GTS Global United Technology Services Co., Ltd.

Report No.: GTSL2023060506F01

TEST REPORT

Applicant:	Fujian Youtong Industries Co., Ltd.
Address of Applicant: Manufacturer:	North part of 1st 2nd & 3rd floor Building 1 No.18 Majiang Road Mawei Fuzhou Fujian China Fujian Youtong Industries Co., Ltd.
Address of Manufacturer: Equipment Under Test (E	North part of 1st 2nd & 3rd floor Building 1 No.18 Majiang Road Mawei Fuzhou Fujian China EUT)
Product Name:	weather station
Model No.:	YT60234, YT60238, YT60240, LWS234
Trade Mark:	N/A
FCC ID:	2AQBD-60234
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	June 20, 2023
Date of Test:	June 25~28, 2023
Date of report issued:	June 28, 2023
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 42

2 Version

Version No.	Date	Description
00	2023-6-28	Original
0		

Prepared By: Date: 2023-6-28 sandly Project Engineer oppinson (un) Check By: Date: 2023-6-28 Reviewer

3 Contents

		Pa	ge
1	COV	/ER PAGE	1
2	VER	SION	. 2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	. 4
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2 5.3	TEST MODE DESCRIPTION OF SUPPORT UNITS	
	5.3 5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	Additional Instructions	. 7
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH.	
	7.5 7.6	Power Spectral Density Band edges	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.	1 Conducted Emission Method	30
	7.7.2	2 Radiated Emission Method	34
8	TES	Т SETUP PHOTO	42
9	EUT	CONSTRUCTIONAL DETAILS	42

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	1 x 10 ⁻⁷
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	3dB
6	Conducted Spurious emissions	2.58dB
7	AC Power Line Conducted Emission	3.44dB (0.15MHz ~ 30MHz)
		3.1dB (9kHz-30MHz)
		3.8039dB (30MHz-200MHz)
8	Radiated Spurious emission test	3.9679dB (200MHz-1GHz)
		4.29dB (1GHz-18GHz)
		3.30dB (18GHz-40GHz)
Note (1): The measurement uncertainty is for covera	age factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	weather station		
Model No.:	YT60234, YT60238, YT60240, LWS234		
Serial No.:	I/A		
Test sample(s) ID:	GTSL2023060506-1		
Sample(s) Status	Engineer sample		
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11		
Channel separation:	5MHz		
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)		
	802.11g/802.11n(H20):		
	Orthogonal Frequency Division Multiplexing (OFDM)		
Antenna Type:	PCB Print Antenna		
Antenna gain:	2.46dBi		
Power supply:	DC 4.5V (Powered by battery)		
	DC 5V (Powered by adapter)		
Adapter Information	Model: XZ0500-1000U		
	Input: 100-240V~, 50/60Hz, 0.4A		
	Output: 5V DC 1000mA 5.0W		

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
indifferent and a second second	receptine Eer in containabally transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of d	lata rate in lowest cha	annel, and found the	follow list which it was	s worst case.
Mode	802.11b	802.11a	802.11n(HT20)	

1. 1. 1. 1.	Mode	002.110	002.119	002.1111(11120)	
	Data rate	1Mbps	6Mbps	6.5Mbps	
1.00					

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	BLDevCube
Power level setup	15

6 Test Instruments list

Rad	Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024	
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024	
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024	
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024	
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024	
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023	
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024	
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024	
15	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023	
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023	
17	FSV·Signal Analyzer (10Hz- 40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024	
18	Amplifier	/	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024	
19	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS668	Dec. 20,2022	Dec.19,2023	

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 23, 2023	April 22, 2024		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 22, 2023	June 21, 2024		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 21, 2023	April 20, 2024		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 27, 2023	April 26, 2024		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 21, 2023	April 20, 2024		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 21, 2023	April 20, 2024		

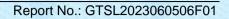
RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 21, 2023	April 20, 2024	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 21, 2023	April 20, 2024	
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 21, 2023	April 20, 2024	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 21, 2023	April 20, 2024	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 21, 2023	April 20, 2024	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 21, 2023	April 20, 2024	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 21, 2023	April 20, 2024	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 21, 2023	April 20, 2024	

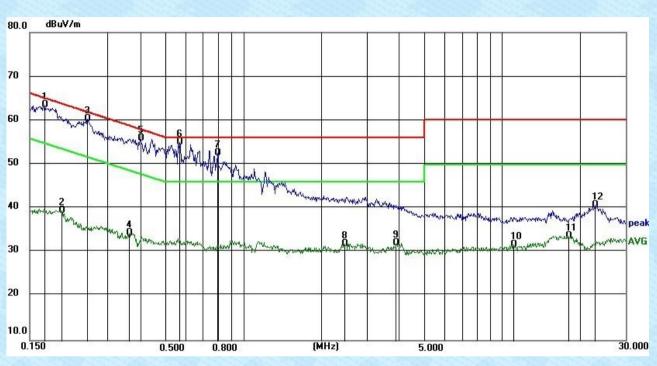
Ge	General used equipment:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 24, 2023	April 23, 2024		
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023		

7 Test results and Measurement Data

7.1 Antenna requirement

 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. 	Standard requirement:	FCC Part15 C Section 15.203 /247(c)					
 responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. 	15.203 requirement:						
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.	responsible party shall be us antenna that uses a unique o so that a broken antenna ca	responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or					
operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.	15.247(c) (1)(i) requiremen	t:					
	operations may employ trans maximum conducted output	operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the					
EUT Antenna:							
The antennas are PCB Print Antenna, the best case gain of the antennas are 2.46dBi, reference to the appendix II for details							

