                                                    | May 11, 2023                                                                                 |  |  |
|                                                                                                            |                                                                                              |  |  |

| Date of Test: | May 11~12, 2023 |
|---------------|-----------------|
|               |                 |

Date of report issued: May 16, 2023

PASS \* **Test Result :** 

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 18



## 2 Version

| Version No. | Date         | Description |
|-------------|--------------|-------------|
| 00          | May 16, 2023 | Original    |
|             |              |             |
|             |              |             |
|             |              |             |
|             |              |             |

**Prepared By:** 

sontly

Date:

Date:

May 16, 2023

May 16, 2023

Project Engineer

Check By:

opinson lund

Reviewer



# 3 Contents

|   |            | Pa                                     | age |
|---|------------|----------------------------------------|-----|
| 1 | COV        | ER PAGE                                | 1   |
|   |            |                                        |     |
| 2 | VER        | SION                                   | 2   |
| 3 | CO         | ITENTS                                 | 3   |
|   | 001        |                                        |     |
| 4 | TES        | T SUMMARY                              | 4   |
|   | 4.1        | Measurement Uncertainty                | 4   |
| 5 | GEN        | IERAL INFORMATION                      | 5   |
|   |            | GENERAL DESCRIPTION OF EUT             |     |
|   | 5.1<br>5.2 | TEST MODE                              |     |
|   | 5.3        | DESCRIPTION OF SUPPORT UNITS           | -   |
|   | 5.4        | DEVIATION FROM STANDARDS               | 6   |
|   | 5.5        | ABNORMALITIES FROM STANDARD CONDITIONS |     |
|   | 5.6<br>5.7 | TEST FACILITY<br>TEST LOCATION         |     |
|   | 5.8        | Additional Instructions                |     |
| 6 |            | T INSTRUMENTS LIST                     |     |
| 0 | TES        | 1 INSTRUMENTS LIST                     | /   |
| 7 | TES        | T RESULTS AND MEASUREMENT DATA         | 9   |
|   | 7.1        | ANTENNA REQUIREMENT                    | . 9 |
|   | 7.2        | RADIATED EMISSION METHOD               |     |
|   | 7.2.       |                                        |     |
|   | 7.2.       |                                        | 13  |
|   | 7.3        | 20DB OCCUPY BANDWIDTH                  |     |
| 8 | TES        | T SETUP PHOTO                          | 18  |
| • |            | CONSTRUCTIONAL DETAILS                 | 40  |
| 9 | EUI        | CONSTRUCTIONAL DETAILS                 | 18  |



# 4 Test Summary

| Test Item                                | Section in CFR 47     | Result         |
|------------------------------------------|-----------------------|----------------|
| Antenna requirement                      | 15.203                | Pass           |
| AC Power Line Conducted Emission         | 15.207                | Not Applicable |
| Field strength of the fundamental signal | 15.249 (a)            | Pass           |
| Spurious emissions                       | 15.249 (a) (d)/15.209 | Pass           |
| Band edge                                | 15.249 (d)/15.205     | Pass           |
| 20dB Occupied Bandwidth                  | 15.215 (c)            | Pass           |

Remarks:

1. Test according to ANSI C63.10: 2013.

2. Pass: The EUT complies with the essential requirements in the standard.

## 4.1 Measurement Uncertainty

| Test Item                           | Frequency Range       | Measurement Uncertainty | Notes |
|-------------------------------------|-----------------------|-------------------------|-------|
| Radiated Emission                   | 30MHz-200MHz 3.8039dB |                         | (1)   |
| Radiated Emission                   | 200MHz-1GHz           | 3.9679dB                | (1)   |
| Radiated Emission                   | 1GHz-18GHz            | 4.29dB                  | (1)   |
| Radiated Emission                   | 18GHz-40GHz           | 3.30dB                  | (1)   |
| AC Power Line Conducted<br>Emission | 0.15MHz ~ 30MHz       | 3.44dB                  | (1)   |
| Occupied Bandwidth                  | /                     | 3%                      | (1)   |

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.



