

FCC PART 15 SUBPART C TEST REPORT					
FCC PART 15.247					
Report Reference No FCC ID	GTS20220224002-1-4 2AQAA-EZBOOKS5GO				
Compiled by (position+printed name+signature):	File administrators Peter Xiao				
Supervised by (position+printed name+signature):	Test Engineer Jenny Zeng				
Approved by (position+printed name+signature):	Manager Simon Hu				
Date of issue	Apr.15, 2022				
Representative Laboratory Name .:	Shenzhen Global Test Service Co.,Ltd.				
Address:	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China				
Applicant's name	Shenzhen Jumper Technology Co.,Ltd				
Address:	Room B601, C601, JMD Industrial Park, No. 39 Qingfeng Blvd., Baolong Community, Baolong Street, Longgang District, Shenzhen, China				
Test specification:					
Standard	FCC Part 15.247: Operation within the bands 902-928 MHz, 2400- 2483.5 MHz and 5725-5850 MHz				
TRF Originator	Shenzhen Global Test Service Co.,Ltd.				
Master TRF	Dated 2014-12				
Global Test Service Co.,Ltd. is acknowle Test Service Co.,Ltd. takes no responsit	d. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen edged as copyright owner and source of the material. Shenzhen Global pility for and will not assume liability for damages resulting from the I material due to its placement and context.				
Test item description:	Laptop				
Trade Mark	N/A				
Manufacturer:	Shenzhen Jumper Technology Co.,Ltd				
Model/Type reference:	EZbook S5 Go				
List Models	EZbook S5 Gos, EZbook S5 Gox, EZbook S5 Gom				
Modulation Type	GFSK,π/4-DQPSK,8DPSK				
Operation Frequency:	From 2402MHz to 2480MHz				
Hardware Version:	N/A				
Software Version	N/A				
Rating:	DC 7.6V by battery Recharged by DC 12.0V				
Result	PASS				

TEST REPORT

	Test Report No. :	Ģ	GTS20220224002-1-4	Apr.15, 2022		
				Date of issue		
Equ	upment under Test	:	Laptop			
Мо	del /Type	:	EZbook S5 Go			
List	ed model	:	EZbook S5 Gos, EZbook S5 C	Gox, EZbook S5 Gom		
Ар	olicant	:	Shenzhen Jumper Technolo	gy Co.,Ltd		
Ado	dress	:	Room B601, C601, JMD Industrial Park, No. 39 Qingfeng Blvd., Baolong Community, Baolong Street, Longgang District, Shenzhen China			
Ма	nufacturer	:	Shenzhen Jumper Technolo	gy Co.,Ltd		
Ado	dress	:		strial Park, No. 39 Qingfeng Blvd., Street, Longgang District, Shenzhen,		

Test Result: PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	6
2.6. Block Diagram of Test Setup	7
2.7. Related Submittal(s) / Grant (s)	7
2.8. EUT Exercise Software	7
2.9. Special Accessories	7
2.10. External I/O Cable	7
2.11. Modifications	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	8
3.3. Environmental conditions	8
3.4. Statement of the measurement uncertainty	8
3.5. Summary of measurement results	9
3.6. Equipments Used during the Test	
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	13
4.3. Maximum Peak Output Power	
4.4. 20dB Bandwidth	20
4.5. Frequency Separation	23
4.6. Band Edge Compliance of RF Emission	25
4.7. Number of hopping frequency	
4.8. Time Of Occupancy(Dwell Time)	
4.9. Pseudorandom Frequency Hopping Sequence	
4.10. Antenna Requirement	35
5. TEST SETUP PHOTOS OF THE EUT	
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	
6.1. External photos of the EUT	
6.2. Internal photos of the EUT	44

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 15.247 Meas Guidance v05r02</u>: Digital Transmission Systems (DTS) and Frequency Hopping measurement procedures

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Mar. 23, 2022
Testing commenced on	:	Mar. 23, 2022
Testing concluded on	:	Apr.14, 2022

2.2. Product Description

Product Name	Laptop		
Trade Mark	N/A		
Model/Type reference	EZbook S5 Go		
List Models	EZbook S5 Gos, EZbook S5 Gox, EZbook S5 Gom		
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the model name different, So no additional models were tested.		
Power supply:	DC 7.6V by battery Recharged by DC 12.0V		
Sample ID	GTS20220224002-1-3#>S20220224002-1-4#		
Bluetooth			
Operation frequency	2402-2480MHz		
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)		
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)		
Modulation Type GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)			
WIFI(2.4G Band)			
Frequency Range	2412MHz ~ 2462MHz		
Channel Spacing	5MHz		
Channel Number	11 Channel for 20MHz bandwidth(2412~2462MHz) 7 Channel for 40MHz bandwidth(2422~2452MHz)		
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM		
Antenna Description	Internal Antenna, 2.00dBi(Max.) for 2.4G Band		

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank below)		

DC 12.0V

2.4. Short description of the Equipment under Test (EUT)

This is a Laptop

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)			
	2402	1/2/3			
(BDR/EDR)	2441	1/2/3			
	2480	1/2/3			
For Conducted Emission					
Test Mode		TX Mode			
For Radiated Emission					
Test Mode		TX Mode			

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
38	2440	78	2480
39	2441		

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (1Mbps).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-MCH).

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AQAA-EZBOOKS5GO** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. EUT Exercise Software

The system enters the engineering mode through the instructions provided by the application (MP_Kit_RTL11n_8723DU_USB_v1.16_20180821), tests under continuous transmission conditions, and changes the test channel.

