COMOSAR E-Field Probe Calibration Report Ref: ACR.49.1.22.BES.A # BTF TESTING LAB (SHENZHEN) CO., LTD. F101,201 AND 301, BUILDING 1, BLOCK 2, TANTOU INDUSTRIAL PARK, TANTOU COMMUNITY SONGGANG STREET, BAO'AN DISTRICT, SHENZHEN, CHINA # MVG COMOSAR DOSIMETRIC E-FIELD PROBE **SERIAL NO.: SN 04/22 EPGO365** #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/06/2023 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Checked by: | Jérôme Luc | Technical Manager | 2/6/2023 | Jes | | Approved by: | Yann Toutain | Laboratory Director | 2/6/2023 | Gann TOUTAAN | 2023.02.09 11:19:48 +01'00' | | Customer Name | |----------------|---------------------------------| | Distribution : | BTF Testing Lab (Shenzhen) Co., | | | Ltd. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 2/6/2023 | Initial release | #### TABLE OF CONTENTS | 1 | Dev | ice Under Test4 | | |---|------|------------------------------|---| | 2 | Pro | duct Description4 | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method4 | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 4 | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | 5 | | | 3.1 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty6 | | | 5 | Cali | bration Measurement Results6 | | | | 5.1 | Sensitivity in air | e | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 8 | | | 5.4 | Isotropy | 9 | | 6 | List | of Equipment10 | | #### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|-----------------------|--|--| | Device Type COMOSAR DOSIMETRIC E FIELD PRO | | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number SN 04/22 EPGO365 | | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.204 MΩ | | | | | Dipole 2; R2=0.212 MΩ | | | | | Dipole 3: R3=0.187 MΩ | | | #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 – MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. Page: 4/11 #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°). #### 3.1 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface: $$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta \beta 2)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; △SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|-----------------------|-----------------------------|---------|----|-----------------------------| | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Expanded uncertainty 95 % confidence level k = 2 | | | | | 14 % | #### 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | | | |--------------------------------|--|--|--|--| | Liquid Temperature 20 +/- 1 °C | | | | | | Lab Temperature 20 +/- 1 °C | | | | | | Lab Humidity 30-70 % | | | | | #### 5.1 SENSITIVITY IN AIR | Normx dipole | Normy dipole | Normz dipole | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 0.79 | 0.94 | 0.85 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 106 | 110 | 107 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Dipole 1 Dipole 2 Dipole 3 ## 5.2 LINEARITY Linearity:+/-1.77% (+/-0.08dB) ### 5.3 <u>SENSITIVITY IN LIQUID</u> | <u>Liquid</u> | Frequency
(MHz +/-
100MHz) | ConvF | |---------------|----------------------------------|-------| | HL450* | 450 | 1.82 | | BL450* | 450 | 1.74 | | HL750 | 750 | 1.65 | | BL750 | 750 | 1.68 | | HL850 | 835 | 1.68 | | BL850 | 835 | 1.69 | | HL1800 | 1800 | 1.96 | | BL1800 | 1800 | 2.01 | | HL1900 | 1900 | 2.24 | | BL1900 | 1900 | 2.20 | | HL2000 | 2000 | 2.33 | | BL2000 | 2000 | 2.29 | | HL2100 | 2100 | 2.35 | | BL2100 | 2100 | 2.40 | | HL2300 | 2300 | 2.36 | | BL2300 | 2300 | 2.44 | | HL2450 | 2450 | 2.36 | | BL2450 | 2450 | 2.28 | | HL2600 | 2600 | 2.40 | | BL2600 | 2600 | 2.27 | | HL3500 | 3500 | 2.00 | | BL3500 | 3500 | 2.13 | | HL3700 | 3700 | 2.02 | | BL3700 | 3700 | 2.10 | | HL3900 | 3900 | 1.99 | | BL3900 | 3900 | 2.19 | | HL4200 | 4200 | 2.27 | | BL4200 | 4200 | 2.39 | | HL4600 | 4600 | 2.27 | | BL4600 | 4600 | 2.37 | | HI.4900 | 4900 | 2.16 | | BL4900 | 4900 | 2.05 | | HL5200 | 5200 | 2.24 | | BL5200 | 5200 | 2.26 | | HL5400 | 5400 | 2.12 | | BL5400 | 5400 | 2.08 | | HL5600 | 5600 | 2.18 | | BL5600 | 5600 | 2.05 | | HL5800 | 5800 | 2.04 | | BL5800 | 5800 | 2.01 | ^{*} Frequency not covered by COFRAC scope, calibration not accredited LOWER DETECTION LIMIT: 7mW/kg ## 5.4 **ISOTROPY** # **HL1800 MHz** Isotropy:+/-0.18% (+/-0.01dB) # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|----------------------------|----------------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration Date | | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2021 | 10/2024 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2021 | 05/2024 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2021 | 02/2024 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2021 | 04/2024 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2021 | 11/2024 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | | Page: 10/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal required. | Validated. No cal required. | |----------------------------------|--------------|---------------------------|-----------------------------|-----------------------------| | Liquid transition | MVG | SN 32/16