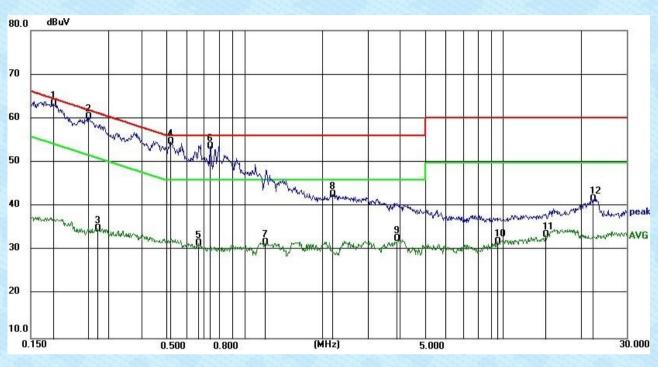



7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:		Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30 * Decreases with the logarithm	60 of the frequency	50		
Test setup:	Reference Plane	in or the frequency.			
Tatanadura	LISN 40cm 80cm AUX Equipment E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m	LISN Filter AC po EMI Receiver			
Test procedure:	1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe	n network (L.I.S.N.). T	his provides a		
	 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted 				
	interference. In order to find positions of equipment and according to ANSI C63.10:	d the maximum emiss all of the interface ca	ion, the relative bles must be changed		
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar		
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

GTS

Measurement data Line:

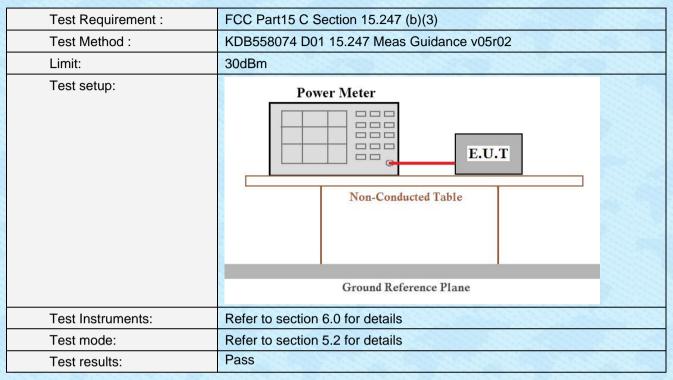


Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.172	53.43	10	63.43	64.86	1.43	QP
0.1995	29.57	10.01	39.58	53.63	14.05	AVG
0.2505	50.27	10.01	60.28	61.74	1.46	QP
0.3633	24.43	10.01	34.44	48.65	14.21	AVG
0.4017	45.96	10.01	55.97	57.82	1.85	QP
0.57	45.04	10.02	55.06	56	0.94	QP
0.796	42.6	10.02	52.62	56	3.38	QP
2.4605	21.84	10.07	31.91	46	14.09	AVG
3.9014	21.95	10.12	32.07	46	13.93	AVG
11.0791	21.42	10.32	31.74	50	18.26	AVG
18.0393	23.36	10.44	33.8	50	16.2	AVG
22.7754	30.17	10.52	40.69	60	19.31	QP

Neutral:

Report No.: GTSL2023060506F01

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Remark
0.1833	53.28	10.01	63.29	64.33	1.04	QP
0.2505	50.27	10.01	60.28	61.74	1.46	QP
0.2726	24.94	10.01	34.95	51.04	16.09	AVG
0.5209	44.66	10.02	54.68	56	1.32	QP
0.6643	21.52	10.02	31.54	46	14.46	AVG
0.7389	43.63	10.02	53.65	56	2.35	QP
1.2033	21.82	10.04	31.86	46	14.14	AVG
2.1897	32.57	10.07	42.64	56	13.36	QP
3.9014	22.45	10.12	32.57	46	13.43	AVG
9.5518	21.58	10.29	31.87	50	18.13	AVG
14.5942	23.14	10.38	33.52	50	16.48	AVG
22.2972	31.15	10.52	41.67	60	18.33	QP


Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

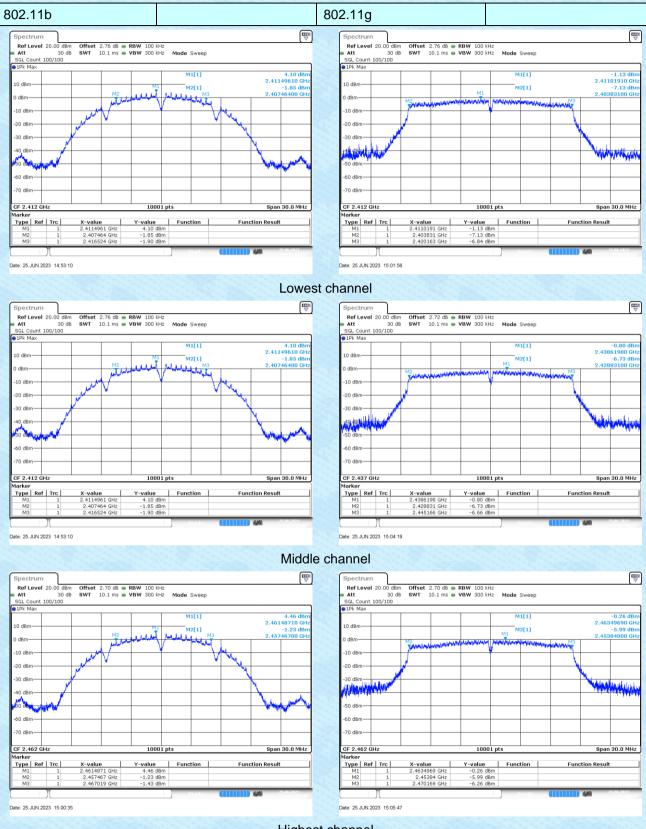
Measurement Data

Test CH	Pe	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(HT20)	Linin(GDIII)	Result
Lowest	15.19	15.41	15.22		
Middle	15.16	15.23	15.23	30.00	Pass
Highest	16.15	16.13	16		

