Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No...... GTS20210326012-1-1

FCC ID...... 2AQAD-UM-310

Compiled by

(position+printed File administrators Jimmy Wang

name+signature).....

name+signature).....

Supervised by

(position+printed Test Engineer Aaron Tan

name+signature).....

Approved by

(position+printed Manager Jason Hu

Date of issue...... Mar. 26, 2021

Testing Laboratory Name Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Address.......Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong, China

Applicant's name...... Shenzhen Fanyin Technology Co., Ltd

Room 1722A, Block 11, Tiedong Logistics Park, China South City,

Standard FCC Rules and Regulations Part PART 15.249

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Toot itom	docorintion	Wireless	miorophono
rest item	1 description	wireless	microphone

Trade Mark Alvoxcon

Manufacturer Shenzhen Fanyin Technology Co., Ltd

Model/Type reference......UM-310

TG-1, TG-110, TG-120, TG-112, TG-3, TG-3W, TG-3TW, TG-310, TG-

DW-2, DW-210, DW-220, DW-3, DW-310, DW-320

Modulation pi/4 DQFSK

Result.....PASS

TEST REPORT

Test Report No. :	GTS20210326012-1-1	Mar. 26 2021
	G1020210320012-1-1	Date of issue

Equipment under Test : Wireless microphone

Model /Type : UM-310

Listed Models

: TG-1, TG-110, TG-120, TG-112, TG-3, TG-3W, TG-3TW, TG-310,

TG-320, TG-4, TG-4S, TG-410, TG-420, TG-430, TG-440, TG-5, TG-5W, TG-510, TG-520, UM-320, UM-410, UM-420, UM-610,

UM-620, DW-1, DW-2, DW-210, DW-220, DW-3, DW-310, DW-

320

Applicant : Shenzhen Fanyin Technology Co., Ltd

Address : Room 1722A, Block 11, Tiedong Logistics Park, China South City,

Fuan Avenue, Pinghu Street, Longgang District, Shenzhen

Manufacturer : Shenzhen Fanyin Technology Co., Ltd

Address : Room 1722A, Block 11, Tiedong Logistics Park, China South City,

Fuan Avenue, Pinghu Street, Longgang District, Shenzhen

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u> I L O I</u>	STANDARDS	······· 7
<u>.SUMM</u>	ARY	5
General F	Remarks	5
	Description	5
	ent Under Test	5
	scription of the Equipment under Test (EUT) ration mode	5
	agram of Test Setup	5 6
Modificat		6
TEST	ENVIRONMENT	7
TEST FA		7
_	nental conditions	7
	y of measurement results nt of the measurement uncertainty	7 7
	ints Used during the Test	8
TEST	CONDITIONS AND RESULTS	9
4.1.	AC Power Conducted Emission	C
4.2.	Radiated Emission and Band Edges	
4.3.	20dB Bandwidth Measurement	
4.4.	Antenna Requirement	21
TEST	SETUP PHOTOS OF THE EUT	22
TEST	PHOTOS OF THE EUT	2 2

Report No.: GTS20210326012-1-1 Page 4 of 26

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

Report No.: GTS20210326012-1-1 Page 5 of 26

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Mar.16, 2021
Testing commenced on	:	Mar.16, 2021
Testing concluded on	:	Mar.26, 2021

2.2. Product Description

Name of EUT	Wireless microphone
Model Number	UM-310
List Model:	TG-1, TG-110, TG-120, TG-112, TG-3, TG-3W, TG-3TW, TG-310, TG-320, TG-4, TG-4S, TG-410, TG-420, TG-430, TG-440, TG-5, TG-5W, TG-510, TG-520, UM-320, UM-410, UM-420, UM-610, UM-620, DW-1, DW-2, DW-210, DW-220, DW-3, DW-310, DW-320
Power Rating	DC 3.7 V From Battery and DC 5V From external circuit
Sample ID:	GTS20210326012-1-1-1#(Engineer sample)
	GTS20210326012-1-1-2#(Normal sample)
Operation frequency	902.30-907.70MHz
Modulation	DQPSK
Antenna Type	External antenna
Antenna Gain	5.0dBi(Max)

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

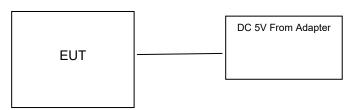
DC 3.7 V From Battery and DC 5V From external circuit

2.4. Short description of the Equipment under Test (EUT)

This is a Wireless microphone

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode


The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 100 channels provided to the EUT. Channel Low,Mid and High was selected to test.