2.9. Special Accessories

Ν	Manufacturer	Description	Model	Serial Number	Certificate
	IZHEN SHI YING ELECTRONICS CO LTD	Adapter	ICP30A-120-2000		SDOC

2.10. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	1.0M, Unscreened Cable
USB Port	2	N/A
HDMI Port	1	N/A
Earphone Port	1	N/A

2.11. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range Measurement Uncertainty		Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

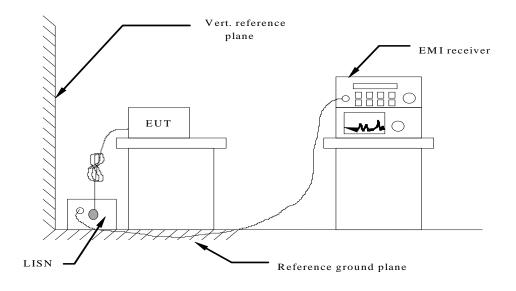
3.5. Summary of measurement results

	Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Test Sample	Result	Remark			
§15.247(b)(1)	Maximum Conducted Output Power	GTS20220224002-1-3#	Compliant	Note 1			
§15.247(c)	Frequency Separation	GTS20220224002-1-3#	Compliant	Note 1			
§15.247(c)	99% and 20 dB Bandwidth	GTS20220224002-1-3#	Compliant	Note 1			
§15.247(a)(1)(ii)	Number of Hopping Frequency	GTS20220224002-1-3#	Compliant	Note 1			
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	GTS20220224002-1-3#	Compliant	Note 1			
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	GTS20220224002-1-3# GTS20220224002-1-4#	Compliant	Note 1			
§15.209, §15.247(d)	Radiated Spurious Emissions	GTS20220224002-1-3# GTS20220224002-1-4#	Compliant	Note 1			
§15.205	Emissions at Restricted Band	GTS20220224002-1-3# GTS20220224002-1-4#	Compliant	Note 1			
§15.207(a)	AC Conducted Emissions	GTS20220224002-1-4#	Compliant	Note 1			
§15.203 §15.247(c)	Antenna Requirements	GTS20220224002-1-3#	Compliant	Note 1			
§15.247(i)§2.1091	RF Exposure		Compliant	Note 2			

Remark:

- The measurement uncertainty is not included in the test result. NA = Not Applicable; NP = Not Performed Note 1 Test results inside test report; Note 2 Test results in other test report (MPE Report). 1.
- 2.
- 3.
- 4.
- 5. We tested all test mode and recorded worst case in report

3.6. Equipments Used during the Test


	_				
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2021/07/17	2022/07/16
LISN	R&S	ESH2-Z5	893606/008	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESPI3	101841-cd	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESCI7	101102	2021/09/19	2022/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2021/09/19	2022/09/18
Spectrum Analyzer	R&S	FSV40	100019	2021/07/17	2022/07/16
Vector Signal generator	Agilent	N5181A	MY49060502	2021/07/17	2022/07/16
Signal generator	Agilent	N5182A	3610AO1069	2021/09/19	2022/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2021/09/19	2022/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2021/11/07	2022/11/06
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2021/10/10	2022/11/09
Bilog Antenna	Schwarzbeck	VULB9163	000976	2021/07/23	2022/07/22
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021/11/07	2022/11/06
Amplifier	Schwarzbeck	BBV 9743	#202	2021/08/08	2022/08/07
Amplifier	Schwarzbeck	BBV9179	V9179 9719-025 20		2022/07/16
Amplifier	EMCI	EMC051845B	980355	2021/07/17	2022/07/16
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2021/07/17	2022/07/16
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2021/07/17	2022/07/16
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2021/07/17	2022/07/16
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2021/07/17	2022/07/16
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2021/07/17	2022/07/16
Data acquisition card	Agilent	U2531A	TW53323507	2021/07/17	2022/07/16
Power Sensor	Agilent	U2021XA	MY5365004	2021/07/17	2022/07/16
Test Control Unit	Tonscend	JS0806-1	178060067	2021/07/17	2022/07/16
Automated filter bank	Tonscend	JS0806-F	19F8060177	2021/07/17	2022/07/16
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3 Ver /		/	1
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/
Note: The Cal.Interval				-	

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013.

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.

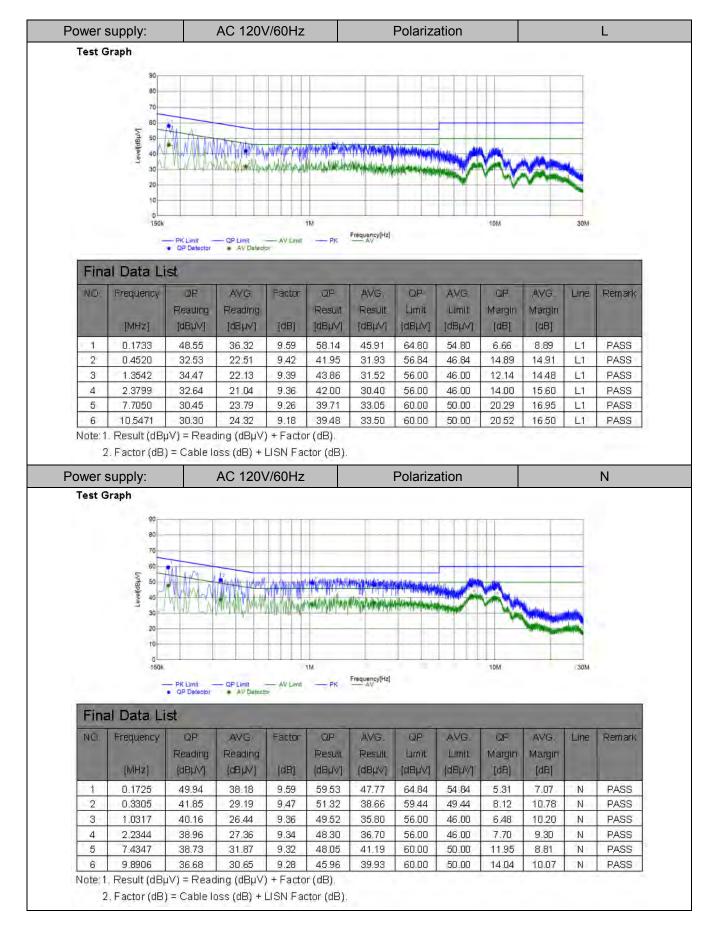
4 The EUT received DC 12V power, the adapter received AC120V/60Hz or AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