7.4 Channel Bandwidth & 99% Occupy Bandwidth

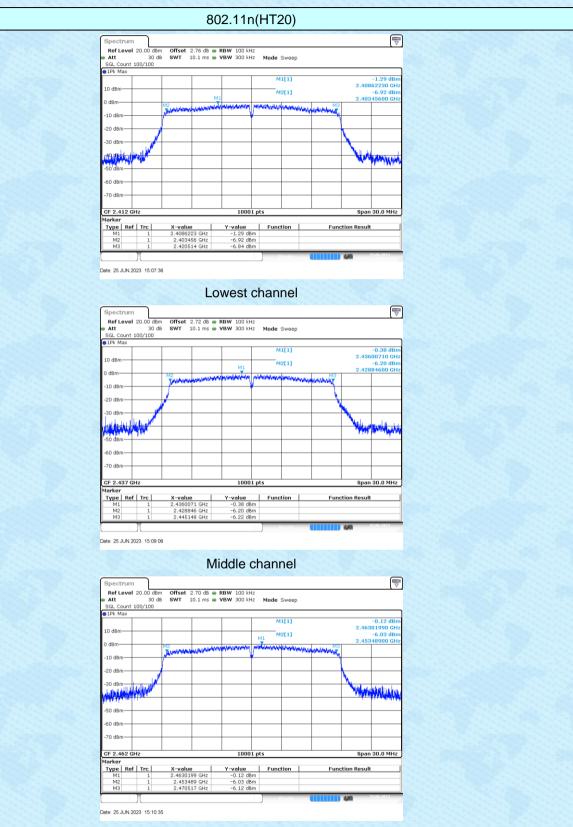
Test Requirement :	FCC Part15 C Section 15.247 (a)(2)			
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

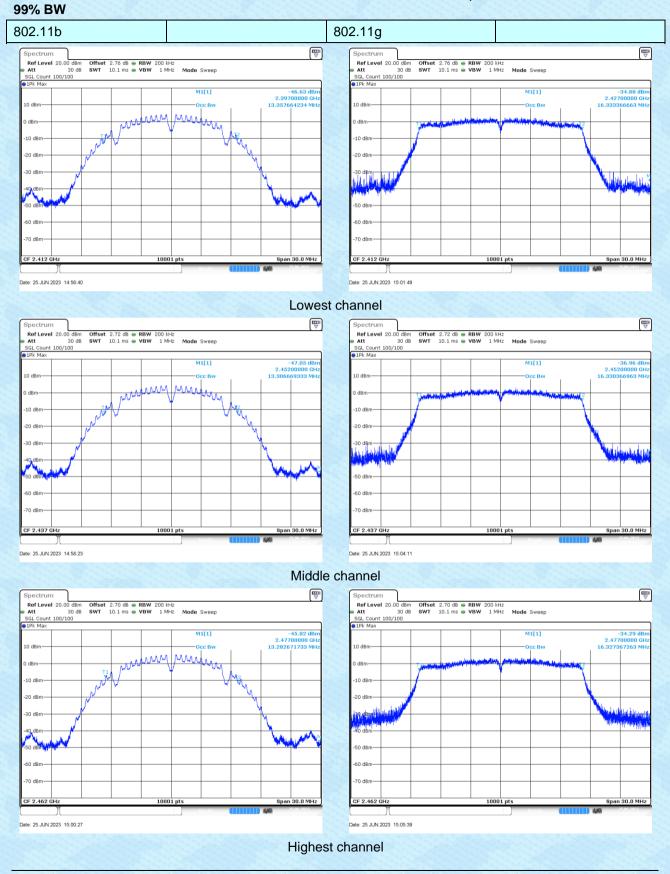

Test CH	Channel Bandwidth (MHz)			Limit(KHz)	Result	
rescorr	802.11b	802.11g	802.11n(HT20)	Enni(IXI12)	Result	
Lowest	9.06	16.332	17.058		Pass	
Middle	9.048	16.335	16.302	>500		
Highest	9.552	16.329	17.028			

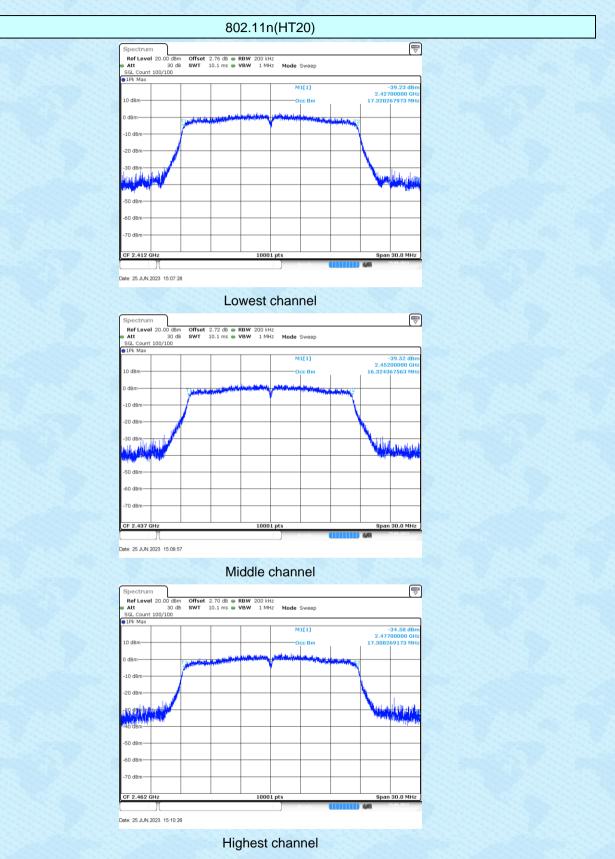
Test CH	9	Result		
Test CH	802.11b	802.11g	802.11n(HT20)	Result
Lowest	13.358	16.333	17.32	
Middle	13.307	16.33	16.324	Pass
Highest	13.283	16.327	17.308	

