

TEST REPORT

Reference No.: WTF21F07070451W001

FCC ID : 2AQA6-H7130

Applicant : Shenzhen Intellirocks Tech.Co..Ltd.

Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District,

Shenzhen

Manufacturer: GD Shine Electric Appliances Co., Ltd.

Address : Jiyue Industry District, Lunjiao, ShunDe, FoShan City,GuangDong

P.R.China

Product Name.....: Smart Heater

Model No. : H7130

Standards.....: FCC CFR47 Part 15 Subpart C (Section 15.247): 2019

Date of Receipt sample : 2021-07-15

Date of Test : 2021-07-15 to 2021-08-05

Date of Issue..... : 2021-08-20

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381

+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Roy Hong / Project Engineer

Approved by:

Danny Zhou Managei

Page 2 of 51

1 Revision History

Test Report No.	Date of Issue	Description	Status
WTF21F07070451W001	2021-08-20	Original	Valid

2 Contents

			Page
1	REVI	SION HISTORY	2
2	CON	TENTS	3
3	GEN	ERAL INFORMATION	4
4 5	3.1 3.2 3.3 3.4 3.5 3.6 EUT	GENERAL DESCRIPTION OF E.U.T TECHNICAL CHARACTERISTICS OF EUT STANDARDS APPLICABLE FOR TESTING TEST FACILITY SUBCONTRACTED ABNORMALITIES FROM STANDARD CONDITIONS SETUP AND TEST MODE PMENT USED DURING TEST EQUIPMENT LIST	4
	5.1 5.2 5.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT MEASUREMENT UNCERTAINTY	8
6	SUMI	MARY OF TEST RESULT	9
	6.1 6.2 6.3 6.4 6.5 6.6	ANTENNA REQUIREMENTRF EXPOSURE REQUIREMENTRADIATED SPURIOUS EMISSIONSPOWER SPECTRAL DENSITYDTS BANDWIDTHRF OUTPUT POWER	11 12 23 29
	6.7 6.8	OUT OF BAND EMISSIONS	42

3 General Information

3.1 General Description of E.U.T

Product Name: Smart Heater

Model No. : H7130

Model Description: : ---

Rated Voltage..... : AC 120V, 60Hz, 1500W

Power Adapter: : ---

3.2 Technical Characteristics of EUT

Support Standards : 802.11b, 802.11g, 802.11n

Frequency Range 2412-2462MHz for 802.11b/g/n(HT20)

RF Output Power: 12.49dBm (Conducted)

Modulation: 802.11b: DSSS(DBPSK/DQPSK/CCK)

802.11g/n: OFDM (BPSK/QPSK/16QAM/64QAM)

Data Rate : 1Mbps for 802.11b;54Mbps for 802.11g;MCS7 for 802.11n

Quantity of Channels : 11 for 802.11b/g/n(HT20)

Channel Separation.....: 5MHz

Type of Antenna: External Antenna

Antenna Gain: 2dBi

Lowest Oscillation.....: 40MHz

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

FCC Rules Part 15.247 Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are

in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and

5725-5850 MHz

558074 D01 15.247 Meas

Guidance v05r02

Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices

Operating Under Section 15.247 Of The FCC Rules

662911 D01 Multiple

Transmitter Output v02r01

Emissions Testing of Transmitters with Multiple Outputs in

the Same Band

ANSI C63.10-2013 American National Standard for Testing Unlicensed Wireless Devices

Reference No.: WTF21F07070451W001 Page 5 of 51

3.4 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 21895-1

Waltek Testing Group (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC number:21895-1, Nov. 14, 2016.

FCC – Registration No.: 820106

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

• FCC - Designation No.: CN5034

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation No. CN5034.

NVLAP – Lab Code: 600191-0

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:
☐ Yes ☐ No
If Yes, list the related test items and lab information:
Test items:
Lab information:
3.6 Abnormalities from Standard Conditions
None.