⁶ The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

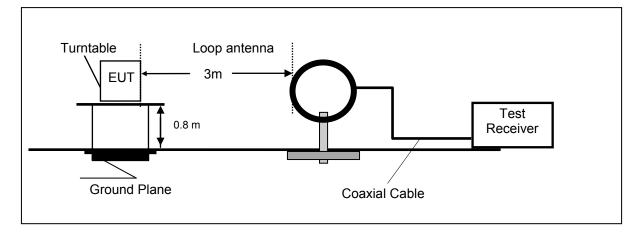
AC Power Conducted Emission Limit

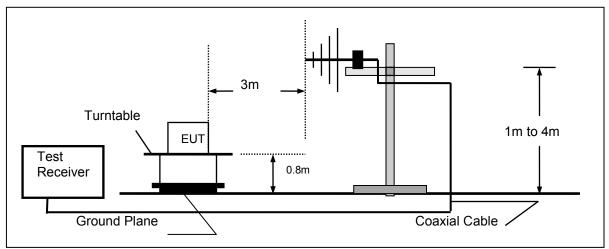

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (c	lBuV)		
Trequency range (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

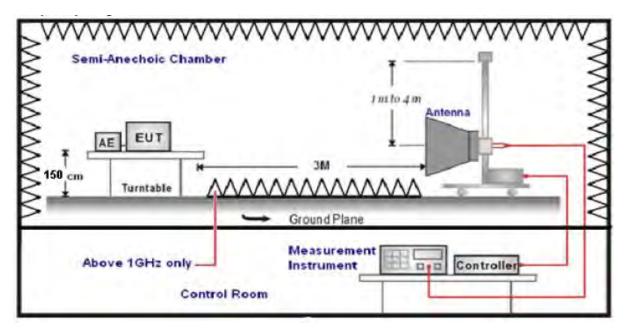
TEST RESULTS

Remark: We measured Conducted Emission at GFSK, π /4-DQPSK and 8DPSK mode in AC 120V/60Hz and AC 240V/60Hz, the worst case was recorded(GFSK 1Mbps-MCH).


Temperature	25 ℃	Humidity	60%
Test Engineer	Jenny Zeng	Configurations	BT


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

 ng test receiver spectrum as following table states.						
Test	Test Receiver/Spectrum Setting	Detector				
range						
9KHz-1	50KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz	-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP			
30MHz-	1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP			
1GHz-4	0GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

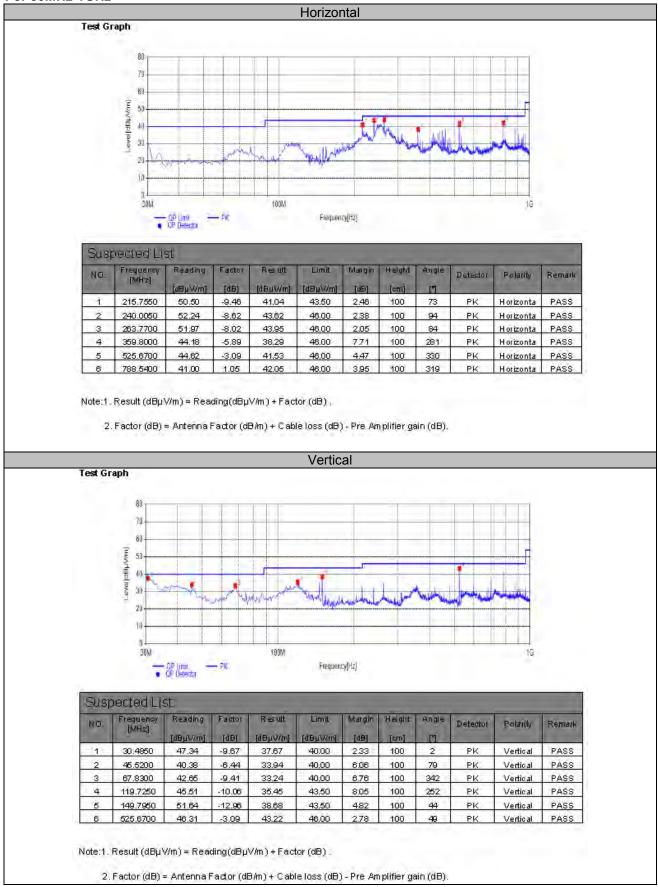
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at GFSK, π /4-DQPSK and 8DPSK mode from 30MHz to 25GHz and recorded worst case at GFSK(1Mbps-MCH) mode.

Temperature	25 ℃	Humidity	60%	
Test Engineer	Jenny Zeng	Configurations	BT	

For 9 KHz~30MHz


Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

For 30MHz-1GHz

GFSK /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	50.69	32.44	30.25	7.95	60.83	74.00	-13.17	Peak	Horizontal
4804.00	36.65	32.44	30.25	7.95	46.79	54.00	-7.21	Average	Horizontal
4804.00	53.28	32.44	30.25	7.95	63.42	74.00	-10.58	Peak	Vertical
4804.00	35.38	32.44	30.25	7.95	45.52	54.00	-8.48	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	50.83	32.52	30.31	8.12	61.16	74.00	-12.84	Peak	Horizontal
4882.00	37.84	32.52	30.31	8.12	48.17	54.00	-5.83	Average	Horizontal
4882.00	50.82	32.52	30.31	8.12	61.15	74.00	-12.85	Peak	Vertical
4882.00	36.25	32.52	30.31	8.12	46.58	54.00	-7.42	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.92	32.68	30.27	7.88	62.21	74.00	-11.79	Peak	Horizontal
4960.00	35.29	32.68	30.27	7.88	45.58	54.00	-8.42	Average	Horizontal
4960.00	49.35	32.68	30.27	7.88	59.64	74.00	-14.36	Peak	Vertical
4960.00	30.97	32.68	30.27	7.88	41.26	54.00	-12.74	Average	Vertical