Channel	Frequency (MHz)
00	902.30
01	902.60
02	903.20
03	903.50
04	903.80
05	904.10
06	904.40
07	905.00
08	905.30
09	905.60
10	905.90
11	906.20
12	906.50
13	906.80
14	907.10
15	907.40
16	907.70

Test frequency:

Channel	Frequency (MHz)
00	902.30
07	905.00
16	907.70

2.6. Block Diagram of Test Setup

2.7. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20210326012-1-1 Page 7 of 26

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Test Firm : Shenzhen Global Test Service Co., Ltd.

Address No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

	_
Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

3.3. Summary of measurement results

FCC PART 15.249		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

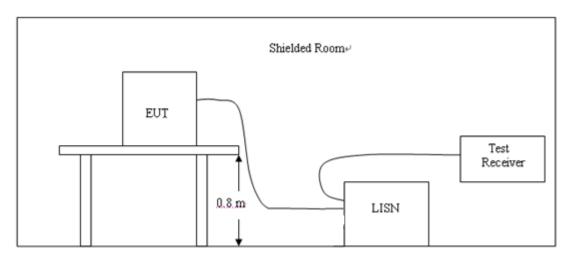
3.4. Statement of the measurement uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

3.5. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2020/09/19	2021/09/18
LISN	R&S	ESH2-Z5	893606/008	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESPI3	101841-cd	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESCI7	101102	2020/09/19	2021/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2020/09/19	2021/09/18
Spectrum Analyzer	R&S	FSV40	100019	2020/09/19	2021/09/18
Vector Signal generator	Agilent	N5181A	MY49060502	2020/09/19	2021/09/18
Signal generator	Agilent	E4421B	3610AO1069	2020/09/19	2021/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2020/09/19	2021/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2020/09/19	2021/09/18
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2020/10/11	2021/10/10
Bilog Antenna	Schwarzbeck	VULB9163	000976	2020/05/26	2021/05/25
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV9179	9719-025	2020/09/19	2021/09/18
Amplifier	EMCI	EMC051845B	980355	2020/09/19	2021/09/18
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2020/09/19	2021/09/18
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2020/09/19	2021/09/18
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2020/09/19	2021/09/18
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2020/09/19	2021/09/18
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2020/09/19	2021/09/18
Data acquisition card	Agilent	U2531A	TW53323507	2020/09/19	2021/09/18
Power Sensor	Agilent	U2021XA	MY5365004	2020/09/19	2021/09/18
Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/19	2021/06/18
Automated filter bank	Tonscend	JS0806-F	19F8060177	2020/06/19	2021/06/18
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	1
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	1	1
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	1
Note: The Cal Interval				·	·


Note: The Cal.Interval was one year.

Report No.: GTS20210326012-1-1 Page 9 of 26

4. TEST CONDITIONS AND RESULTS

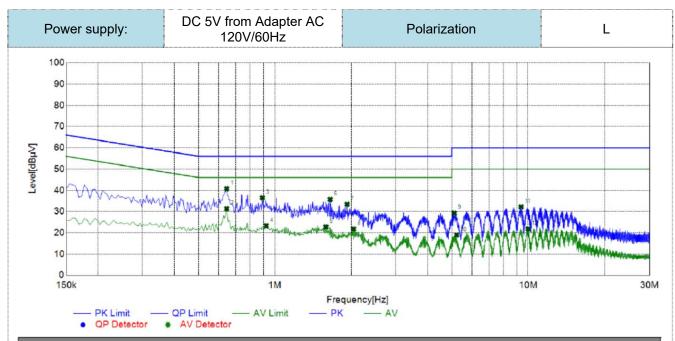
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

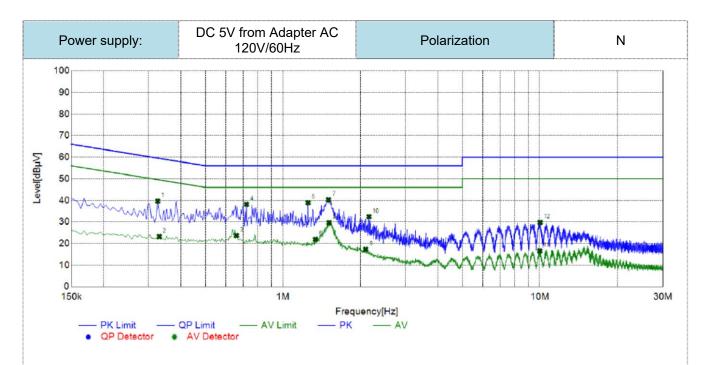
AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (wiriz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequen	icy.					