Reference No.: WTF21F07070451W001 Page 6 of 51

4 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List

Test Mode	Description	Remark
TM1	802.11b	Low:2412MHz, Middle:2437MHz, High:2462MHz
TM2	802.11g	Low:2412MHz, Middle:2437MHz, High:2462MHz
TM3	802.11n-HT20	Low:2412MHz, Middle:2437MHz, High:2462MHz

Test Conditions

Temperature:	22~25°C
Relative Humidity:	50~55%
Atmospheric pressure:	101.8kPa

5 Equipment Used during Test

5.1 Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1.	EMI Test Receiver	R&S	ESR3	102423	2021-01-11	2022-01-10
2.	LISN	R&S	ENV216	101343	2021-01-13	2022-01-12
3.	Cable	HUBER+SUHNER	CBL2-NN-6M	223NN624	2021-01-12	2022-01-11
4.	Switch	CD	RSU-A4 18G	RSUA4008	2021-01-11	2022-01-10
Mains	Terminal Disturbanc	e Voltage 2#(Cond	lucted Emission)	+ ,+	the state
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1.0	EMI Test Receiver	R&S	ESCI	101178	2021-01-11	2022-01-10
2.	LISN	R&S	ENV216	101215	2021-01-13	2022-01-12
3.	Cable	HUBER+SUHNER	CBL2-NN-6M	6102701	2021-01-12	2022-01-11
4.	Switch	ESE	RSU/M2		2021-01-11	2022-01-10
3m Se	mi-anechoic Chambe	er for Radiation Em	nissions	٠ ٠	d d	36 316
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	- RS	ESR7	101566	2021-01-11	2022-01-10
2.	EMC Analyzer	Agilent	N9020A	MY48011796	2021-06-08	2022-06-07
3.	Active Loop Antenna	SCHWARZBECK	FMZB1519B	00004	2021-01-08	2022-01-07
4.	Trilog Broadband Antenna	SCHWARZBECK	VULB 9162	9162-117	2021-01-08	2022-01-07
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2021-01-08	2022-01-07
6.	Amplifier	Lunar E M	LNA1G18-40	20160501002	2021-01-12	2022-01-11
7.	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2021-01-12	2022-01-11
8.	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN		2021-01-12	2022-01-11
9.	Test Software	FARATRONIC	EZ-EMC RA-03A1-1	in the		15 - 18
RF Co	nducted Testing	<u> </u>	et et s	the south the	in all a	in m
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	Spectrum Analyzer	Agilent	N9020A	MY48011796	2021-06-08	2022-06-07
2.	Spectrum Analyzer	R&S	FSP40	100501	2021-01-08	2022-01-07
3.	Analog Signal Generator	Agilent	N5181A	MY48180720	2021-01-12	2022-01-11
4.	Environmental Chamber	KSON	THS-D4C-100	5244K	2021-01-08	2022-01-07
5.	RF Control Unit	CHANGCHUANG	JS0806-2	" JE" "J	2021-01-12	2022-01-11

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Page 8 of 51

5.2 Special Accessories and Auxiliary Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.
1.**	Jet Jil Kill	West and	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5.3 Measurement Uncertainty

Parameter	Uncertainty			
RF Output Power	±0.95dB			
Occupied Bandwidth	±1.5%			
Conducted Spurious Emission	±2.7dB			
Conducted Emission	±2.7dB			
Taraka Maria Caraba Car	±3.8dB (for 25MHz-1GHz)			
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)			

Reference No.: WTF21F07070451W001 Page 9 of 51

6 Summary of Test Result

Test Items	FCC Rules	Result
Antenna Requirement	§15.203; §15.247(b)(4)(i)	Compliant
Restricted Band of Operation	§15.205	Compliant
Conducted Emissions	§15.207(a)	Compliant
Radiated Spurious Emissions	§15.209(a)	Compliant
Power Spectral Density	§15.247(e)	Compliant
DTS Bandwidth	§ 15.247(a)(2)	Compliant
RF Output Power	§15.247(b)(3)	Compliant
Band edge (Out of Band Emissions)	§15.247(d)	Compliant
RF Exposure	§2.1093	Compliant

Remark:

Pass Test item meets the requirement

Fail Test item does not meet the requirement N/A Test case does not apply to the test object

Reference No.: WTF21F07070451W001 Page 10 of 51

6.1 Antenna Requirement

6.1.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

6.1.2 Evaluation Information

The EUT has an External Antenna, the gain is 2dBi, fulfil the requirement of this section.