GTS


Test plot as follows: -6dB BW

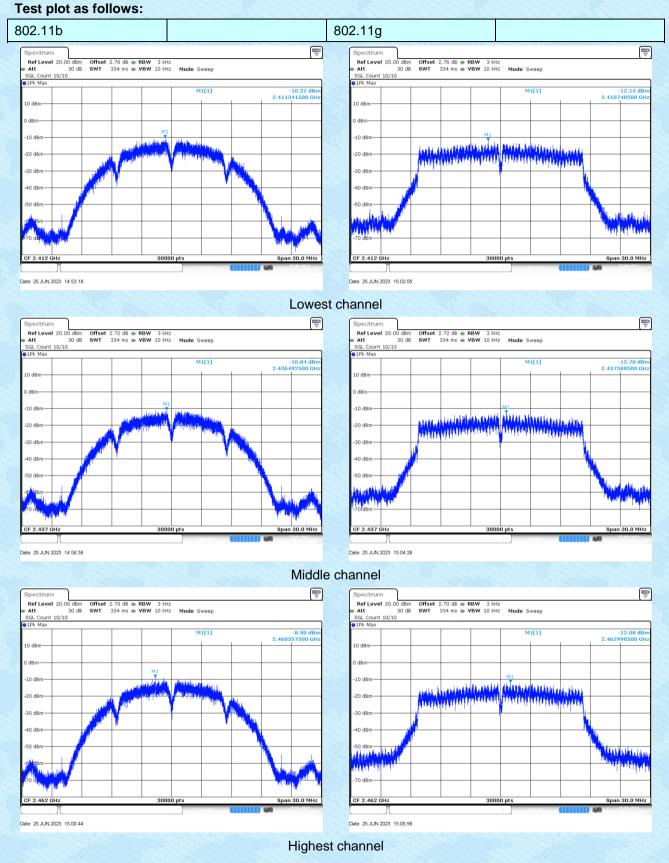
Report No.: GTSL2023060506F01


Highest channel

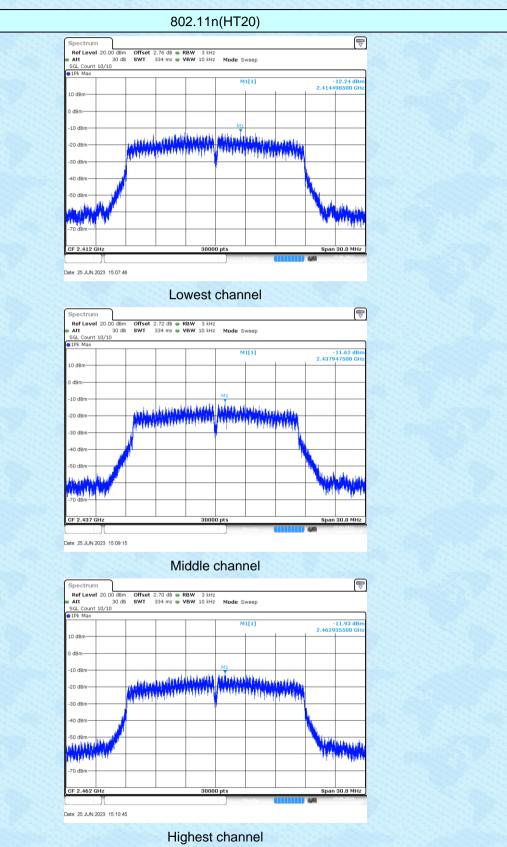


Highest channel

7.5 Power Spectral Density

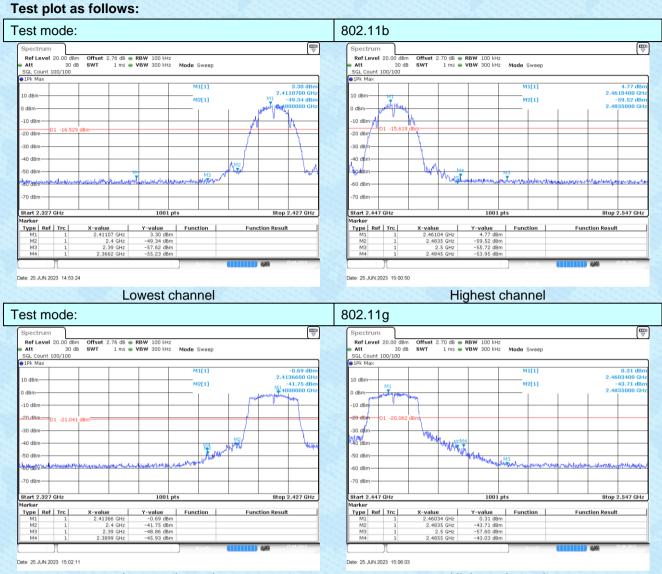

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data


Test CH	Powe	er Spectral Density	(dBm/3kHz)	Limit	Result	
rescon	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Result	
Lowest	-10.22	-12.13	-12.13			
Middle	-10.84	-12.7	-12.7	8.00	Pass	
Highest	-8.9	-12.08	-12.08			