$\pi/4\text{-}DQPSK$ /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	49.92	32.44	30.25	7.95	60.06	74.00	-13.94	Peak	Horizontal
4804.00	35.91	32.44	30.25	7.95	46.05	54.00	-7.95	Average	Horizontal
4804.00	53.45	32.44	30.25	7.95	63.59	74.00	-10.41	Peak	Vertical
4804.00	36.29	32.44	30.25	7.95	46.43	54.00	-7.57	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	49.03	32.52	30.31	8.12	59.36	74.00	-14.64	Peak	Horizontal
4882.00	36.57	32.52	30.31	8.12	46.90	54.00	-7.10	Average	Horizontal
4882.00	51.63	32.52	30.31	8.12	61.96	74.00	-12.04	Peak	Vertical
4882.00	35.07	32.52	30.31	8.12	45.40	54.00	-8.60	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.62	32.68	30.27	7.88	61.91	74.00	-12.09	Peak	Horizontal
4960.00	35.41	32.68	30.27	7.88	45.70	54.00	-8.30	Average	Horizontal
4960.00	49.16	32.68	30.27	7.88	59.45	74.00	-14.55	Peak	Vertical
4960.00	30.64	32.68	30.27	7.88	40.93	54.00	-13.07	Average	Vertical

8-DPSK /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	49.94	32.44	30.25	7.95	60.08	74.00	-13.92	Peak	Horizontal
4804.00	36.09	32.44	30.25	7.95	46.23	54.00	-7.77	Average	Horizontal
4804.00	54.00	32.44	30.25	7.95	64.14	74.00	-9.86	Peak	Vertical
4804.00	34.57	32.44	30.25	7.95	44.71	54.00	-9.29	Average	Vertical

Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	48.97	32.52	30.31	8.12	59.30	74.00	-14.70	Peak	Horizontal
4882.00	36.68	32.52	30.31	8.12	47.01	54.00	-6.99	Average	Horizontal
4882.00	52.33	32.52	30.31	8.12	62.66	74.00	-11.34	Peak	Vertical
4882.00	35.94	32.52	30.31	8.12	46.27	54.00	-7.73	Average	Vertical

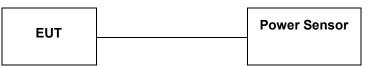
Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	51.99	32.68	30.27	7.88	62.28	74.00	-11.72	Peak	Horizontal
4960.00	36.27	32.68	30.27	7.88	46.56	54.00	-7.44	Average	Horizontal
4960.00	48.56	32.68	30.27	7.88	58.85	74.00	-15.15	Peak	Vertical
4960.00	31.65	32.68	30.27	7.88	41.94	54.00	-12.06	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.


3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss

5). Margin = Measured- Limit

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices:

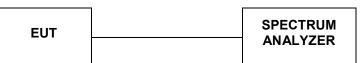
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS


Temperature	22.6 ℃	Humidity	52.3%
Test Engineer	Jenny Zeng	Configurations	BT

Modulation	Channel	Peak Output power (dBm)	Limit (dBm)	Result
	00	3.12		
GFSK	39	3.21	21	Pass
	78	3.32		
	00	4.11		
π/4-DQPSK	39	4.18	21	Pass
	78	4.46		
	00	4.44		
8DPSK	39	4.56	21	Pass
	78	4.74		

Note: The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

<u>LIMIT</u>

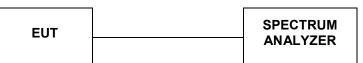
For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Temperature	22.6 ℃	Humidity	52.3%
Test Engineer	Jenny Zeng	Configurations	BT

Modulation	Frequency	20dB Bandwidth (MHz)	Result
	2402 MHz	1.035	PASS
GFSK	2441 MHz	1.035	PASS
	2480 MHz	1.035	PASS
	2402 MHz	1.350	PASS
π/4-DQPSK	2441 MHz	1.350	PASS
	2480 MHz	1.347	PASS
	2402 MHz	1.296	PASS
8-DPSK	2441 MHz	1.296	PASS
	2480 MHz	1.296	PASS

Test plot as follows:



4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100KHz and VBW=300KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

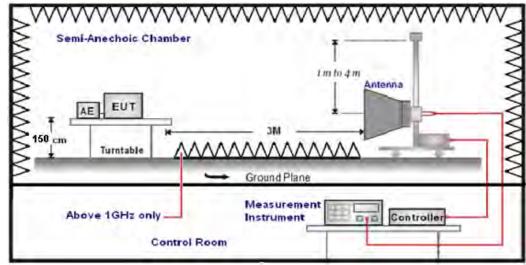
Temperature	22.6 ℃	Humidity	52.3%
Test Engineer	Jenny Zeng	Configurations	BT

Modulation	Channel	Ch. Separation (MHz)	Limit (MHz)	Result
GFSK	Hopping	1.000	≥0.690	Complies
π/4-DQPSK	Hopping	1.006	≥0.900	Complies
8-DPSK	Hopping	1.002	≥0.864	Complies

Ch. Separation Limits: > 2/3 of 20dB bandwidth

Report No.: GTS20220224002-1-4

Page 24 of 49


4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

<u> </u>					
	Test Frequency range	Test Receiver/Spectrum Setting	Detector		
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak		