Reference No.: WTF21F07070451W001 Page 11 of 51

6.2 RF Exposure Requirement

6.2.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

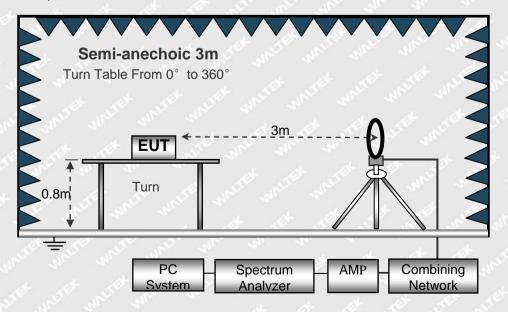
6.2.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report WTF21F07070451W002.

6.3 Radiated Spurious Emissions

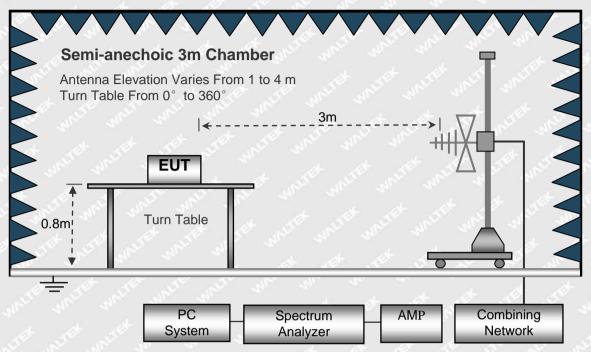
6.3.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

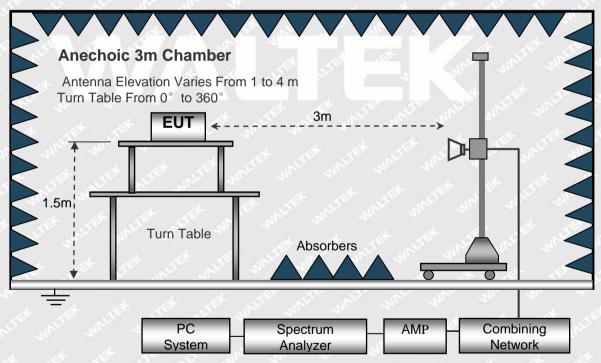

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

6.3.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.


The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The test setup for emission measurement below 30MHz.



of 51

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Reference No.: WTF21F07070451W001 Page 14 of 51

6.3.3 Spectrum Analyzer Setup

9KHz-30MHz	30MHz-1GHz	Above 1GHz
RBW=10kHz	RBW=120kHz	RBW=1MHz
VBW=30kHz	VBW=300kHz	VBW=3MHz(Peak), 10MHz(AV)
Sweep time=Auto	Sweep time=Auto	Sweep time=Auto
Trace=Max hold	Trace=Max hold	Trace=Max hold

Detector function=peak, QP Detector function=peak, AV

6.3.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

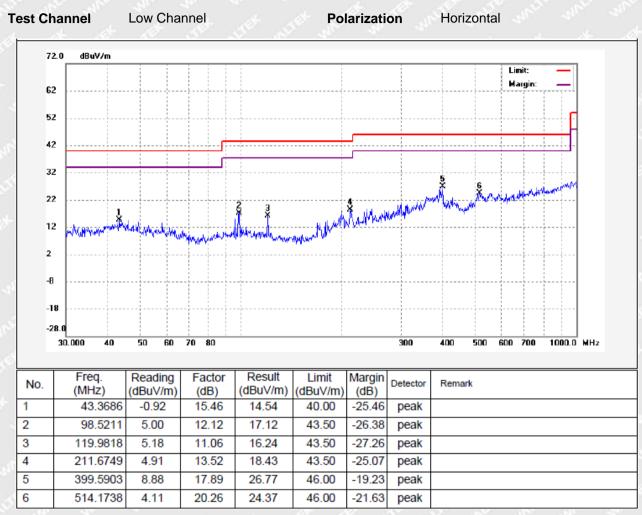
Corr. Ampl. = Indicated Reading + Corr. Factor