TEST RESULTS

Remark:

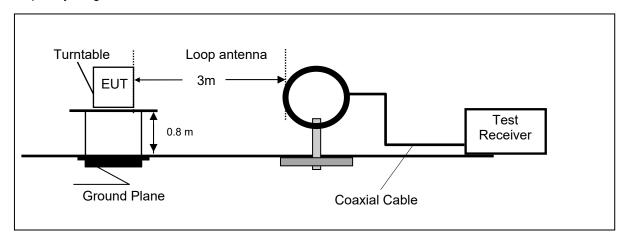

- The mode of DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:
- 3. Remark: Result=Reading value+Factor, and Margin=Limit- Result

Suspected List												
NO.	Frequency [MHz]	Reading [dBµ∨]	Factor [dB]	Result [dBµ∀]	Limit [dBµ∨]	Margin [dB]	Detector	Line	Remark			
1	0.6450	30.66	10.06	40.72	56.00	15.28	Qp	L1	PASS			
2	0.6450	21.30	10.06	31.36	46.00	14.64	AV	L1	PASS			
3	0.8925	26.43	10.06	36.49	56.00	19.51	Qp	L1	PASS			
4	0.9240	13.20	10.06	23.26	46.00	22.74	AV	L1	PASS			
5	1.5900	12.63	10.12	22.75	46.00	23.25	AV	L1	PASS			
6	1.6530	25.57	10.13	35.70	56.00	20.30	Qp	L1	PASS			
7	1.9275	23.32	10.14	33.46	56.00	22.54	Qp	L1	PASS			
8	2.0445	11.68	10.16	21.84	46.00	24.16	AV	L1	PASS			
9	5.1045	18.76	10.50	29.26	60.00	30.74	Qp	L1	PASS			
10	5.2170	8.47	10.48	18.95	50.00	31.05	AV	L1	PASS			
11	9.3750	21.52	10.68	32.20	60.00	27.80	Qp	L1	PASS			
12	9.9915	11.17	10.69	21.86	50.00	28.14	AV	L1	PASS			

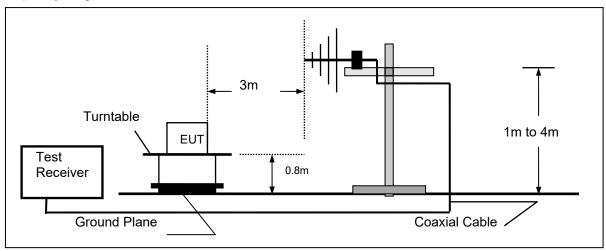
Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

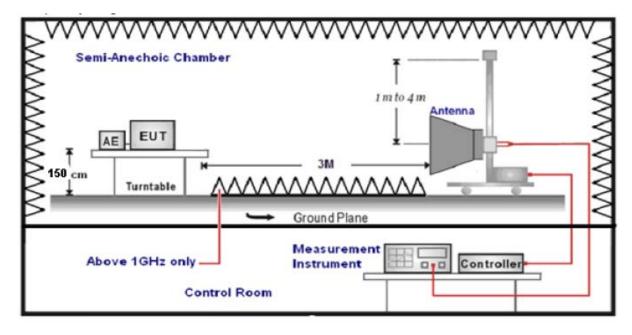
Sus	pected Lis	SI.							
NO.	Frequency [MHz]	Reading [dBµ∀]	Factor [dB]	Result [dBµ∀]	Limit [dBµ∨]	Margin [dB]	Detector	Line	Remark
1	0.3255	29.63	9.99	39.62	59.57	19.95	Qp	N	PASS
2	0.3300	13.23	9.99	23.22	49.45	26.23	AV	N	PASS
3	0.6585	13.62	10.05	23.67	46.00	22.33	AV	N	PASS
4	0.7215	28.10	10.05	38.15	56.00	17.85	Qp	N	PASS
5	1.2525	28.82	10.09	38.91	56.00	17.09	Qp	N	PASS
6	1.3380	11.86	10.09	21.95	46.00	24.05	AV	N	PASS
7	1.5045	30.12	10.11	40.23	56.00	15.77	Qp	N	PASS
8	1.5135	19.52	10.11	29.63	46.00	16.37	AV	N	PASS
9	2.0985	7.14	10.17	17.31	46.00	28.69	AV	N	PASS
10	2.1615	22.26	10.17	32.43	56.00	23.57	Qp	N	PASS
11	9.9960	5.85	10.69	16.54	50.00	33.46	AV	N	PASS
12	10.0230	19.06	10.69	29.75	60.00	30.25	Qp	N	PASS