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

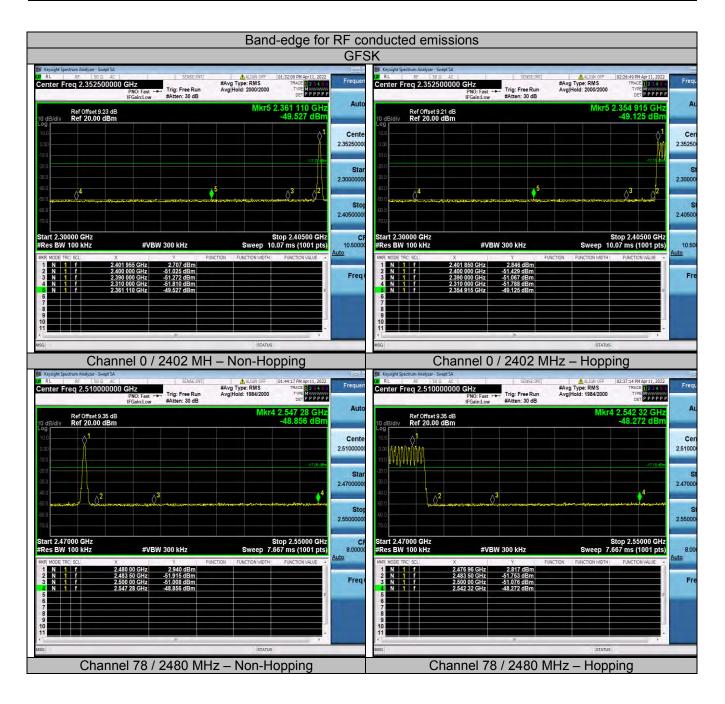
Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH1.

4.6.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at nohopping mode

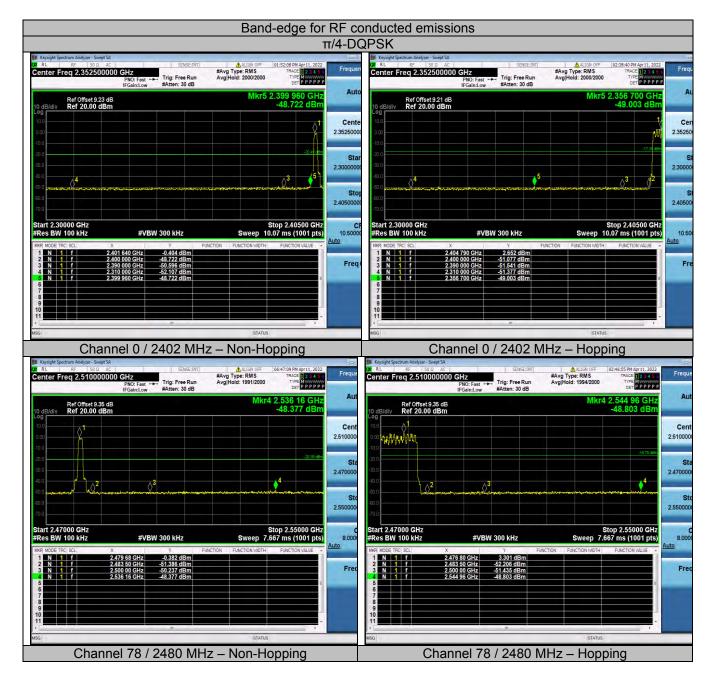
Temperature	23.8 ℃	Humidity	53.7%
Test Engineer	Jenny Zeng	Configurations	BT

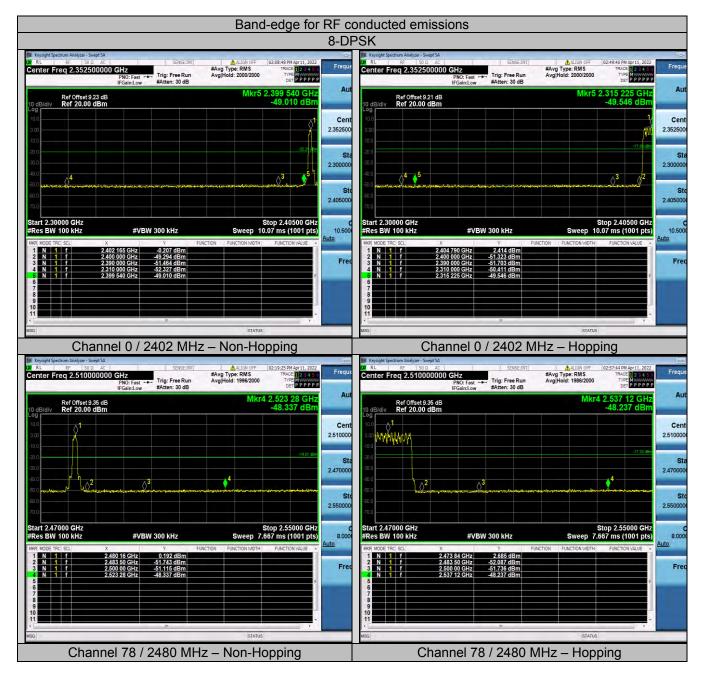
	GFSK										
Frequency	y(MHz):			2402		Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	45.41	PK	74.00	-28.59	1	67	50.72	27.49	3.32	36.12	-5.31
2390.00	35.60	AV	54.00	-18.40	1	67	40.91	27.49	3.32	36.12	-5.31
Frequency	y(MHz):			2402			Polarity:			VERTI	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)		Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	49.09	PK	74.00	-24.91	1	281	54.40	27.49	3.32	36.12	-5.31
2390.00	30.38	AV	54.00	-23.62	1	281	35.69	27.49	3.32	36.12	-5.31
Frequency	y(MHz):			2480		Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	46.58	PK	74.00	-27.42	1	197	52.30	27.45	3.38	36.55	-5.72
2483.50	34.45	AV	54.00	-19.55	1	197	40.17	27.45	3.38	36.55	-5.72
Frequency	y(MHz):		2480		Polarity:			VERTICAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	49.10	PK	74.00	-24.90	1	102	54.82	27.45	3.38	36.55	-5.72
2483.50	29.27	AV	54.00	-24.73	1	102	34.99	27.45	3.38	36.55	-5.72


REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.

- 5. The other emission levels were very low against the limit.