GTS

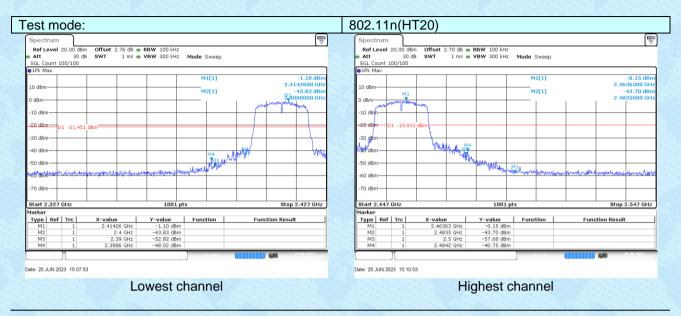
Report No.: GTSL2023060506F01


7.6 Band edges

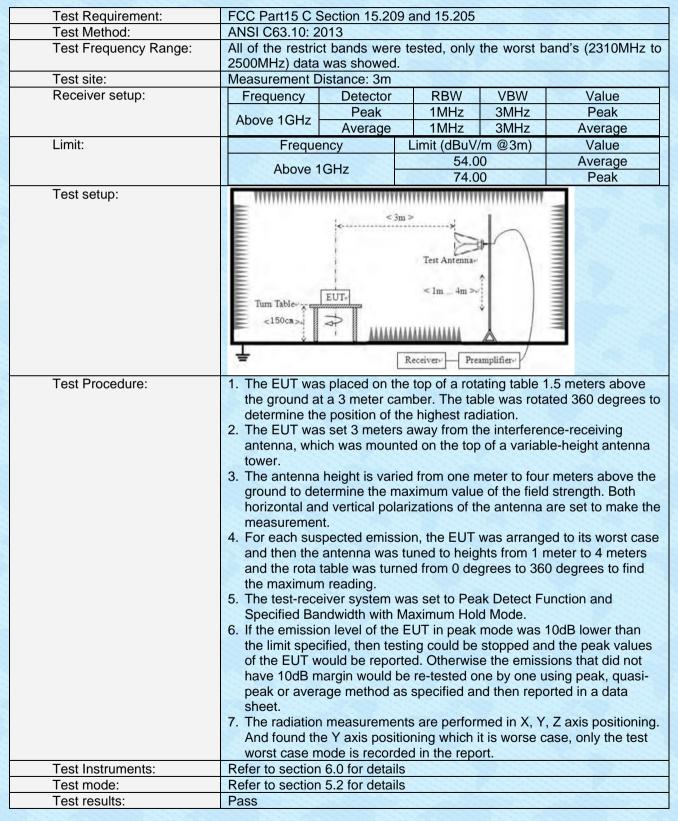
7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

GTS


Report No.: GTSL2023060506F01

Lowest channel


Highest channel

7.6.2 Radiated Emission Method

2500

47.05

Report No.: GTSL2023060506F01

Measurem	ent data:					Керопти	0 GTSL202	23060306F01
Test mode:		802.1	1b	Te	st channel:		Lowest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	55.48	27.14	6.19	42.04	46.77	74	-27.23	Horizontal
2390	61.73	27.37	6.31	42.11	53.3	74	-20.7	Horizontal
2310	46.58	27.14	6.19	42.04	37.87	74	-36.13	Vertical
2390	47.85	27.37	6.31	42.11	39.42	74	-34.58	Vertical
Test mode:		802.1	1b	Te	st channel:		Highest	
Peak value:					262233			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	57.86	27.66	6.45	42.01	49.96	74	-24.04	Horizontal
2500	46.48	27.7	6.47	42	38.65	74	-35.35	Horizontal
2483.5	46.05	27.66	6.45	42.01	38.15	74	-35.85	Vertical
2500	46.75	27.7	6.47	42	38.92	74	-35.08	Vertical
Test mode:		802.1	1g	Te	st channel:		Lowest	
Peak value	299.25							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	56.74	27.14	6.19	42.04	48.03	74	-25.97	Horizontal
2390	62.22	27.37	6.31	42.11	53.79	74	-20.21	Horizontal
2310	50.57	27.14	6.19	42.04	41.86	74	-32.14	Vertical
2390	52.06	27.37	6.31	42.11	43.63	74	-30.37	Vertical
						1922 State		
Test mode:		802.1	1g	Te	st channel:		Highest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	60.75	27.66	6.45	42.01	52.85	74	-21.15	Horizontal
2500	50.55	27.7	6.47	42	42.72	74	-31.28	Horizontal
2483.5	49.78	27.66	6.45	42.01	41.88	74	-32.12	Vertical

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.47

42

39.22

74

27.7

-34.78

Vertical

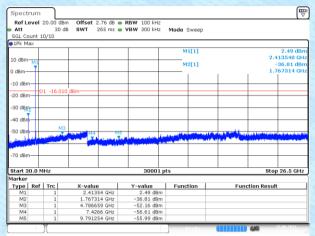
Test mode:		802.1	1n(HT20)	Т	est channel:	L	owest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	57.44	27.14	6.19	42.04	48.73	74	-25.27	Horizontal
2390	62.41	27.37	6.31	42.11	53.98	74	-20.02	Horizontal
2310	53.73	27.14	6.19	42.04	45.02	74	-28.98	Vertical
2390	2390 52.73 2		6.31	42.11	44.3	74	-29.7	Vertical
Test mode:		802.1	802.11n(HT20)		est channel:	H	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	C Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	60.9	27.66	6.45	42.01	53	74	-21	Horizontal
2500	54.44	27.7	6.47	42	46.61	74	-27.39	Horizontal
2483.5	51.66	27.66	6.45	42.01	43.76	74	-30.24	Vertical
2500	50.2	27.7	6.47	42	42.37	74	-31.63	Vertical

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission


7.7.1 Conducted Emission Method

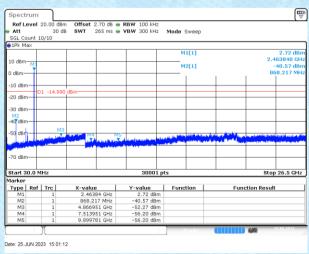
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