Note:1. Result ($dB\mu V$) = Reading ($dB\mu V$) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTS20210326012-1-1 Page 13 of 26

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
	Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-40GHz	Sweep time=Auto	Peak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak	
	Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

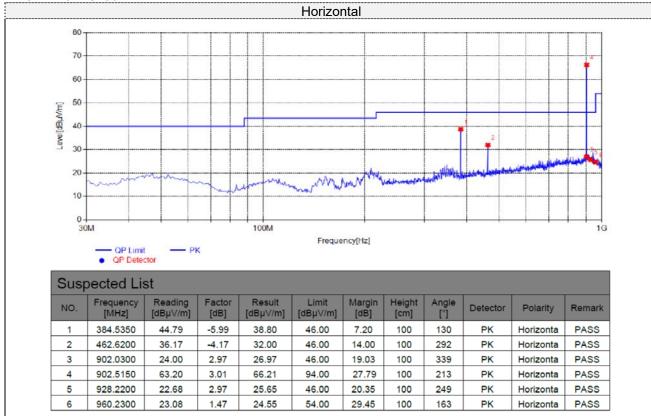
According 15.249, the field strength of emissions from intentional radiators operated within 902MHz-928 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

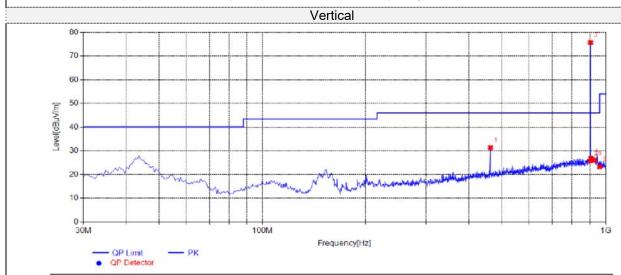
Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		


TEST RESULTS

Remark:

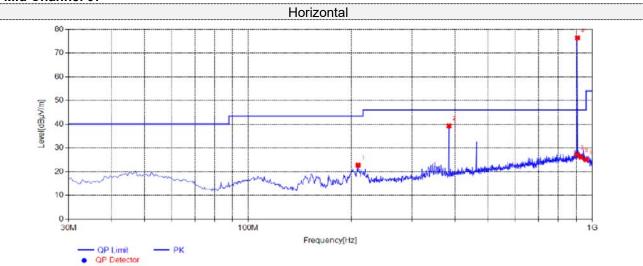
1. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.


For 30MHz-1GHz

Low Channel 00

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

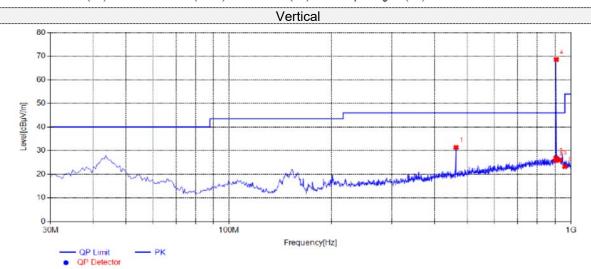
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).



Suspected List											
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	462.6200	35.56	-4.17	31.39	46.00	14.61	100	232	PK	Vertical	PASS
2	902.0300	22.80	2.97	25.77	46.00	20.23	100	112	PK	Vertical	PASS
3	902.5150	72.72	3.01	75.73	94.00	18.27	100	218	PK	Vertical	PASS
4	905.4250	23.56	3.23	26.79	46.00	19.21	100	148	PK	Vertical	PASS
5	928.2200	23.05	2.97	26.02	46.00	19.98	100	342	PK	Vertical	PASS
6	960.2300	21.81	1.47	23.28	54.00	30.72	100	355	PK	Vertical	PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

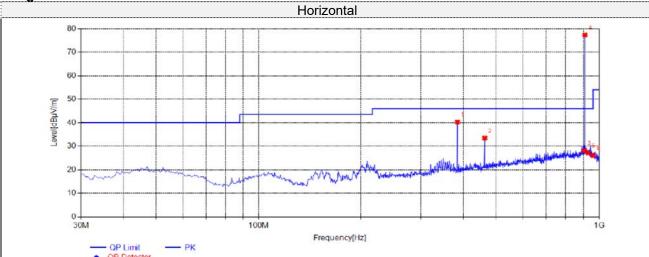
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).


