

FCC PART 15 SUBPART C TEST REPORT									
I GO FART 13 SUBFART O TEST REFORT									
	FCC PART 15.247								
Report Reference No FCC ID: Compiled by	GTS20200303006-1-19 2AQAA-EZPADPRO8								
(position+printed name+signature):	File administrators Tracy Hu	Trong Hu							
Supervised by (position+printed name+signature):	Test Engineer Moon Tan	MOTS							
Approved by (position+printed name+signature):	Manager Simon Hu	Simon Hu							
Date of issue	Apr. 14, 2020								
Representative Laboratory Name .:	Shenzhen Global Test Service (Co.,Ltd.							
Address:	No.7-101 and 8A-104, Building 7 Garden, No.98, Pingxin North Roa Pinghu Street, Longgang District,	ad, Shangmugu Community,							
Applicant's name	SHENZHEN JUMPER TECHNOL	.OGY CO.,LTD							
Address:	101, 102, 201, 301 No.13-2 Pingxi South Rd., Pingxi Community, Pingdi Street, Longgang District, Shenzhen, GuangDong								
Test specification:									
Standard:	FCC Part 15.247								
TRF Originator	Shenzhen Global Test Service Co	o.,Ltd.							
Master TRF	Dated 2014-12								
Shenzhen Global Test Service Co.,L This publication may be reproduced in Shenzhen Global Test Service Co.,Ltd Shenzhen Global Test Service Co.,Ltd resulting from the reader's interpretatio	whole or in part for non-commercia . is acknowledged as copyright owr . takes no responsibility for and will	ner and source of the material. not assume liability for damages							
Test item description	Portable computer								
Trade Mark:	N/A								
Manufacturer:	SHENZHEN JUMPER TECHNOL	.OGY CO.,LTD							
Model/Type reference	EZpad Pro8								
Listed Models	EZpad Pro 8S,EZpad Pro 8D,EZp EZpad Pro 9D	ad Pro 9,EZpad Pro 9S,							
Modulation Type	GFSK,π/4-DQPSK,8DPSK								
Operation Frequency	From 2402MHz to 2480MHz								
Hardware Version	N/A								
Software Version	N/A								
Rating:	DC 7.6V by battery Recharged by DC 12V/3A								
Result	PASS								

TEST REPORT

Test Report No. :	G	GTS20200303006-1-19	Apr. 14, 2020 Date of issue
			Date of issue
Equipment under Test	:	Portable computer	
Model /Type	:	EZpad Pro8	
Listed model	:	EZpad Pro 8S,EZpad Pro 8D, EZpad Pro 9D	EZpad Pro 9,EZpad Pro 9S,
Applicant	:	SHENZHEN JUMPER TECH	NOLOGY CO.,LTD
Address	:	101, 102, 201, 301 No.13-2 Pi Pingdi Street, Longgang Distri	ingxi South Rd., Pingxi Community, ict, Shenzhen, GuangDong
Manufacturer	:	SHENZHEN JUMPER TECH	NOLOGY CO.,LTD
Address	:	101, 102, 201, 301 No.13-2 Pi Pingdi Street, Longgang Distri	ingxi South Rd., Pingxi Community, ct, Shenzhen, GuangDong

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	
2.6. Block Diagram of Test Setup	6
2.7. Related Submittal(s) / Grant (s)	
2.8. Special Accessories	
2.9. Modifications	6
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	7
3.2. Test Facility	7
3.3. Environmental conditions	7
3.4. Summary of measurement results	8
3.5. Statement of the measurement uncertainty	9
3.6. Equipments Used during the Test	10
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	13
4.3. Maximum Peak Output Power	18
4.4. 20dB Bandwidth	
4.5. Frequency Separation	
4.6. Band Edge Compliance of RF Emission	
4.7. Number of hopping frequency	
4.8. Time Of Occupancy(Dwell Time)	
4.9. Pseudorandom Frequency Hopping Sequence	
4.10. Antenna Requirement	
5. TEST SETUP PHOTOS OF THE EUT	34
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	36

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Apr. 3, 2020
Testing commenced on	:	Apr. 4, 2020
Testing concluded on	:	Apr. 14, 2020