802.11b Lowest channel

Date: 25.JUN.2023 14:53:45

30MHz~25GHz


Middle channel

Spect									['
	evel :	20.00 dBn					_		
Att SGL Co		30 di	3 SWT 265 n	15 🖷 🎙	'BW 300 kHz	Mode 3	Sweep		
1Pk M		5/10							
TEK MI	-					M	1[1]		3.05 df
10 dBm									2.435600 G
10 dBm·	M					M	2[1]		-48.15 dE
0 dBm—									19.387511 G
-10 dBm									
-20 dBm	- 10	1 -16.117	dBm						
-30 dBm									
-40 dBm									
-40 0.511		M3						M2	
-50 dBm	++-	T.	Automation 14	MS			Lauteri	and the second second second	
(Long Street, St	an bhu		purnet Multicard	the March	redalisé a slava Satélaines, Bélé			and the second second second	An and the first of the part of the second
ALC: NO.				a second					
-70 dBm	+								
Start 3	0.0 M	Hz			30001 p	ts			Stop 26.5 GH
1arker									
Туре	Ref		X-value		Y-value	Func	tion	Func	tion Result
M1		1	2.4356 GH		3.05 dBm				
M2		1	19.387511 GH		-48.15 dBm				
M3 M4		1	4.686955 GH 7.274839 GH		-51.33 dBm -55.13 dBm				
MS		1	9.687138 GH		-55.48 dBm				

Date: 25.JUN.2023 14:58:59

30MHz~25GHz

Highest channel

30MHz~25GHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTSL2023060506F01

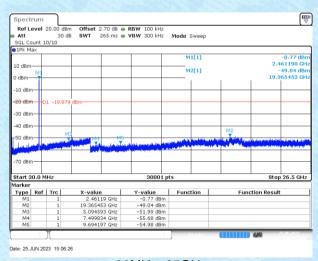
802.11g

Lowest channel

Report No.: GTSL2023060506F01

[₩] Spectrum Ref Level 20.00 dBm Offset 2.76 B RBW 100 kHz Att 30 dB SWT 265 ms VBW 300 kHz Mode Sweep SGL Count 10/10 -1.79 dB 2.411780 GF -42.29 dB 1.886429 GF M1[1] 10 dBn M2[1]) dBm--10 dBm 20 d8m -20.3 -30 dBm-40 dBm 50 dBm — 70 dBm· start 30. top 26 Marker Type Ref Trc X-value Y-value Function Function Result -1.79 -42.29 -53.05 -55.87 -54.59

Date: 25.JUN.2023 15:02:33

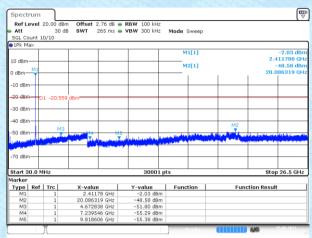

30MHz~25GHz

Middle channel

Spect	rum						T T
Ref L	evel a	20.00 dBm	Offset 2.72 dB	RBW 100 kHz			
Att		30 dE	SWT 265 ms	VBW 300 kHz	Mode Sweep		
SGL Co		0/10					
∎1Pk M	ax						
					M1[1]		-1.06 dBi
10 dBm	_						2.436480 GH
	M1				M2[1]		-31.38 dBr
0 dBm-	-					1	1.782314 GH
-10 dBrr							
-10 UBII							
-20 dBr		1 -20.603	dBm				
M							
-30 dBr							
-40 dBr							
-40 001							
-50 dBr) - -	M3	Million Million Million Million	5	Longer Harrison	A R OL A R OTAL	teals deliverate and and
	an data		Contraction of the second				فرهوا بتجعشين كالطو بتحاصات ويحد
a local design	n di Fi		and all filling the set	and building and a			
-70 dBm	<u> </u>						
Start 3	0.0 M	Hz		30001 p	its		Stop 26.5 GHz
Marker	01011						0100 2010 011
Type	Ref	Trc	X-value	Y-value	Function	Eun	ction Result
M1		1	2.43648 GHz	-1.06 dBm	beion		
M2		1	1.782314 GHz	-31.38 dBm			
M3		1	4.948126 GHz	-52.77 dBm			
M4		1	7.249251 GHz	-56.42 dBm			
M5		1	9.605081 GHz	-55.27 dBm			