WGLIQ_5G000_1 | Valldated. No cal required. | Valldated. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | # **Dielectric Probe Calibration Report** Ref: ACR.49.20.22.BES.A # BTF TESTING LAB (SHENZHEN) CO., LTD. F101,201 AND 301, BUILDING 1, BLOCK 2, TANTOU INDUSTRIAL PARK, TANTOU COMMUNITY SONGGANG STREET, BAO'AN DISTRICT, SHENZHEN, CHINA # **MVG LIMESAR DIELECTRIC PROBE** FREQUENCY: 0.4-6 GHZ **SERIAL NO.: SN 06/22 OCPG 88** #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/06/2023 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited Dielectric Probe calibration performed at MVG, using the LIMESAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Checked by: | Jérôme Luc | Technical Manager | 2/6/2023 | Jes | | Approved by: | Yann Toutain | Laboratory Director | 2/6/2023 | Gann TOUTAAN | 2023.02.09 11:29:33 +01'00' | | Customer Name | |----------------|---------------------------------| | Distribution : | BTF Testing Lab (Shenzhen) Co., | | | Ltd. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 2/6/2023 | Initial release | ## TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|-------------------------------------|---| | 2 | Dev | rice Under Test4 | | | 3 | Proc | duct Description4 | | | | 3.1 | General Information | 4 | | | | surement Method5 | | | | 4.1 | Liquid Permittivity Measurements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Dielectric Permittivity Measurement | 5 | | 6 | Cali | bration Measurement Results5 | | | | 6.1 | Liquid Permittivity Measurement | e | | 7 | List | of Equipment7 | | #### 1 INTRODUCTION This document contains a summary of the suggested methods and requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |------------------------------------|--------------------------|--|--|--| | Device Type | LIMESAR DIELECTRIC PROBE | | | | | Manufacturer | MVG | | | | | Model | SCLMP | | | | | Serial Number | SN 06/22 OCPG 88 | | | | | Product Condition (new / used) New | | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's Dielectric Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the LIMESAR test bench only. Figure 1 – MVG LIMESAR Dielectric Probe #### 4 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 LIQUID PERMITTIVITY MEASUREMENTS The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 <u>DIELECTRIC PERMITTIVITY MEASUREMENT</u> The following uncertainties apply to the Dielectric Permittivity measurement: | Uncertainty analysis of Permittiv | ity Measurement | | W 35 | | * | |-----------------------------------|--------------------------|-----------------------------|---------|----|--------------------------------| | ERROR SOURCES | Uncertainty value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | Expanded uncertainty (confidence | ce level of 95%, k = 2 | 2) | | | 10 % | | Uncertainty analysis of Conductiv | ity Measurement | | | | | |-----------------------------------|--------------------------|-----------------------------|---------|----|--------------------------------| | ERROR SOURCES | Uncertainty value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | Expanded uncertainty (confidence | e level of 95%, k = : | 2) | | | 8.2% | #### 6 CALIBRATION MEASUREMENT RESULTS #### Measurement Condition | Software | LIMESAR | | |--------------------|-------------|--| | Liquid Temperature | 20 +/- 1 °C | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | #### 6.1 LIQUID PERMITTIVITY MEASUREMENT A liquid of known characteristics (methanol or ethanediol) is measured with the probe and the results (complex permittivity ε '+j ε '') are compared with the reference values for this liquid. # 7 LIST OF EQUIPMENT | | Equi | pment Summary S | Sheet | | |---------------------------------------|----------------------------|--------------------|-----------------------------|-----------------------------| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration Date | | LIMESAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Liquid measurement probe | MVG | SN 35/10 OCPG37 | 11/2022 | 11/2023 | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2021 | 10/2024 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2021 | 05/2024 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | # **SAR Reference Dipole Calibration Report** Ref: ACR.49.11.22.BES.A # BTF TESTING LAB (SHENZHEN) CO., LTD. F101,201 AND 301, BUILDING 1, BLOCK 2, TANTOU INDUSTRIAL PARK, TANTOU COMMUNITY SONGGANG STREET, BAO'AN DISTRICT, SHENZHEN, CHINA # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 07/22 DIP2G450-662 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/06/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Checked by : | Jérôme Luc | Technical Manager | 2/6/2023 | Jes | | Approved by: | Yann Toutain | Laboratory Director | 2/6/2023 | Gann TOUTAAN | 2023.02.09 11:23:57 +01'00' | | Customer Name | |----------------|------------------------------------| | Distribution : | BTF Testing Lab