2.2. Product Description

Product Name:	Portable computer
Trade Mark:	N/A
Model/Type reference:	EZpad Pro8
List Model:	EZpad Pro 8S,EZpad Pro 8D,EZpad Pro 9,EZpad Pro 9S, EZpad Pro 9D
Power supply:	DC 7.6V form battery
WIFI	
WLAN	Supported 802.11 a/b/g/n/ac
Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac20/40/80: OFDM(256QAM,64QAM, 16QAM, QPSK, BPSK)
Operation frequency	IEEE 802.11a:5180-5240MHz 5745-5825MHz IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz, 5180-5240MHz 5745-5825MHz IEEE 802.11n HT40:2422-2452MHz, 5190-5230MHz 5755-5795MHz IEEE 802.11ac20:5180-5240MHz 5745-5825MHz IEEE 802.11ac40:5190-5230MHz 5755-5795MHz IEEE 802.11ac80:5210MHz 5775MHz
Channel number	 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20) 7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40) 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 1 channels for 80MHz bandwidth(5210MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5775MHz)
BT	
Operation frequency	2402-2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
Antenna Description	Two same FPC Antenna, but not support MIMO technology ANT0 used for Bluetooth & WIFI TX/RX, 1.87dBi(Max.) for 2.4G Band and 1.85dBi(Max.) for 5G Band ANT1 used for WIFI TX/RX, 1.87dBi(Max.) for 2.4G Band and 1.85dBi(Max.) for 5G Band

2.3. Equipment Under Test

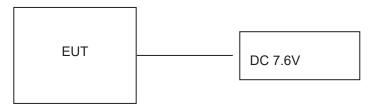
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank bel	ow)

DC 7.6V form battery

2.4. Short description of the Equipment under Test (EUT)

This is a Portable computer.


For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/38/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
38	2440	78	2480
39	2441		

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:2AQAA-EZPADPR08** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Jihongda Power Co.,Ltd.	Adapter	JHD-AP036U- 120300AA-A		SDOC

2.9. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(e)	Power spectral density	_/-	-/-	-/-	-/-					Not applicabl e for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK π/4- DQPSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK π/4- DQPSK 8DPSK	🛛 Full	GFSK π/4- DQPSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK π/4- DQPSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(b)(1)	Maximum output power	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\mathbb{X}				complies
§15.247(d)	Band edge compliance conducted	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK π/4- DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	-/-	-/-	-/-	-/-					complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-					complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	-/-	-/-	-/-	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-					complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report
- 4. For π/4-DQPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5. Statement of the measurement uncertainty

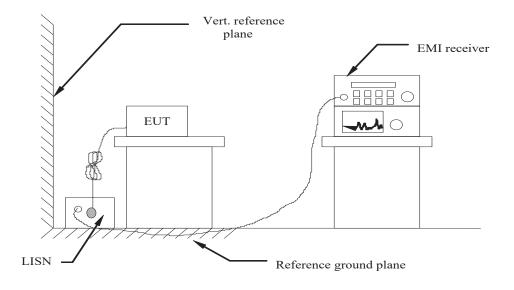
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test


	-				
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Vector Signal generator	Agilent	N5181A	MY49060502	2019/09/20	2020/09/19
Signal generator	Agilent	E4421B	3610AO1069	2019/09/20	2020/09/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/23	2020/09/22
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
Bilog Antenna	Schwarzbeck	VULB9163	000976	2019/05/26	2020/05/25
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Amplifier	EMCI	EMC051845B	980355	2019/09/20	2020/09/19
Temperature/Humidit y Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2019/09/20	2020/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2019/09/20	2020/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2019/09/20	2020/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
Test Control Unit	Tonscend	JS0806-1	178060067	2019/06/20	2020/06/19
Automated filter bank	Tonscend	JS0806-F	19F8060177	2019/06/20	2020/06/19
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
			Ver		
EMI Test Software	Tonscend	JS1120-3	2.5.77.0418	/	/
EMI Test Software EMI Test Software	Tonscend Tonscend	JS1120-3 JS32-CE		/	/

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013.

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.

4 The EUT received DC 5V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

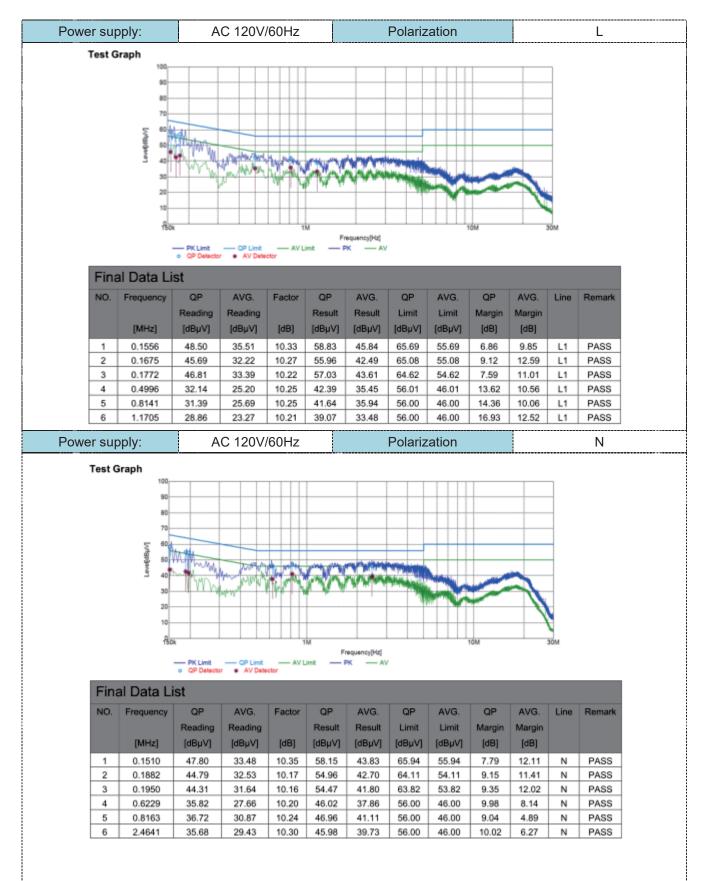
5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