Date: 25.JUN.2023 15:04:49

30MHz~25GHz


30MHz~25GHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Highest channel

802.11n(HT20) Lowest channel

Date: 25.JUN.2023 15:08:16

30MHz~25GHz

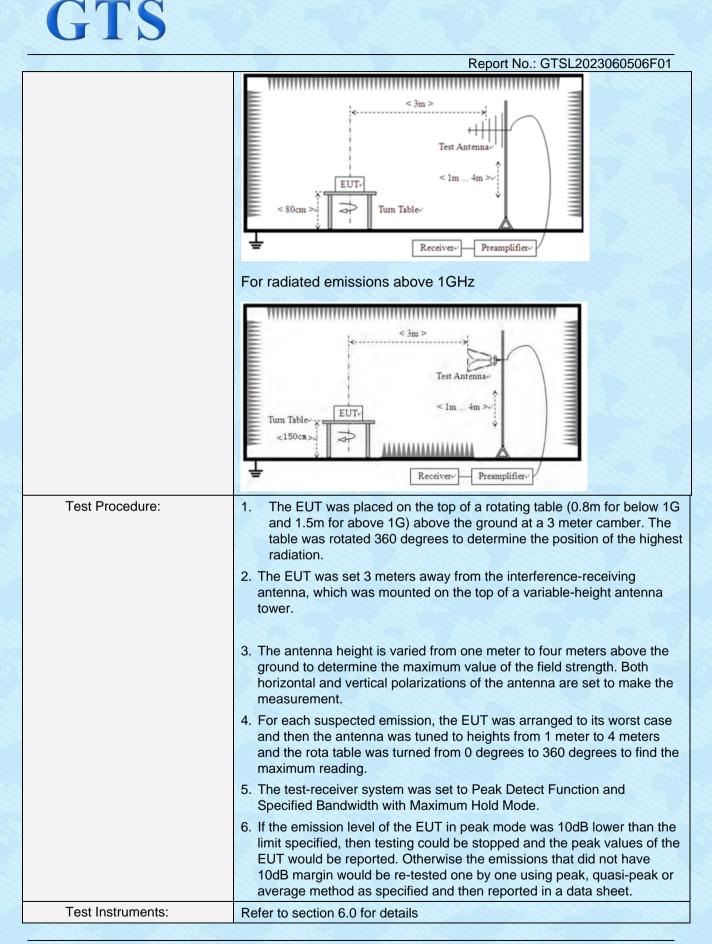
Middle channel

Spectrum Ref Level		n Offset 2.72 dB				The second secon
Att	20.00 UB		VBW 300 kHz	Mode Sweep		
SGL Count		5 3WI 203 IIS	*BW 300 KH2	Mode Sweep		
1Pk Max						
				M1[1]		-1.77 dB
10 dBm						2.440010 GH
MI				M2[1]		-47.23 dB
D dBm 😽			-			1.891723 GF
-10 dBm						
20 dBm		a diter				
	51 -20.70	o ubiii				
-30 dBm 🕂						
-40 dBm2						
-50 dBm	M	NIL NUMBER OF A		a literation		a sector and shall and as it must
- Andrewski	a contraction of the	Value and	فالأعمم ومتواسيا فروا		A CONTRACTOR OF	
and a state of the		and providence	A state of the second se			
-70 dBm						
, o dbiii						
Start 30.0	ИHz		30001 p	ts		Stop 26.5 GH
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.44001 GHz	-1.77 dBm			
M2	1	1.891723 GHz	-47.23 dBm			
M3 M4	1	4.903127 GHz	-51.99 dBm			
M4 M5	1	7.501599 GHz 9.8239 GHz	-56.26 dBm -56.38 dBm			
1110	1	2.0239 GH2	-30.36 UBIII	1	1	

Date: 25.JUN.2023 15:09:38

30MHz~25GHz

₩ Spectrum Ref Level 20.00 dBm Offset 2.70 dB ● RBW 100 kHz Att 30 dB SWT 265 ms ♥ VBW 300 kHz Mode Sweep SGL Count 10/10 1Pk Max -0. 2.462956 -49.17 d 786326 M1[1] 0.44 dB 10 dBr M2[1] dBm--10 dBm 20 dBm -20.3 -30 dBm 40 dBm M2 50 dBm 70 dBm Start 30.0 30001 Stop 26.5 GHz Y-value Type Ref Trc X-value Function Function Result T -49.17 dBm -52.61 dBm -55.17 dBm -55.26 dBm 19.78632 4.74607 7.48748 GHz 323018 Date: 25.JUN.2023 15:11:17


30MHz~25GHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Highest channel

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600H	z Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KH	z Quasi-peak				
	30MHz-1GHz	Quasi-peak	120KHz	300KH	Iz Quasi-peak				
	Above 1GHz	Peak	1MHz	3MH:	z Peak				
	Above ronz	Peak	1MHz	10Hz	Average				
Limit:	Frequency	Limit (u\	//m)	Value	Measurement Distance				
	0.009MHz-0.490M	Hz 2400/F(ł	(Hz)	QP	300m				
	0.490MHz-1.705M	Hz 24000/F(KHz)	QP	300m				
	1.705MHz-30MH	z 30		QP	30m				
	30MHz-88MHz	100		QP					
	88MHz-216MHz	<u> </u>		QP					
	216MHz-960MH	z 200		QP	3m				
	960MHz-1GHz	500		QP					
	Above 1GHz	500		verage					
		5000		Peak					
Test setup:	For radiated emiss	ions from 9kH	z to 30M	Ηz					
	< S0cm > < S0cm > < S0cm > < Receiver>								
	For radiated emiss	sions from 30IV	HZ to1G	٦Z					

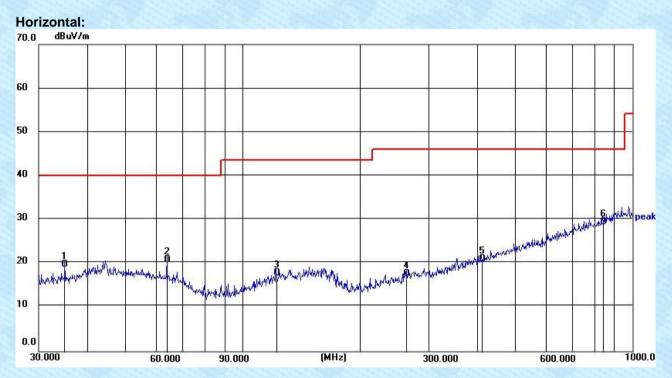
	Report No.:	GTSL20230	60506F01					
Test mode:	Refer to section 5.2 for details							
Test environment:	Test environment:Temp.:25 °CHumid.:52%Press.:1012mb							
Test voltage:	AC 120V, 6	0Hz			1999			
Test results:	Pass							
			and the second second	and the second second				