Mid Channel 07

Sus	Suspected List											
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµ√/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark	
1	208.9650	31.88	-9.15	22.73	43.50	20.77	100	170	PK	Horizonta	PASS	
2	384.5350	45.29	-5.99	39.30	46.00	6.70	100	130	PK	Horizonta	PASS	
3	902.0300	24.20	2.97	27.17	46.00	18.83	100	339	PK	Horizonta	PASS	
4	905.4250	73.18	3.23	76.41	94.00	17.59	100	166	PK	Horizonta	PASS	
5	928.2200	23.18	2.97	26.15	46.00	19.85	100	249	PK	Horizonta	PASS	
6	960.2300	23.58	1.47	25.05	54.00	28.95	100	163	PK	Horizonta	PASS	

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

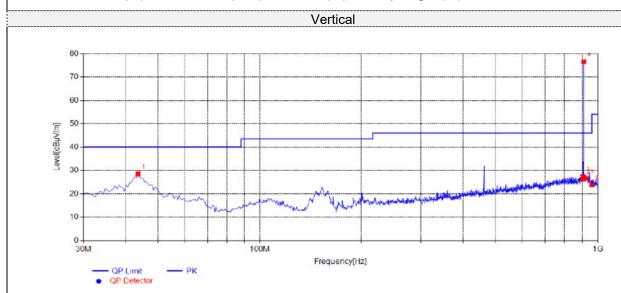
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).



Sus	Suspected List											
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµ√/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark	
1	462.6200	35.56	-4.17	31.39	46.00	14.61	100	232	PK	Vertical	PASS	
2	902.0300	22.80	2.97	25.77	46.00	20.23	100	112	PK	Vertical	PASS	
3	902.5150	23.86	3.01	26.87	46.00	19.13	100	218	PK	Vertical	PASS	
4	905.4250	65.34	3.23	68.57	94.00	25.43	100	148	PK	Vertical	PASS	
5	928.2200	23.05	2.97	26.02	46.00	19.98	100	342	PK	Vertical	PASS	
6	960.2300	21.81	1.47	23.28	54.00	30.72	100	355	PK	Vertical	PASS	

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).


High Channel 16

Sus	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	384.5350	46.29	-5.99	40.30	46.00	5.70	100	130	PK	Horizonta	PASS
2	462.6200	37.67	-4.17	33.50	46.00	12.50	100	292	PK	Horizonta	PASS
3	902.0300	25.20	2.97	28.17	46.00	17.83	100	339	PK	Horizonta	PASS
4	907.8500	74.02	3.33	77.35	94.00	16.65	100	22	PK	Horizonta	PASS
5	928.2200	24.18	2.97	27.15	46.00	18.85	100	249	PK	Horizonta	PASS
6	960.2300	24.58	1.47	26.05	54.00	27.95	100	163	PK	Horizonta	PASS

Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Sus	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	43.5800	35.25	-6.73	28.52	40.00	11.48	100	2	PK	Vertical	PASS
2	902.0300	23.30	2.97	26.27	46.00	19.73	100	112	PK	Vertical	PASS
3	902.5150	24.36	3.01	27.37	46.00	18.63	100	218	PK	Vertical	PASS
4	907.8500	73.25	3.33	76.58	94.00	17.42	100	332	PK	Vertical	PASS
5	928.2200	23.55	2.97	26.52	46.00	19.48	100	342	PK	Vertical	PASS
6	960.2300	22.31	1.47	23.78	54.00	30.22	100	355	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: GTS20210326012-1-1 Page 17 of 26

For 1GHz to 25GHz Low Channel 00

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	58.55	-9.1	49.45	74	-24.55	peak
1240	42.95	-9.1	33.85	54	-20.15	AVG
1804.6	61.27	-8.75	52.52	74	-21.48	peak
1804.6	49.25	-8.75	40.5	54	-13.5	AVG
2706.9	57.11	-4.03	53.08	74	-20.92	peak
2706.9	43.2	-4.03	39.17	54	-14.83	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	59.73	-9.1	50.63	74	-23.37	peak
1240	43.87	-9.1	34.77	54	-19.23	AVG
1804.6	63.55	-8.75	54.8	74	-19.2	peak
1804.6	48.32	-8.75	39.57	54	-14.43	AVG
2706.9	58.62	-4.03	54.59	74	-19.41	peak
2706.9	42.18	-4.03	38.15	54	-15.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Mid Channel 07