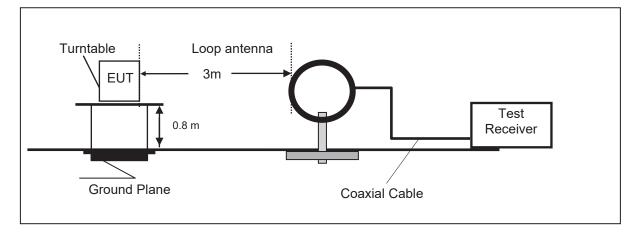
AC Power Conducted Emission Limit

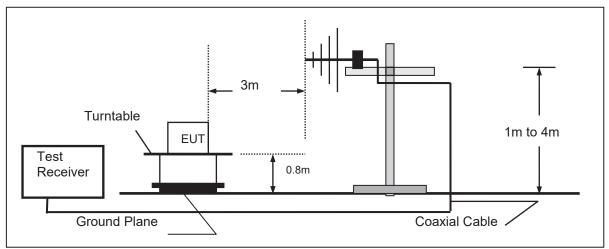

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

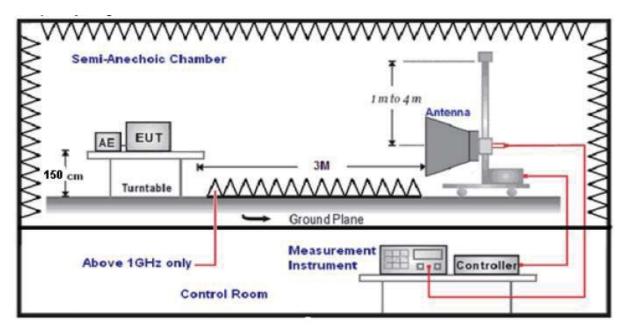
cieases with the logarithin

TEST RESULTS


Remark: We measured Conducted Emission at GFSK, π /4-DQPSK and 8DPSK mode in AC 120V/60Hz and AC 240V/50Hz, the worst case was recorded .


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

estang test reserver, opeen ann as renorming table states.								
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP						
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak						

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Remark: We measured Radiated Emission at GFSK, π /4-DQPSK and 8DPSK mode from 30MHz to 25GHz and recorded worst case at GFSK mode.

For 1GHz to 25GHz

GFSK /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	50.67	32.44	30.25	7.95	60.81	74.00	-13.19	Peak	Horizontal
4804.00	35.70	32.44	30.25	7.95	45.84	54.00	-8.16	Average	Horizontal
4804.00	49.36	32.44	30.25	7.95	59.50	74.00	-14.50	Peak	Vertical
4804.00	35.91	32.44	30.25	7.95	46.05	54.00	-7.95	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	49.76	32.52	30.31	8.12	60.09	74.00	-13.91	Peak	Horizontal
4882.00	35.69	32.52	30.31	8.12	46.02	54.00	-7.98	Average	Horizontal
4882.00	50.04	32.52	30.31	8.12	60.37	74.00	-13.63	Peak	Vertical
4882.00	35.56	32.52	30.31	8.12	45.89	54.00	-8.11	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.76	32.68	30.27	7.88	62.05	74.00	-11.95	Peak	Horizontal
4960.00	35.45	32.68	30.27	7.88	45.74	54.00	-8.26	Average	Horizontal
4960.00	50.63	32.68	30.27	7.88	60.92	74.00	-13.08	Peak	Vertical
4960.00	35.53	32.68	30.27	7.88	45.82	54.00	-8.18	Average	Vertical

$\pi/4\text{-}D\text{QPSK}$ /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	50.81	32.44	30.25	7.95	60.95	74.00	-13.05	Peak	Horizontal
4804.00	35.52	32.44	30.25	7.95	45.66	54.00	-8.34	Average	Horizontal
4804.00	49.68	32.44	30.25	7.95	59.82	74.00	-14.18	Peak	Vertical
4804.00	35.25	32.44	30.25	7.95	45.39	54.00	-8.61	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	50.51	32.52	30.31	8.12	60.84	74.00	-13.16	Peak	Horizontal
4882.00	35.53	32.52	30.31	8.12	45.86	54.00	-8.14	Average	Horizontal
4882.00	49.83	32.52	30.31	8.12	60.16	74.00	-13.84	Peak	Vertical
4882.00	36.11	32.52	30.31	8.12	46.44	54.00	-7.56	Average	Vertical