4.6.2 For Conducted Bandedge Measurement


Temperature	22.6 ℃	Humidity	52.3%	
Test Engineer	Jenny Zeng	Configurations	BT	

Report No.: GTS20220224002-1-4

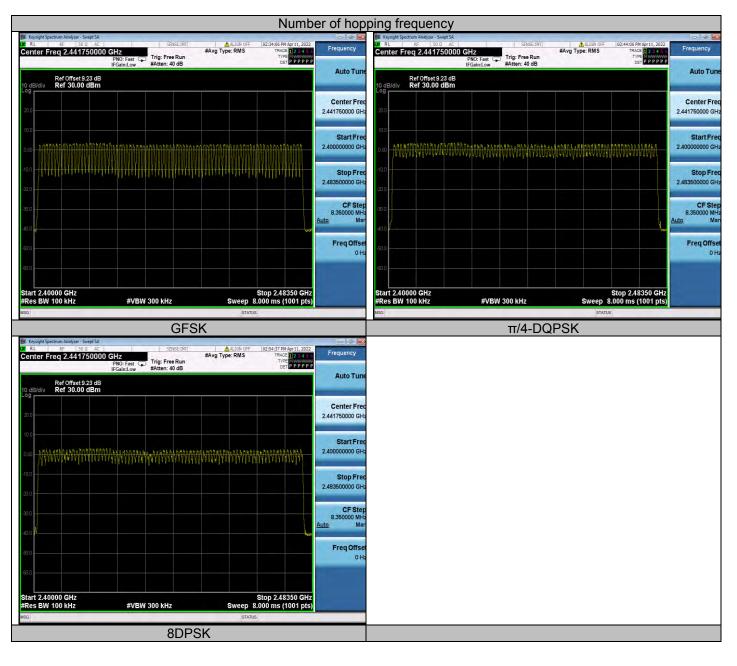
Page 28 of 49

NOTE: Hopping enabled and disabled have evaluated, and the worst data was reported.

4.7. Number of hopping frequency

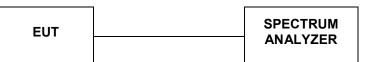
TEST CONFIGURATION

	l	
EUT		SPECTRUM ANALYZER


TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100KHz and VBW=300KHz.

Frequency hopping systems in the 2400–2483.5MHz band shall use at least 15 channels.


Temperature	22.6 ℃	Humidity	52.3%
Test Engineer	Jenny Zeng	Configurations	BT

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79	≥15	Pass
8DPSK	79	≥15	Pass

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Temperature	22.6 ℃	Humidity	52.3%
Test Engineer	Jenny Zeng	Configurations	BT

Modulation	Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
			(ms)	(s)	(s)
	DH1	2441 MHz	0.37	0.12	0.40
GFSK	DH3	2441 MHz	1.63	0.26	0.40
	DH5	2441 MHz	2.88	0.31	0.40
	2DH1	2441 MHz	0.39	0.12	0.40
π/4-DQPSK	2DH3	2441 MHz	1.64	0.26	0.40
	2DH5	2441 MHz	2.88	0.31	0.40
	3DH1	2441 MHz	0.38	0.12	0.40
8-DPSK	3DH3	2441 MHz	1.63	0.26	0.40
	3DH5	2441 MHz	2.88	0.31	0.40

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch] =31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop. The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch] =3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark:

- 1. Test results including cable loss;
- 2. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 3. Dwell Time Calculate formula:
 - DH1: Dwell time=Pulse Time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second
 - DH3: Dwell time=Pulse Time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second
 - DH5: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second

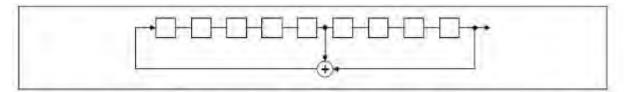
Test plot as follows:

GFSK		π/4-DQPSK
K trying Spectrum Analyzer - Swept Sk. SEE Sec Strift Δμ.LigH GFF 02-34-25 PM Apr11, 202 Rt err Freq 2.441000000 GHz Friter Freq 2.441000000 GHz Floain.Low Trig Delay-200.0 μs #Avg Type: RMS Trik C B 2 a = Trig: Video Friter Freq 2.44100000 GHz Floain.Low Trig C C B Trig P P P F	Freque	B Keyapid Spectrum Andgrar Sweet SA D RL 8F 59.0 AC SENSESIMI April: 2024 Center Freq 2.4441000000 GHz PR0: Fast → Trig Delay-200.0 µs #Avg Type: RMS TR4CE B24 = T PR0: Fast → Trig: Video #Atter: 20 dB ter (# PPPP P)
IFGain:Low #Atten: 20 dB DEFINITION Ref Offset 9.35 dB ΔMkr2 369.9 μ 0.13 dI 0 dB/dlv Ref 19.35 dBm 0.13 dI	Aut	IFGainLow #Atten: 20 dB Derproperprint Ref Offset 9,35 dB ΔMkr2 385.1 µs 19.45 dB 10 dB/div Ref 19.35 dBm 19.45 dB
οθ 2.35 δ1 Δ2Δ1	Cent 2.441000	
	Sta	386
0.7	2.441000	102 1
0.7	Sto 2.441000	307
97	1.0000	-677
207 27 v telepit, edit las glats i dat her súltandis er even a linet som sine et dat som sine atte	Auto Freq	2007 2007 Man a trifference da trifference al 1999 a constantial, accuración de priori de la comprensione de la const 2007
enter 2.441000000 GHz Span 0 H		Center 2.441000000 GHz Span 0 Hz
ee BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pt: sq status	5/	Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pts)
DH1 If Regulpt Spectrum Analyzer - Singet SA R L RF SD Q: AC SENSE: DITT Ap. LIGN OFF 02:35:35 PM April, 202	2	2DH1 III Kejsight Spectrum Analyzer - Swept SA III RL RF SD Ω AC SENSE 20171 ▲LLGR OFF 02245/20 PM April, 2022
enter Freq 2.441000000 GHz. Trig Delay-2000 μs #Avg Type: RMS Trace De s PN0: Fast →→ Trig: Video Tr	Freque	Center Freq 2.441000000 GHz Trig Delay-2000 BAVg Type: RMS TROE DE as PNO: Fsat
Ref 0ffset9.35 dB 0.05 d 0 dB/div Ref 19.35 dB 0.05 d	B	Ref 0ffset9,35 dB ΔMkr2 1.637 ms 10 dB/div Ref 19.35 dBm 13.29 dB Log
2.23 Δ1	Cent 2.441000	235 2Δ1
100 100	2.441000	0.06 1 TROLL 24
20.7	Sto	
9.7	2.441000	
97 97	1.0000 Auto	Auto
ooz Aliyaqan aharida iliyada ayyadigi dari anikatari yada iliyada yada yada yada yada yada yada yada	Freq	
0.7		
enter 2,441000000 GHz Span 0 H es BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pt 21 Status	lz s)	Center 2.44 1000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pts)
DH3		2DH3
K typight Spectrum Audyzer - Swept SX. SELICE DIT ALCH OFF 0/236/28 PM Apr11, 202 RL RF 90.0 AC SELICE DIT ALCH OFF 0/236/28 PM Apr11, 202 Center Freq 2.441000000 GHz Trig: Video Trig: Video Trig: Video Trig: Video Trig: Video PNO: Fast → Trig: Video URB Trig: Video Trig: Video Trig: Video	Freque	K keysight Spectrum Analyzer - Swegt SA Schlick - Strike - St
IFGain:Low #Atten: 20 dB DEF PP PP Ref Offset 9.35 dB ΔMkr2 2.878 m 22.60 dl 0 dB/dlv Ref 19.35 dBm 22.60 dl	S Aut	IFGainLow #Atten: 20 dB Der (P = P = P = P = P = P = P = P = P = P
233	Cent 2.441000	2.3 1 2Δ1
186	sta	0.65 100 LV2
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	2.441000	-10.7
87	2.441000	337 2.4
9.7	1.0000 Auto	-49.7
or or here the state of the st	Freq	507 507 507
07		707
enter 2.441000000 GHz Span 0 H es BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pt:	lz s)	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (2000 pts)
SG STATUS		NSG STATUS