# **5** General Information

## 5.1 General Description of EUT

| Product Name:        | 7-1 wireless sensor          |
|----------------------|------------------------------|
| Model No.:           | R53                          |
| Serial No.:          | N/A                          |
| Test sample(s) ID:   | GTSL2023050261-1             |
| Sample(s) Status     | Engineer sample              |
| Operation Frequency: | 915MHz                       |
| Channel numbers:     | 1                            |
| Modulation type:     | FSK                          |
| Antenna Type:        | Spring Antenna               |
| Antenna gain:        | 0dBi                         |
| Power supply:        | DC 4.5V (Powered by battery) |



#### 5.2 Test mode

| Transmitting mode | Keep the EUT in continuously transmitting mode. The new battery used |
|-------------------|----------------------------------------------------------------------|
|-------------------|----------------------------------------------------------------------|

#### 5.3 Description of Support Units

None.

#### 5.4 Deviation from Standards

None.

#### 5.5 Abnormalities from Standard Conditions

None.

#### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: • FCC—Registration No.: 381383 Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. • IC —Registration No.: 9079A CAB identifier: CN0091 The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing • NVLAP (LAB CODE:600179-0) Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

#### 5.7 Test Location

#### All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480

Fax: 0755-27798960

#### 5.8 Additional Instructions

| Test Software     | Continuously transmitter provided by manufacturer |
|-------------------|---------------------------------------------------|
| Power level setup | Default                                           |



# 6 Test Instruments list

| Rad  | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| ltem | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July 02, 2020          | July 01, 2025              |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | April 21, 2023         | April 20, 2024             |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9168                    | GTS640           | March 20, 2023         | March 19, 2025             |  |  |
| 5    | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June 12, 2022          | June 11, 2023              |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June 23, 2022          | June 22, 2023              |  |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | April 21, 2023         | April 20, 2024             |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | April 21, 2023         | April 20, 2024             |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | April 21, 2023         | April 20, 2024             |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | April 21, 2023         | April 20, 2024             |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | April 21, 2023         | April 20, 2024             |  |  |
| 13   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June 23, 2022          | June 22, 2023              |  |  |
| 14   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June 23, 2022          | June 22, 2023              |  |  |
| 15   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June 23, 2022          | June 22, 2023              |  |  |
| 16   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June 23, 2022          | June 22, 2023              |  |  |
| 17   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | April 21, 2023         | April 20, 2024             |  |  |
| 18   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June 23, 2022          | June 22, 2023              |  |  |
| 19   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | Nov. 29, 2022          | Nov. 28, 2023              |  |  |
| 20   | Broadband Preamplifier                 | SCHWARZBECK                    | BBV9718                     | GTS535           | April 21, 2023         | April 20, 2024             |  |  |
| 21   | Breitband<br>hornantenna               | SCHWARZBECK                    | BBHA 9170                   | GTS579           | Oct. 16, 2022          | Oct. 15, 2023              |  |  |
| 22   | Amplifier                              | TDK                            | PA-02-02                    | GTS574           | Oct. 16, 2022          | Oct. 15, 2023              |  |  |
| 23   | Amplifier                              | TDK                            | PA-02-03                    | GTS576           | Oct. 16, 2022          | Oct. 15, 2023              |  |  |
| 24   | PSA Series Spectrum<br>Analyzer        | Rohde & Schwarz                | FSP                         | GTS578           | June 23, 2022          | June 22, 2023              |  |  |
| 25   | Amplifier(1GHz-26.5GHz)                | HP                             | 8449B                       | GTS601           | April 21, 2023         | April 20, 2024             |  |  |