Report No.: GTS20200303006-1-19

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.75	32.68	30.27	7.88	62.04	74.00	-11.96	Peak	Horizontal
4960.00	35.91	32.68	30.27	7.88	46.20	54.00	-7.80	Average	Horizontal
4960.00	51.33	32.68	30.27	7.88	61.62	74.00	-12.38	Peak	Vertical
4960.00	35.65	32.68	30.27	7.88	45.94	54.00	-8.06	Average	Vertical

8-DPSK /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	49.76	32.44	30.25	7.95	59.90	74.00	-14.10	Peak	Horizontal
4804.00	35.47	32.44	30.25	7.95	45.61	54.00	-8.39	Average	Horizontal
4804.00	49.45	32.44	30.25	7.95	59.59	74.00	-14.41	Peak	Vertical
4804.00	35.85	32.44	30.25	7.95	45.99	54.00	-8.01	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	50.16	32.52	30.31	8.12	60.49	74.00	-13.51	Peak	Horizontal
4882.00	35.29	32.52	30.31	8.12	45.62	54.00	-8.38	Average	Horizontal
4882.00	49.13	32.52	30.31	8.12	59.46	74.00	-14.54	Peak	Vertical
4882.00	35.08	32.52	30.31	8.12	45.41	54.00	-8.59	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.03	32.68	30.27	7.88	61.32	74.00	-12.68	Peak	Horizontal
4960.00	35.43	32.68	30.27	7.88	45.72	54.00	-8.28	Average	Horizontal
4960.00	51.63	32.68	30.27	7.88	61.92	74.00	-12.08	Peak	Vertical
4960.00	35.92	32.68	30.27	7.88	46.21	54.00	-7.79	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.

3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result	
	00	4.40			
GFSK	39	3.73	21	Pass	
	78	0.73			
	00	3.37			
π/4-DQPSK	39	2.90	21	Pass	
	78	0.04			
	00	3.71			
8DPSK	39	3.23	21	Pass	
	78	0.23			

Note: The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Modulation	Frequency	20dB Bandwidth (MHz)	Result
	2402 MHz	0.870	PASS
GFSK	2441 MHz	0.885	PASS
	2480 MHz	0.930	PASS
	2402 MHz	1.251	PASS
π/4-DQPSK	2441 MHz	1.281	PASS
	2480 MHz	1.269	PASS
	2402 MHz	1.263	PASS
8-DPSK	2441 MHz	1.260	PASS
	2480 MHz	1.269	PASS

Test plot as follows:

Report No.: GTS20200303006-1-19

Repetence of the second of the #Avg Type: RMS Avg|Hold: 100/100 ACE 1 2 3 4 5 6 Auto Tun ΔMkr3 1.263 MHz 0.276 dB Ref Offset 8.73 dB Ref 18.73 dBm Center Free 2.402000000 GH m ,____3∆1 Start Fre 2.400 Stop Free 2.403500000 GH CF Step 300.000 kHz Mar Center 2.402000 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz uto 2.401 367 GHz -21.248 dBm 2.401 835 GHz -0.939 dBm 1.263 MHz (Δ) 0.276 dB N 1 f N 1 f Δ1 1 f (Δ) Freq Offse Scale Type Lin CH00 Reysight Spectrum Analyzer - Swept SA RL RF S0 Q AC Center Freq 2.4410000000 GHz #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run #Atten: 20 dB 123456 MWWWWW Auto Tun ΔMkr3 1.260 MHz 0.141 dB Ref Offset 8.85 dB Ref 18.85 dBm Center Freq 2.441000000 GHz 3∆1 Start Free 2.439500000 GH Stop Free 2.442500000 GH: CF Step 300.000 kHz Man Span 3.000 MHz Sweep 3.200 ms (1001 pts) Center 2.441000 GHz #Res BW 30 kHz #VBW 100 kHz Auto N 1 f 2.440 373 GHz -21.676 dBm N 1 f 2.441 015 GHz -1.473 dBm Δ1 1 f (Δ) 1.260 MHz (Δ) 0.141 dB Freq Offse 0 H; Scale Type Lin CH39 #Avg Type: RMS Avg|Hold: 100/100 Frequency Center Freq 2.480000000 GHz Trig: Free Run #Atten: 20 dB PPPPP Auto Tun ΔMkr3 1.269 MHz -0.116 dB Ref Offset 8.53 dB Ref 18.53 dBm Center Freq 2.480000000 GHz ▲3∆1 Start Free 2.478500000 GH Stop Freq 2.481500000 GHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) Center 2.480000 GHz #Res BW 30 kHz CF Step 300.000 kHz Man #VBW 100 kHz uto 2.479 370 GHz -24.932 dBm 2.479 835 GHz -4.371 dBm 1.269 MHz (Δ) -0.116 dB N 1 f N 1 f Δ1 1 f (Δ) Freq Offse 0 H