(Shenzhen) Co., | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 2/6/2023 | Initial release | #### TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Pro | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | dation measurement7 | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 11 | | | 7.4 | SAR Measurement Result With Body Liquid | 12 | | 8 | List | of Equipment13 | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | | |---|-----------------------|--|--|--|--| | Device Type COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | | | Manufacturer | MVG | | | | | | Model | SID2450 | | | | | | Serial Number | SN 07/22 DIP2G450-662 | | | | | | Product Condition (new / used) | New | | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole #### 4 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.08 LIN | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length 0.20 mm | | | |-------------|---|--|--| | 0 - 300 | | | | | 300 - 450 | 0.44 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | |-------------|----------------------|--| | 1 g | 19 % (SAR) | | | 10 g | 19 % (SAR) | | #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -21,23 | -20 | $49.4 \Omega + 8.6 j\Omega$ | ## 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -20.59 | -20 | $53.5 \Omega + 8.6 j\Omega$ | #### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Lmm | | h mm | | d mm | | |---------------|----------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | 0 | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | 9 | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | 9 | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 86.2 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | 9 | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | × | 35.7 ±1 %. | ĺ | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | 51.49 | 30.4 ±1 %. | 30.37 | 3.6 ±1 %. | 3.60 | | 2600 | 48.5 ±1 %. | | 28,8 ±1 %, | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | 9 | 25.0 ±1 %. | ĺ | 3.6 ±1 %. | | | 3300 | į . | | | | | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 9 | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | - | , | <u>~</u> | | 49) | | | 4200 | - | | 10 | | - | | | 4600 | - | | - | | . | | | 4900 | æ | 9 | 92 | | 1417 | | #### 7 VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (s _r ') | Conductivity (a) S/m | | |------------------|--------------|------------------------------|----------------------|----------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | 4 | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | 2. | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | 0. | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | | 2100 | 39.8 ±10 % | Î. | 1.49 ±10 % | | | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 36.4 | 1.80 ±10 % | 1.96 | | 2600 | 39.0 ±10 % | | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3300 | 38.2 ±10 % | | 2.71 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | | 3700 | 37.7 ±10 % | | 3.12 ±10 % | | | 3900 | 37.5 ±10 % | 0). | 3.32 ±10 % | | | 4200 | 37.1 ±10 % | | 3.63 ±10 % | | | 4600 | 36.7 ±10 % | | 4.04 ±10 % | | | 4900 | 36.3 ±10 % | | 4.35 ±10 % | | #### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 36.4 sigma: 1.96 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity 30-70 % | | | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|----------|--------------|-------------------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 6.7 | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 54.40 (5.44) | 24 | 23.86 (2.39 | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3300 | 2 | | 2 | | | 3500 | 67.1 | | 25 | | | 3700 | 67.4 | | 24.2 | | | 3900 | = | | CA ATT PORTS | | | 4200 | <u></u> | | ÷ | | | 4600 | . | | ₩. | | | 4900 | - | | = | | ## 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (8 _r ') | | Conductivity (a) S/m | | |------------------|--|----------|----------------------|----------| | | required | measured | required | measured | | 150 | 61.9 ±10 % | 4 | 0.80 ±10 % | | | 300 | 58.2 ±10 % | | 0.92 ±10 % | | | 450 | 56.7 ±10 % | | 0.94 ±10 % | | | 750 | 55.5 ±10 % | | 0.96 ±10 % | | | 835 | 55.2 ±10 % | | 0.97 ±10 % | | | 900 | 55.0 ±10 % | | 1.05 ±10 % | | | 915 | 55.0 ±10 % | | 1.06 ±10 % | | | 1450 | 54.0 ±10 % | 17 | 1.30 ±10 % | | | 1610 | 53.8 ±10 % | | 1.40 ±10 % | | | 1800 | 53.3 ±10 % | | 1.52 ±10 % | | | 1900 | 53.3 ±10 % | ολ
 | 1.52 ±10 % | | | 2000 | 53.3 ±10 % | 20 | 1.52 ±10 % | | | 2100 | 53.2 ±10 % | | 1.62 ±10 % | | | 2300 | 52.9 ±10 % | | 1.81 ±10 % | | | 2450 | 52.7 ±10 % | 53.4 | 1.95 ±10 % | 2.14 | | 2600 | 52.5 ±10 % | | 2.16 ±10 % | | | 3000 | 52.0 ±10 % | | 2.73 ±10 % | | | 3300 | 51.6 ±10 % | 5 | 3.08 ±10 % | | | 3500 | 51.3 ±10 % | 17 | 3.31 ±10 % | | | 3700 | 51.0 ±10 % | | 3.55 ±10 % | | | 3900 | 50.8 ±10 % | | 3.78 ±10 % | | | 4200 | 50.4 ±10 % | 0). | 4.13 ±10 % | | | 4600 | 49.8 ±10 % | 30 | 4.60 ±10 % | | | 4900 | 49.4 ±10 % | | 4.95 ±10 % | | | 5200 | 49.0 ±10 % | N.Y | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | #### SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Body Liquid Values: eps': 53.4 sigma: 2.14 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 2450 | 53.84 (5.38) | 23.26 (2.33) |