8-DPSK	
Respect Spectrum. Medgar: Spect 34 Center Freq 2.441000000 GHz Trig Detay-200.0 µs #ALEX OF (a) 2.54:57 PM Av11.202 Freque Center Freq 2.441000000 GHz FWC (Last ++	
3DH1	
Ref Offset 3 S dB ΔMKr2 1.631 ms (2.441000000 GHz) Center Freq 2.441000000 GHz The Delay-200 μs #Atten: 20 dB ΔMkr2 1.631 ms (2.08 dB) Automatical and an anti- antice in the delay of	
3DH3	
Ref Offset 3 56 AME Center Freq 2.441000000 GHz (Figure 4 and 1	
3DH5	

4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0 2 4 6	62 64 78 1	73 75 77
101000000000000000000000000000000000000		

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is Internal Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2.00dBi.

Reference to the Internal photos.

5. TEST SETUP PHOTOS OF THE EUT

Photo of Radiated Emissions Measurement

Fig. 2

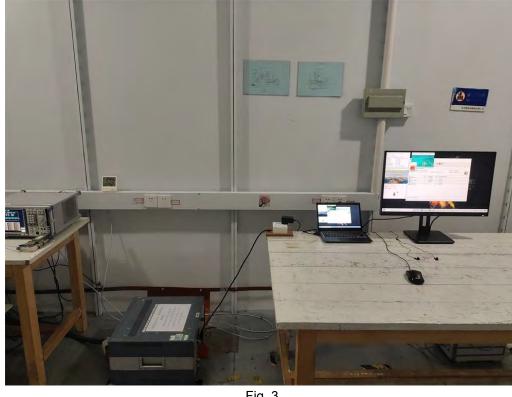


Photo of Conducted Emission Measurement

Fig. 3

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

6.1. External photos of the EUT

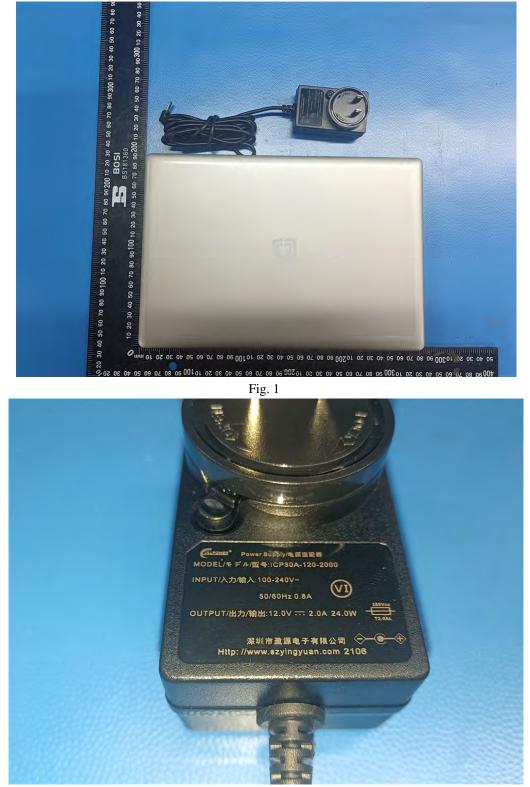


Fig. 2

Fig. 3

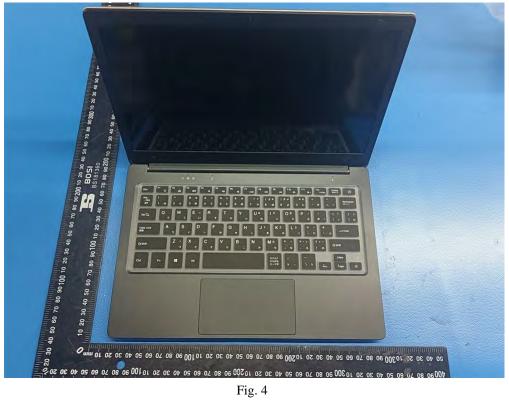


Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

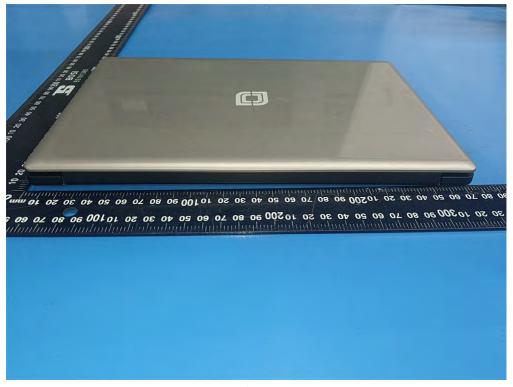


Fig. 9

Fig. 10

Fig. 11

6.2. Internal photos of the EUT

Fig. 12

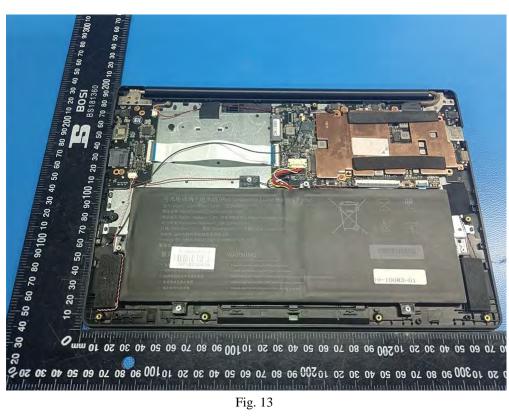


Fig. 13

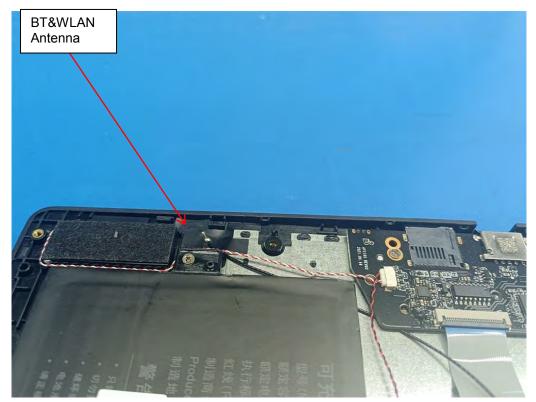
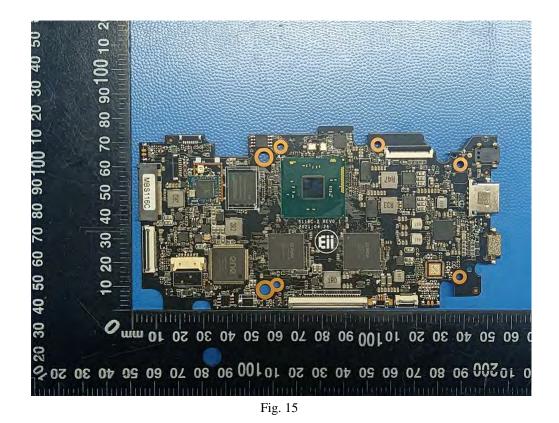
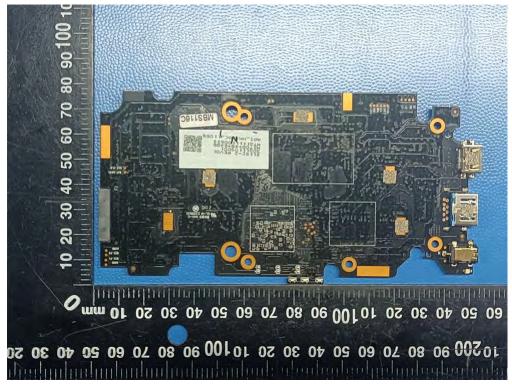



Fig. 14



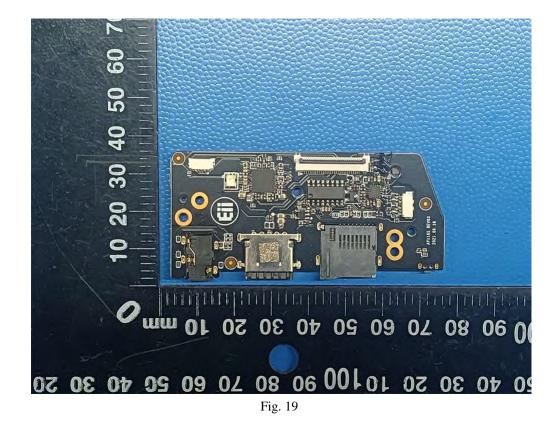

Fig. 16

Fig. 17

Fig. 18

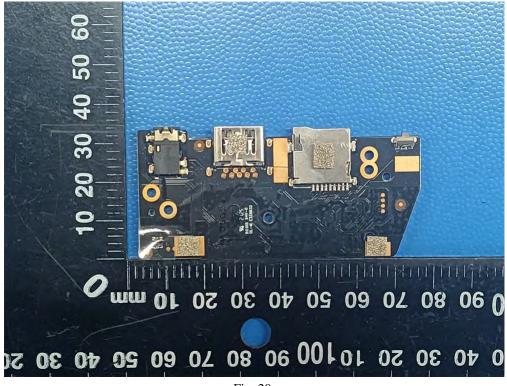


Fig. 20

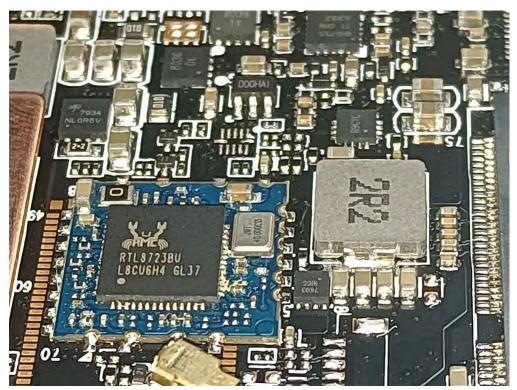


Fig. 21

Fig. 22

.....End of Report.....