Scale Type

CH78

4.5. Frequency Separation

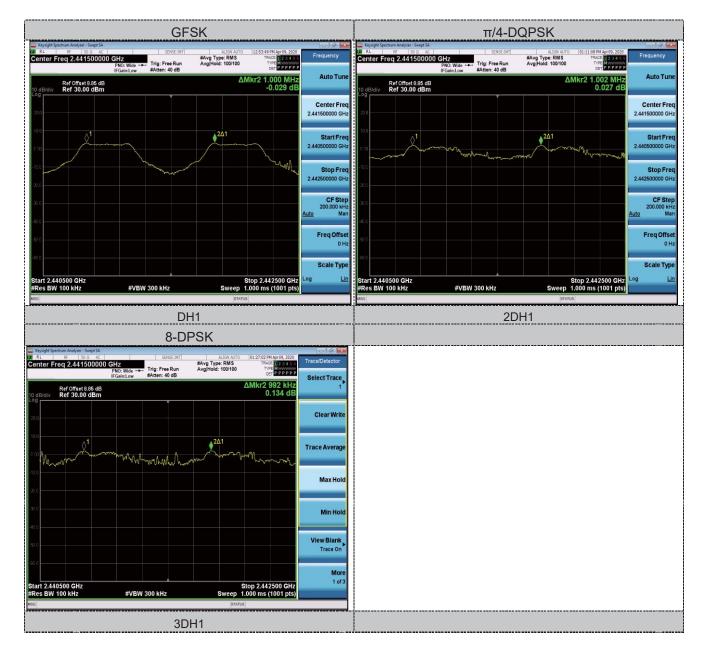
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

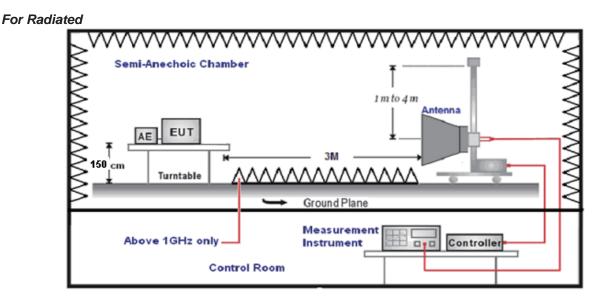

TEST RESULTS

Modulation	Channel	(MHZ)		Result	
GFSK	Hopping	1.000	>=0.590	Complies	
π/4-DQPSK	Hopping	1.002	>=0.854	Complies	
8-DPSK	Hopping	0.992	>=0.840	Complies	

Ch. Separation Limits: > 2/3 of 20dB bandwidth

Report No.: GTS20200303006-1-19

Page 23 of 42



4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST CONFIGURATION

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting		Detector						
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,							
	Sweep time=Auto	Peak						
	Average Value: RBW=1MHz/VBW=10Hz,	FEak						
	Sweep time=Auto							
	Test Frequency range	Test Frequency rangeTest Receiver/Spectrum SettingTest Frequency rangePeak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto1GHz-40GHzSweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,						

LIMIT

Below -20dB of the highest emission level in operating band.

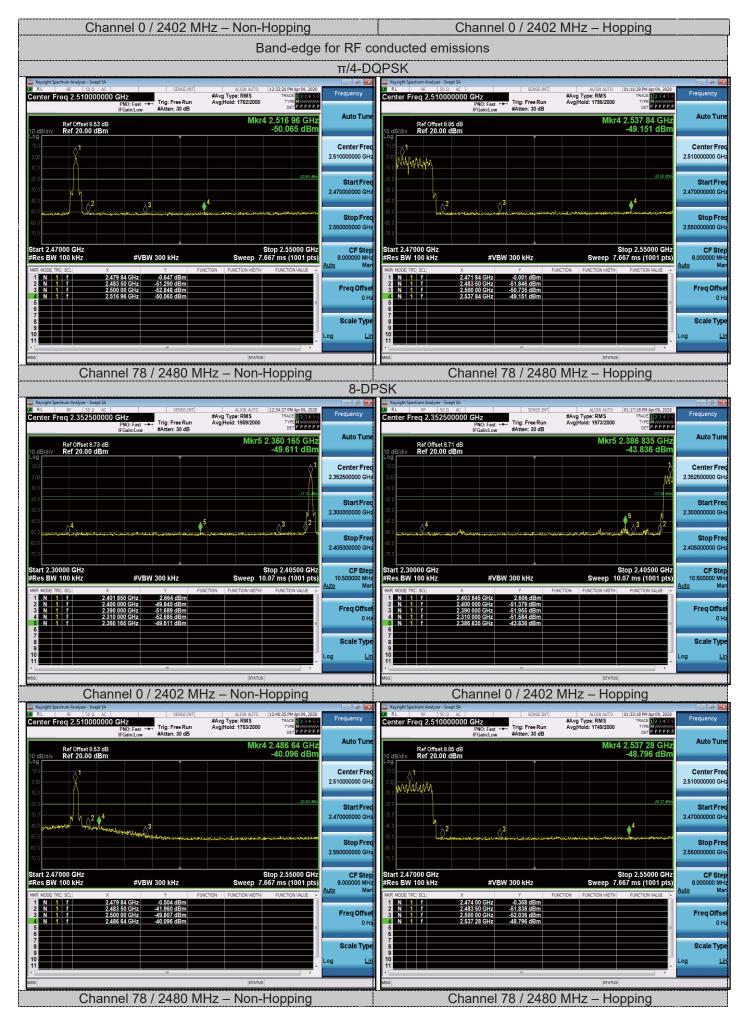
Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH1.