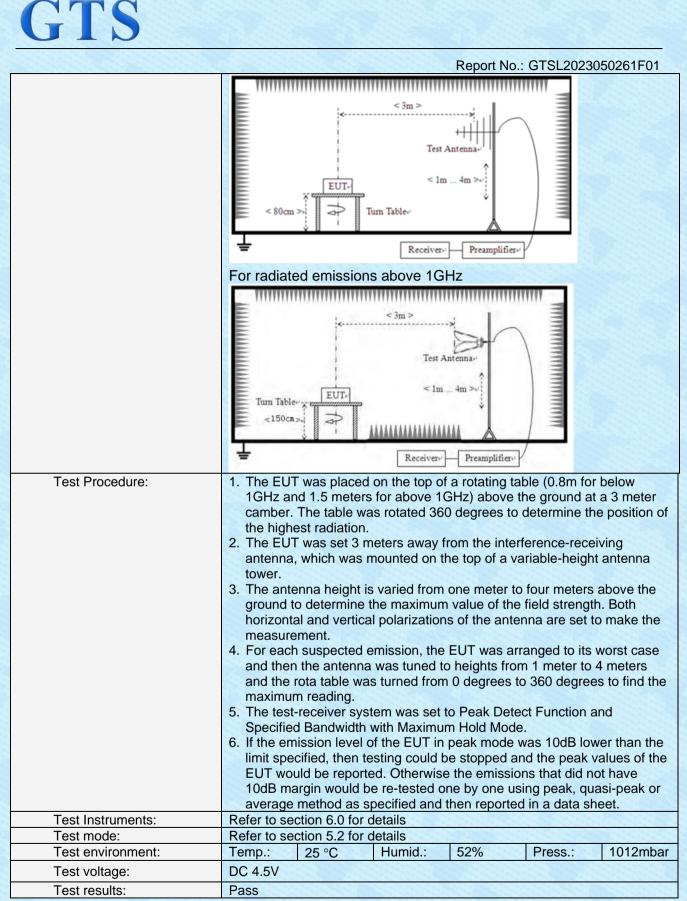
| RF C | RF Conducted Test:                                   |              |                  |            |                        |                            |  |  |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | April 21, 2023         | April 20, 2024             |  |  |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | April 21, 2023         | April 20, 2024             |  |  |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS536     | April 21, 2023         | April 20, 2024             |  |  |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | April 21, 2023         | April 20, 2024             |  |  |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | April 21, 2023         | April 20, 2024             |  |  |
| 6    | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | April 21, 2023         | April 20, 2024             |  |  |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | April 21, 2023         | April 20, 2024             |  |  |
| 8    | Programmable Constant<br>Temp & Humi Test<br>Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | April 21, 2023         | April 20, 2024             |  |  |

| Gen                                        | General used equipment:         |       |       |        |                        |                            |  |
|--------------------------------------------|---------------------------------|-------|-------|--------|------------------------|----------------------------|--|
| Item Test Equipment Manufacturer Model No. |                                 |       |       |        | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1                                          | Humidity/ Temperature Indicator | KTJ   | TA328 | GTS243 | April 24, 2023         | April 23, 2024             |  |
| 2                                          | Barometer                       | KUMAO | SF132 | GTS647 | July 26, 2022          | July 25, 2023              |  |



# 7 Test results and Measurement Data

## 7.1 Antenna requirement


| Standard requirement:                                      | FCC Part15 C Section 15.203                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 15.203 requirement:                                        | 15.203 requirement:                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| responsible party shall be u<br>antenna that uses a unique | I be designed to ensure that no antenna other than that furnished by the<br>used with the device. The use of a permanently attached antenna or of an<br>e coupling to the intentional radiator, the manufacturer may design the unit<br>an be replaced by the user, but the use of a standard antenna jack or<br>ibited. |  |  |  |  |  |  |  |  |
| EUT Antenna:                                               | EUT Antenna:                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| The antenna is Spring Antenna                              | , reference to the appendix II for details                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |