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

9kHz~30MHz

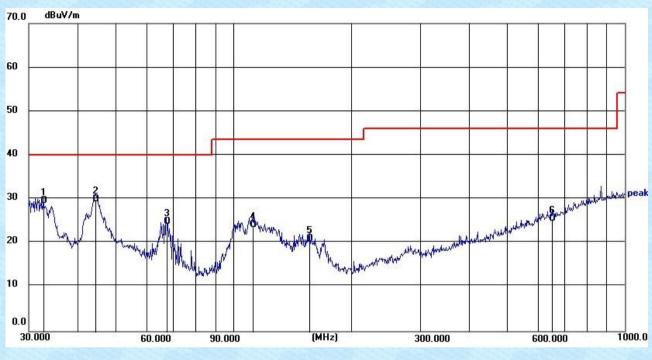

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

GTS

Report No.: GTSL2023060506F01

Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2462MHz, and so only show the test result of 802.11b 2462MHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	35.0048	6.31	13.61	19.92	40.00	20.08	QP
2	63.9828	7.62	13.27	20.89	40.00	19.11	QP
3	121.9755	4.32	13.60	17.92	43.50	25.58	QP
4	262.8955	4.05	13.68	17.73	46.00	28.27	QP
5	410.3825	2.99	18.04	21.03	46.00	24.97	QP
6	839.1818	4.27	25.27	29.54	46.00	16.46	QP

Vertical:

Report No.: GTSL2023060506F01

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	32.7486	16.70	12.97	29.67	40.00	10.33	QP
2	44.4308	15.61	14.53	30.14	40.00	9.86	QP
3	67.4382	12.72	12.30	25.02	40.00	14.98	QP
4	112.1305	11.84	12.39	24.23	43.50	19.27	QP
5	156.4578	6.63	14.40	21.03	43.50	22.47	QP
6	651.9417	3.48	22.09	25.57	46.00	20.43	QP

Above 1GHz

Test mode:		802.11b		Test	channel:		Lowest		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit L (dBuV/	limit	polarization	
4824	35.13	31.79	8.62	32.1	43.44	74	-30.56	Vertical	
7236	32.36	36.19	11.68	31.97	48.26	74	-25.74	Vertical	
4824	38.22	31.79	8.62	32.1	46.53	74	-27.47	Horizontal	
7236	33.53	36.19 11.68 3		31.97	49.43	74	-24.57	Horizontal	

Test mode:	Test mode: 802.11b				channel:	Mide	Middle				
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Factor Loss Factor d		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4874	36.09	31.85	8.66	32.12	44.48	74	-29.52	Vertical			
7311	34.5	36.37	11.71	31.91	50.67	74	-23.33	Vertical			
4874	37.03	31.85	8.66	32.12	45.42	74	-28.58	Horizontal			
7311	33.92	36.37	11.71	31.91	50.09	74	-23.91	Horizontal			

Test mode:		802.11b		Test	channel:	Hig	Highest				
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4924	36.84	31.9	8.7	32.15	45.29	74	-28.71	Vertical			
7386	34.26	36.49	11.76	31.83	50.68	74	-23.32	Vertical			
4924	38.5	31.9	8.7	32.15	46.95	74	-27.05	Horizontal			
7386	34.67	36.49	11.76	31.83	51.09	74	-22.91	Horizontal			

Test mode:		802.11g	802.11g			Test channel:			lowest		
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit (dBu`		Over Limit (dB)	polarization	
4824	34.27	31.79	8.62	32.	1	42.58	7.	4	-31.42	Vertical	
7236	32.14	36.19	11.68	31.9)7	48.04	7.	4	-25.96	Vertical	
4824	37.96	31.79	8.62	32.1		46.27	7.	4	-27.73	Horizontal	
7236	32.66	36.19	11.68	31.97		48.56	7.	4	-25.44	Horizontal	

Test mode:		802.11g		Test	channel:	Mide	liddle		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4874	36.03	31.85	8.66	32.12	44.42	74	-29.58	Vertical	
7311	33.75	36.37	11.71	31.91	49.92	74	-24.08	Vertical	
4874	36.77	31.85	8.66	32.12	45.16	74	-28.84	Horizontal	
7311	33.8	36.37	11.71	31.91	49.97	74	-24.03	Horizontal	

Test mode:		802.11g		Test	channel:	High	Highest				
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4924	35.98	31.9	8.7	32.15	44.43	74	-29.57	Vertical			
7386	33.77	36.49	11.76	31.83	50.19	74	-23.81	Vertical			
4924	37.59	31.9	8.7	32.15	46.04	74	-27.96	Horizontal			
7386	34.63	36.49	11.76	31.83	51.05	74	-22.95	Horizontal			

Test mode:		802.11n(H	802.11n(HT20)			Test channel:			Lowest		
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit (dBu'		Over Limit (dB)	polarization	
4824	35.26	31.79	8.62	32	2.1	43.57	7.	4	-30.43	Vertical	
7236	32.27	36.19	11.68	31	.97	48.17	7.	4	-25.83	Vertical	
4824	38.03	31.79	8.62	32	2.1	46.34	7.	4	-27.66	Horizontal	
7236	33.29	36.19	11.68	8 31.97		49.19	7.	4	-24.81	Horizontal	

Test mode:		802.11n(H	T20)	Test	channel:	Mido	liddle		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4874	36.28	31.85	8.66	32.12	44.67	74	-29.33	Vertical	
7311	34.12	36.37	11.71	31.91	50.29	74	-23.71	Vertical	
4874	36.96	31.85	8.66	32.12	45.35	74	-28.65	Horizontal	
7311	33.93	36.37	11.71	31.91	50.1	74	-23.9	Horizontal	

Test mode:		802.11n(H	IT20)	Te	st channel:	High	Highest					
Peak value:												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Limit Line (dBuV/m)	Over Limit (dB)	polarization				
4924	36.88	31.9	8.7	32.15	45.33	74	-28.67	Vertical				
7386	34.24	36.49	11.76	31.83	50.66	74	-23.34	Vertical				
4924	38.31	31.9	8.7	32.15	46.76	74	-27.24	Horizontal				
7386	35.29	36.49	11.76	31.83	51.71	74	-22.29	Horizontal				

Remark:

1 Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2 *"*", means this data is the too weak instrument of signal is unable to test.*

GTS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------