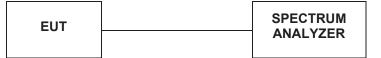
4.6.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at no-hopping mode


GFSK												
Frequenc	y(MHz):			2402			Polarity:		ŀ	IORIZO	NTAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	48.17	PK	74	-25.83	1	132	53.48	27.49	3.32	36.12	-5.31	
2390.00	38.04	AV	54	-15.96	1	132	43.35	27.49	3.32	36.12	-5.31	
Frequenc	y(MHz):			2402			Polarity:			VERTI	CAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	48.11	PK	74	-25.89	1	260	53.42	27.49	3.32	36.12	-5.31	
2390.00	38.65	AV	54	-15.35	1	260	43.96	27.49	3.32	36.12	-5.31	
Frequenc	y(MHz):			2480		Polarity:			ŀ	HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	47.84	PK	74	-26.16	1	107	53.56	27.45	3.38	36.55	-5.72	
2483.50	38.23	AV	54	-15.77	1	107	43.95	27.45	3.38	36.55	-5.72	
Frequenc	y(MHz):			2480			Polarity:			VERTI	CAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	48.08	PK	74	-25.92	1	214	53.80	27.45	3.38	36.55	-5.72	
2483.50	37.95	AV	54	-16.05	1	214	43.67	27.45	3.38	36.55	-5.72	

4.6.2 For Conducted Bandedge Measurement

Report No.: GTS20200303006-1-19


Page 27 of 42

NOTE: Hopping enabled and disabled have evaluated, and the worst data was reported.

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

LIMIT

Frequency hopping systems in the 2400–2483.5MHz band shall use at least 15 channels.

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79	≥15	Pass
8DPSK	79	≥15	Pass

		Numb	per of hop	ping frequency	/		
Keysight Spectrum Analyzer - Swept SA RL		ALIGN AUTO 12:59:30 PM Apr 09, 2020 #Avg Type: RMS TRACE 12:33 4 5 Avg Hold: 6670/10000 TYPE DET P P P P P	Frequency	Keysight Spectrum Analyzer - Swept Si	A SENSE:INT	ALIGN AUTO 01:16:02 PM Apr09, 2020 #Avg Type: RMS TRACE 12:3:4:5 6 Avg[Hold: 8879/10000 TYPE M DET P.P.P.P.P.P.	Frequency
Ref Offset 8.73 dB 10 dB/div Ref 30.00 dBm			Auto Tune	Ref Offset 8.73 d 10 dB/div Ref 30.00 dBn			Auto Tun
20.0			Center Fred 2.441750000 GHz	20.0			Center Fre 2.441750000 GH
			Start Fred 2.400000000 GHa		MUMUMUMUMUM	alimmurunununununun	Start Fre 2.400000000 GF
	UTTER ANTICE AND		Stop Fred 2.483500000 GHa	-10.0			Stop Fre 2.483500000 GH
400			CF Step 8.350000 MHz <u>Auto</u> Mar	-33.0			CF Ste 8.350000 MH <u>Auto</u> Ma
-50.0			Freq Offse 0 Ha	-50.0			Freq Offs 0 F
			Scale Type				Scale Typ
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts	z Log <u>Lir</u>)	Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	Log <u>L</u>
MSG	GF	SK		MSG	π/4-DQ	PSK	