Report No.: GTSL2023050261F01

## 7.2 Radiated Emission Method

| 7.2 Radiated Emission Method |                                           |                              |                |             |                                                               |  |  |  |
|------------------------------|-------------------------------------------|------------------------------|----------------|-------------|---------------------------------------------------------------|--|--|--|
| Test Requirement:            | FCC Part15 C Section 15.209, 15.205       |                              |                |             |                                                               |  |  |  |
| Test Method:                 | ANSI C63.10:2013                          |                              |                |             |                                                               |  |  |  |
| Test Frequency Range:        | 9kHz to 10GHz                             |                              |                |             |                                                               |  |  |  |
| Test site:                   | Measurement Distance: 3m                  |                              |                |             |                                                               |  |  |  |
| Receiver setup:              | Frequency                                 | Detector                     | RBW            | VBW         | Remark                                                        |  |  |  |
|                              | 9kHz-<br>150kHz                           | Quasi-pea                    | k 200Hz        | 300Hz       | Quasi-peak Value                                              |  |  |  |
|                              | 150kHz-<br>30MHz                          | Quasi-pea                    | k 9kHz         | 10kHz       | Quasi-peak Value                                              |  |  |  |
|                              | 30MHz-<br>1GHz                            | Quasi-pea                    | k 120KHz       | 300KHz      | Quasi-peak Value                                              |  |  |  |
|                              | Above 1GHz                                | Peak                         | 1MHz           | 3MHz        | Peak Value                                                    |  |  |  |
|                              | Above IGHZ                                | Peak                         | 1MHz           | 10Hz        | Average Value                                                 |  |  |  |
| Limit:                       | Freque                                    | ency                         | Limit (dBuV    | /m @3m)     | Remark                                                        |  |  |  |
| (Field strength of the       |                                           |                              | 94.0           | 0           | QP Value                                                      |  |  |  |
| fundamental signal)          | 915.275                                   | DIVIHZ                       | 114.0          | 00          | Peak Value                                                    |  |  |  |
| Limit:                       | Freque                                    | ency                         | Limit (u       | V/m)        | Remark                                                        |  |  |  |
| (Spurious Emissions)         | 0.009MHz-0                                |                              | 2400/F(kHz)    |             | Quasi-peak Value                                              |  |  |  |
|                              | 0.490MHz-1                                | .705MHz                      | 24000/F(kH     | z) @30m     | Quasi-peak Value                                              |  |  |  |
|                              | 1.705MHz-3                                | 30.0MHz                      | 30 @3          | SÓm         | Quasi-peak Value                                              |  |  |  |
|                              | 30MHz-8                                   | 88MHz                        | 100 @          | 3m          | Quasi-peak Value                                              |  |  |  |
|                              | 88MHz-2                                   | 16MHz                        | 150 @          | 3m          | Quasi-peak Value                                              |  |  |  |
|                              | 216MHz-9                                  | 60MHz                        | 200 @          | 3m          | Quasi-peak Value                                              |  |  |  |
|                              | 960MHz-                                   | -1GHz                        | 500 @          | 3m          | Quasi-peak Value                                              |  |  |  |
|                              | Above 1                                   | GH7                          | 500 @          |             | Average Value                                                 |  |  |  |
|                              |                                           |                              | 5000 @         |             | Peak Value                                                    |  |  |  |
| Limit:<br>(band edge)        | harmonics, shall                          | II be attenuat to the genera | ed by at least | 50 dB below | bands, except for<br>w the level of the<br>in Section 15.209, |  |  |  |
| Test setup:                  | For radiated e                            | missions fro                 | om 9kHz to 30  | OMHz        |                                                               |  |  |  |
|                              | For radiated emissions from 9kHz to 30MHz |                              |                |             |                                                               |  |  |  |
|                              | For radiated e                            | missions fro                 | om 30MHz to    | 1GHz        |                                                               |  |  |  |



Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.



Measurement data:

## 7.2.1 Field Strength of The Fundamental Signal

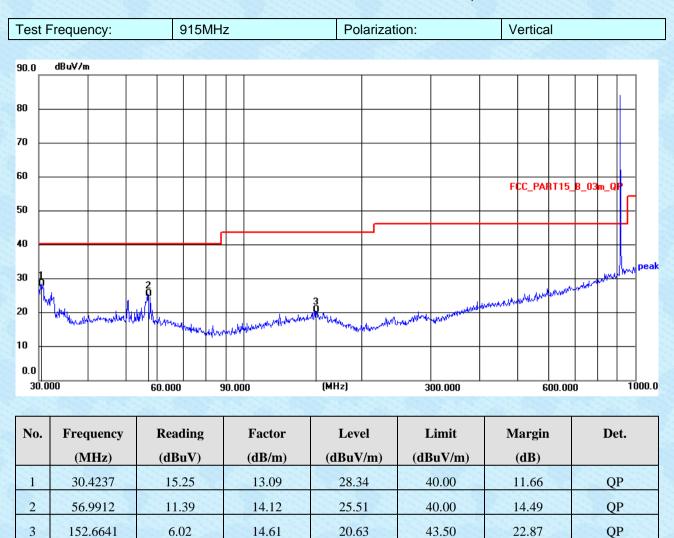
QP value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 915                | 98.06                   | 12.61                       | 8.58                  | 32.11                    | 87.14             | 94                     | -6.86                 | Horizontal   |
| 915                | 95.52                   | 12.61                       | 8.58                  | 32.11                    | 84.6              | 94                     | -9.4                  | Vertical     |