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	58.74	-9.08	49.66	74	-24.34	peak
1240	43.59	-9.08	34.51	54	-19.49	AVG
1810	65.21	-8.79	56.42	74	-17.58	peak
1810	48.32	-8.79	39.53	54	-14.47	AVG
2715	56.69	-4.05	52.64	74	-21.36	peak
2715	2.73	-4.05	-1.32	54	-55.32	AVG
			oss – Pre-amplifier		00.02	7.00

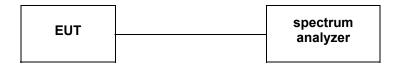
Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	59.85	-9.08	50.77	74	-23.23	peak
1240	45.66	-9.08	36.58	54	-17.42	AVG
1810	62.73	-8.79	53.94	74	-20.06	peak
1810	46.98	-8.79	38.19	54	-15.81	AVG
2715	60.21	-4.05	56.16	74	-17.84	peak
2715	42.18	-4.05	38.13	54	-15.87	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	ss – Pre-amplifier			

High Channel 16 Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	57.21	-9.08	48.13	74	-25.87	peak
1240	43.64	-9.08	34.56	54	-19.44	AVG
1815.4	62.89	-8.79	54.1	74	-19.9	peak
1815.4	47.87	-8.79	39.08	54	-14.92	AVG
2723.1	57.87	-4.05	53.82	74	-20.18	peak
2723.1	42.79	-4.05	38.74	54	-15.26	AVG
Remark: Facto	r = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

Vertical:


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	_
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	59.81	-9.08	50.73	74	-23.27	peak
1240	44.59	-9.08	35.51	54	-18.49	AVG
1815.4	62.43	-8.79	53.64	74	-20.36	peak
1815.4	46.72	-8.79	37.93	54	-16.07	AVG
2723.1	5885	-4.05	5880.95	74	5806.95	peak
2723.1	44.33	-4.05	40.28	54	-13.72	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: GTS20210326012-1-1 Page 19 of 26

4.3. 20dB Bandwidth Measurement

TEST CONFIGURATION

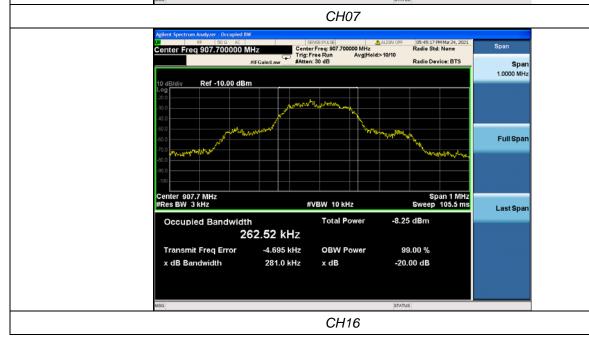
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


<u>LIMIT</u>

N/A


TEST RESULTS

Modulation	Channel	20dB bandwidth (kHz)	Result	
	CH00	285.2		
DQPSK	CH07	280.9	Pass	
	CH16	281.0		

Note: 1. The test results including the cable lose.

Report No.: GTS20210326012-1-1 Page 21 of 26

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

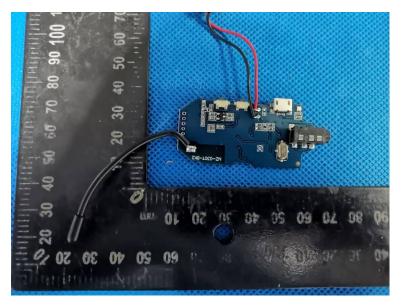
Antenna Information

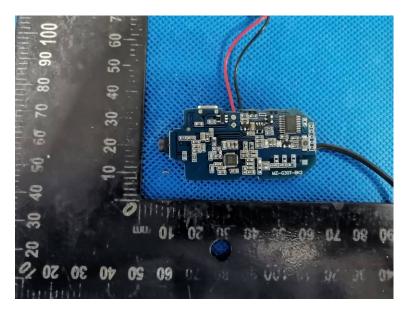
The directional gains of antenna used for transmitting is 5.00 dBi.

5. Test Setup Photos of the EUT

6. Test Photos of the EUT

Report No.: GTS20210326012-1-1 Page 24 of 26




Report No.: GTS20210326012-1-1 Page 25 of 26

Report No.: GTS20210326012-1-1 Page 26 of 26

.....End of Report.....