Report No.: GTS20200303006-1-19

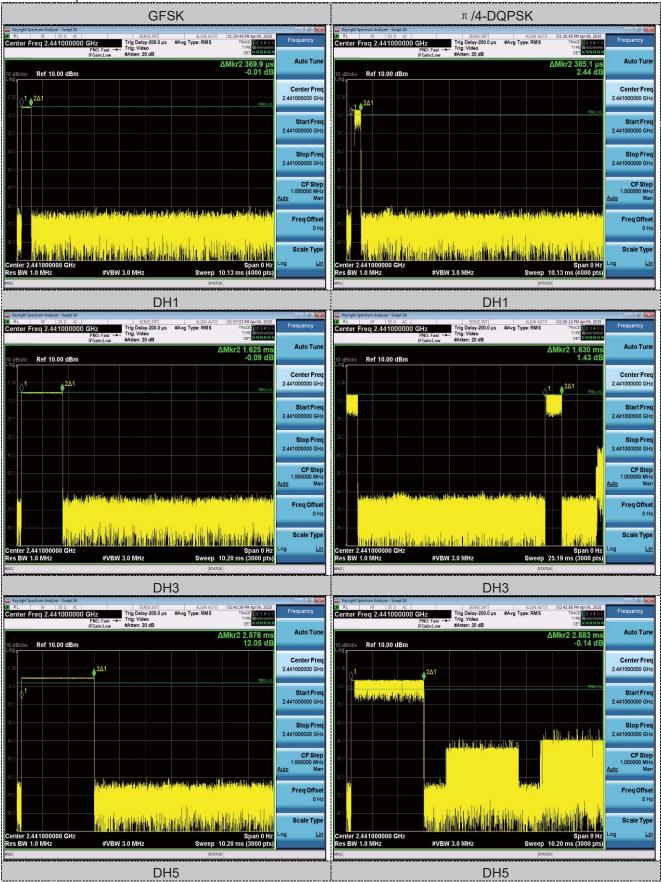
LXI R	eyzight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Inter Freq 2.441750000	PNO: Fast +++ Trig: Free Run	ALIGN AUTO 01: #Avg Type: RMS Avg Hold: 10000/10000	32:49 PM Apr 09, 2020 TRACE 1 2 3 4 5 6 TYPE M	Frequency
10 d Log	Ref Offset 8.73 dB B/div Ref 30.00 dBm	IFGain:Low #Atten: 40 dB			Auto Tune
20.0					Center Fred 2.441750000 GHz
10.0 0.00		wwwwwwwwwww	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	aalannaa	Start Fred 2.400000000 GHz
-10.0			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	UUAABDAJAAI	Stop Frec 2.483500000 GH2
-30.0	 				CF Step 8.350000 MHz <u>Auto</u> Mar
-40.0 -50.0				bas.	Freq Offset 0 Ha
-60.0					Scale Type
Star #Re	rt 2.40000 GHz s BW 100 kHz	#VBW 300 kHz	Stop Sweep 8.000	p 2.48350 GHz ms (1001 pts)	
		8DPS			

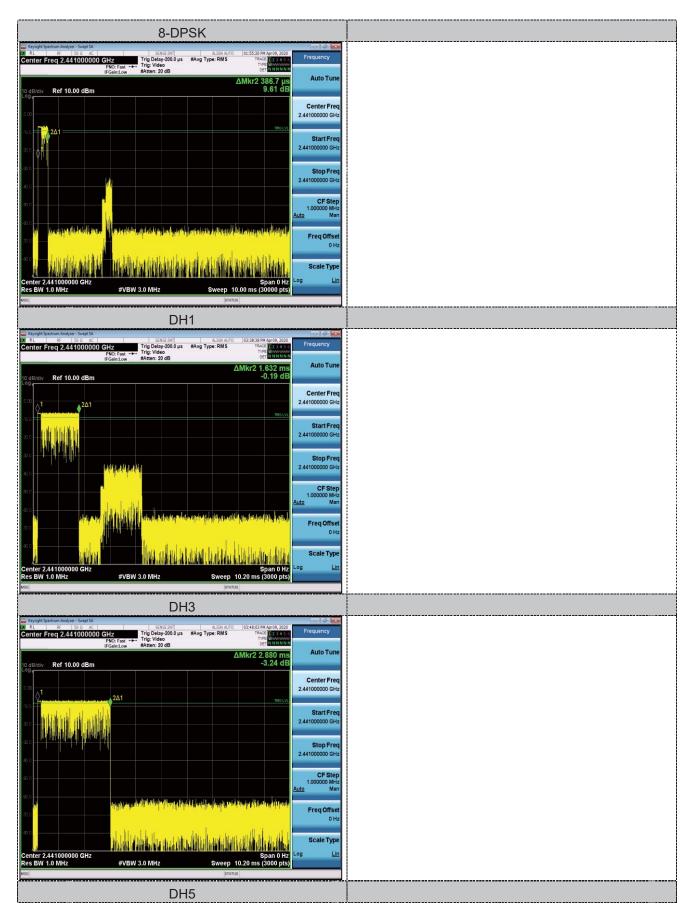
4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.