## 7.2.2 Spurious emissions and Band Edge

#### Below 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

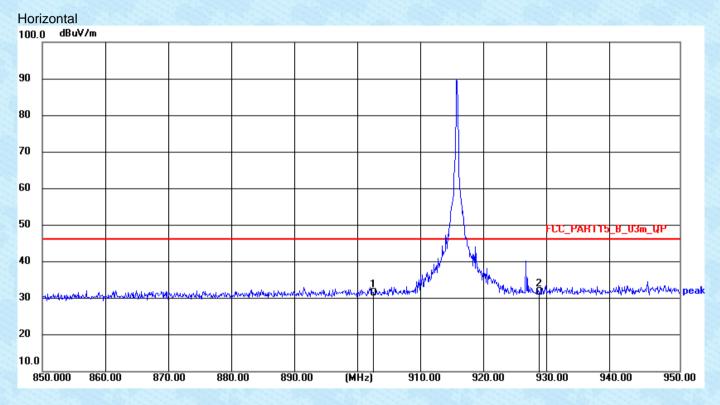
#### Below 1GHz

| -    | Test Frequency: 915 MH |                       |                       | MH          | Hz Polarization: Horizontal              |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         |        |          |          |      |      |     |      |
|------|------------------------|-----------------------|-----------------------|-------------|------------------------------------------|------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|-----------------------|---------|--------|----------|----------|------|------|-----|------|
|      |                        | dBu∀/n                |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         |        |          |          |      |      |     |      |
|      | 90.0<br>               | dBu¥/n                | n<br>                 |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         |        |          |          |      |      |     |      |
|      | 80 -                   |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _       |             |                       |         |        |          |          |      |      | _   |      |
|      | 70                     |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _       |             |                       |         |        |          |          |      |      |     |      |
|      | 60 -                   |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _       |             |                       |         |        |          |          |      |      |     |      |
|      | 50                     |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         | FI     | C_PA     | KT 15_   | B_03 | m_UI | Г   |      |
|      | 50                     |                       |                       |             |                                          |      | -      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ╷╴      |             |                       |         |        |          |          |      |      | J   |      |
|      | 40                     |                       |                       |             |                                          |      | _      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         |        |          |          |      |      |     |      |
|      | 30                     |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       | 3       |        |          |          | WWWW | mark | hun | peak |
|      | 20                     | Maryania              | - Alle with at        | 1           |                                          |      |        |      | ngerber of the office of the open states of the ope | 2     | _       |             | and the second second | , tul P | -Alway | nterrori | New York |      |      |     |      |
|      | 10                     | "hully a phane of the | 1000 C 10 C 10 C 10 C | 1.0.045.041 | an a | myl  | hteres | ANNA | Martin Martin Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00% | NUMANIA | MARA AND IN |                       |         |        |          |          |      |      |     |      |
|      | 0.0                    |                       |                       |             |                                          |      |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |             |                       |         |        |          |          |      |      |     |      |
|      |                        | .000                  |                       |             | 60.000                                   |      | 9      | 0.00 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (MHz) |         | 3           | 00.000                |         |        | E        | 100.00   | 0    |      | 10  | 00.0 |
| 1121 | No                     | Free                  | luency                |             | Read                                     | ling |        |      | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L     | evel    | I           | limit                 |         | Μ      | argin    | L        |      | Det  | •   | 1000 |
|      |                        | (N                    | (Hz)                  |             | (dBı                                     | ıV)  |        |      | ( <b>dB</b> / <b>m</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dBı  | V/m)    | (dI         | BuV/m)                |         | (      | dB)      |          |      |      |     |      |
|      | 1                      | 56.                   | .7917                 |             | 5.8                                      | 81   |        |      | 13.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19    | .67     | 4           | 40.00                 |         | 2      | 0.33     |          | 22-2 | QP   |     |      |
|      | 2                      | 155                   | .9101                 |             | 5.5                                      | 8    |        |      | 14.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19    | .98     | 4           | 3.50                  |         | 2      | 3.52     |          |      | QP   |     |      |
|      | 3                      | 437                   | .1200                 |             | 5.8                                      | 33   |        |      | 18.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24    | .16     | 4           | 6.00                  |         | 2      | 1.84     |          |      | QP   |     |      |