LIMIT


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

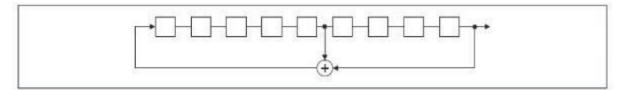
TEST RESULTS

	Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
			(ms)	(s)	(s)
	DH1	2441 MHz	0.37	0.122	0.4
GFSK	2DH1	2441 MHz	1.63	0.276	0.4
	3DH1	2441 MHz	2.88	0.288	0.4
	DH3	2441 MHz	0.39	0.127	0.4
π/4-DQPSK	2DH3	2441 MHz	1.63	0.293	0.4
	3DH3	2441 MHz	2.88	0.346	0.4
	DH5	2441 MHz	0.39	0.124	0.4
8-DPSK	2DH5	2441 MHz	1.63	0.277	0.4
	3DH5	2441 MHz	2.88	0.23	0.4

Test plot as follows:

4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage.And the result is fed back to the input of the frist stage.The sequence begins with the frist one of 9 consecutive ones,for example:the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0246	62 64 78 1	73 75 77
		1 1

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is FPC Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.87dBi.

5. TEST SETUP PHOTOS OF THE EUT

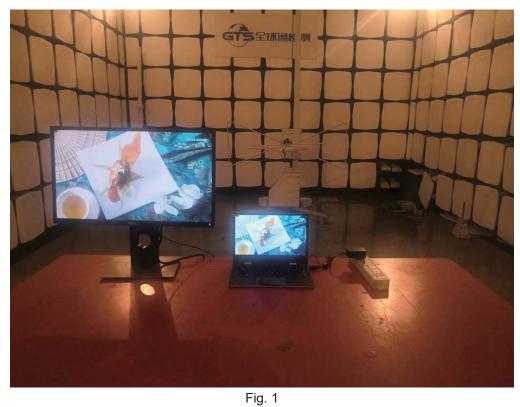


Photo of Radiated Emissions Measurement

Fig. 3

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 4

Fig. 6

Fig. 7

Fig. 8

Fig. 9

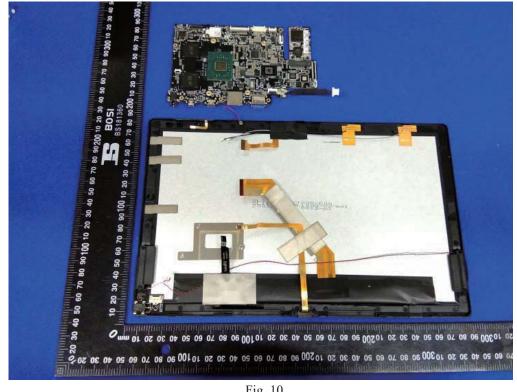
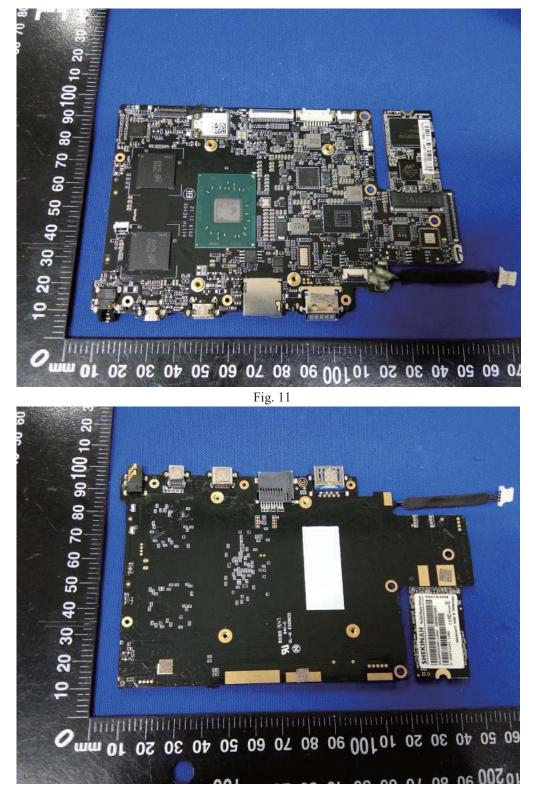



Fig. 10

产品名称: Product Name:智楽合物电池	Caveat:Do not disassemble, bump, squeeze or throw into fir
Lithium polymer battery	If severe swelling occurs, do not continue to use,
型号Wodel: 4059134-25 标称电压Nominal voltage: 7.6V	Do not place in high temperature environment above 45°
充电限制电压/Limited Charge Voltage: 8.7V	Do not use the battery when it is flooded
额定容量/Rated Capacity: 4800mAh/36.48Wh	警告: 禁止拆解、撞击、挤压或投入火中,
红线/Red wire: "+",黑线/Black wire: ""	若出现严重鼓胀, 请勿继续使用,
制造商/Manufacturer: 深圳市屿成科技有限公司	请勿置于45°以上高温环境
Shenzhen Yu Cheng Technology Co., Ltd	电池浸水后禁止使用

.....End of Report.....