Report No.: GTSL2023050261F01






#### Above 1GHz

#### Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 1830               | 42.46                   | 31.62                       | 8.58                  | 32.11                    | 50.55             | 74                     | -23.45                | Horizontal   |
| 1830               | 44.66                   | 31.62                       | 8.58                  | 32.11                    | 52.75             | 74                     | -21.25                | Vertical     |
| 2745               | 44.04                   | 31.62                       | 8.58                  | 32.11                    | 52.13             | 74                     | -21.87                | Vertical     |

#### Band Edge



| No. | Frequency | Reading | Factor | Level    | Level Limit |               | Det. | Remark |
|-----|-----------|---------|--------|----------|-------------|---------------|------|--------|
|     | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m)    | ( <b>dB</b> ) |      |        |
| 1   | 902.0000  | 4.84    | 26.54  | 31.38    | 46.00       | 14.62         | QP   |        |
| 2   | 928.0000  | 4.95    | 26.66  | 31.61    | 46.00       | 14.39         | QP   |        |

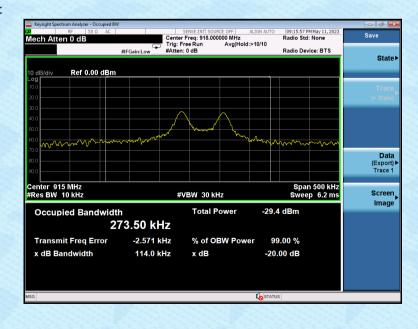


| Verti    | cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|----------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 100.0    | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 90       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 80       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 70 -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 60<br>50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 | 1                                |               | FCC_PARTT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 30       | hallowed and the state of the s | an sin Assach to an a sign de la s | ware mandre atoli | ales-seri-suspense alternations | 1<br>Roman and the second second | Manhahman     | 2<br>White real real and read and read and read and read and read and read and | Withman Anthrow peak |
| 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 10.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                                 |                                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 85       | 0.000 860.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 870.00                                                                                                          | 880.00 89         | 90.00 (MHz)                     | ) 910.00                         | 920.00        | 930.00 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 950.00          |
| No.      | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reading                                                                                                         | Factor            | Level                           | Limit                            | Margin        | Det.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remark               |
|          | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dBuV)                                                                                                          | (dB/m)            | (dBuV/m)                        | (dBuV/m)                         | ( <b>dB</b> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 1        | 902.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.64                                                                                                            | 26.14             | 32.78                           | 46.00                            | 13.22         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 2        | 928.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.46                                                                                                            | 26.38             | 31.84                           | 46.00                            | 14.16         | OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor




| Test Requirement: | FCC Part15 C Section 15.249/15.215                                          |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                            |  |  |  |  |  |  |
| Limit:            | Operation Frequency range 902MHz~928MHz                                     |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |  |  |  |

## 7.3 20dB Occupy Bandwidth

#### **Measurement Data**

| Test Frequency | 20dB bandwidth(kHz) | Result |
|----------------|---------------------|--------|
| 915MHz         | 114                 | Pass   |

Test plot as follows:



Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 8 Test Setup Photo

Reference to the **appendix I** for details.

## 9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----