Corr.Factor=Antenna Factor + Cable Factor - Amplifier Gain

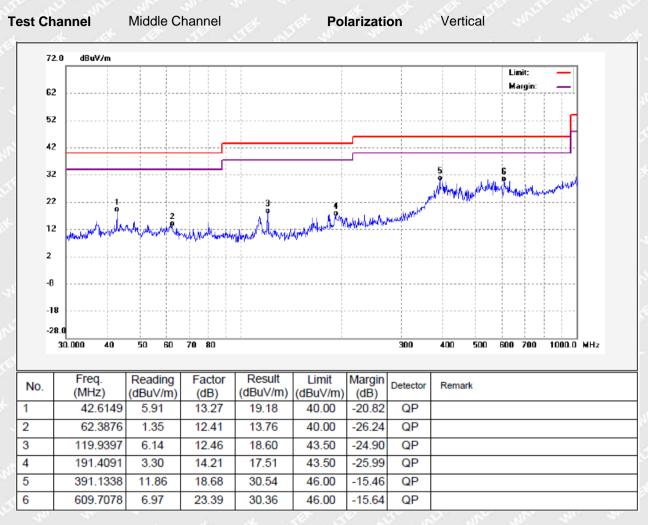
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

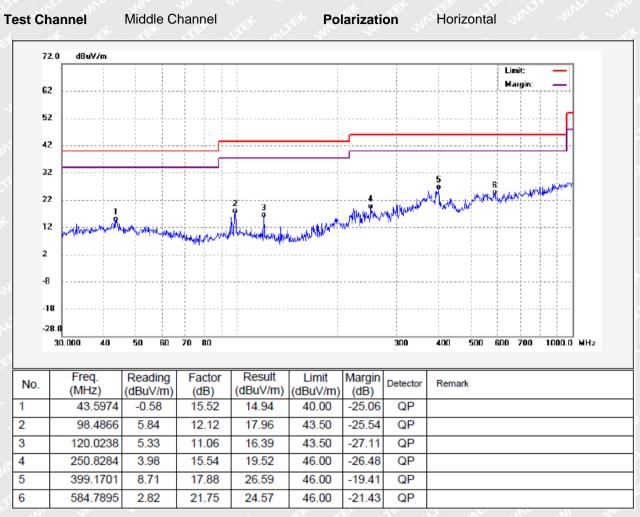
6.3.5 Test Results

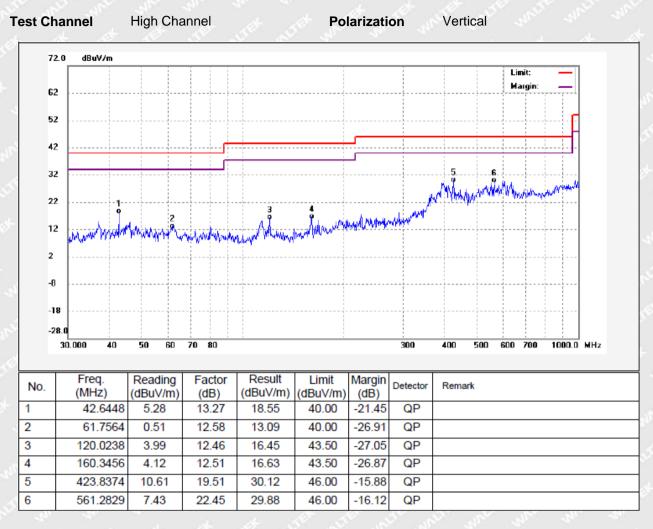

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

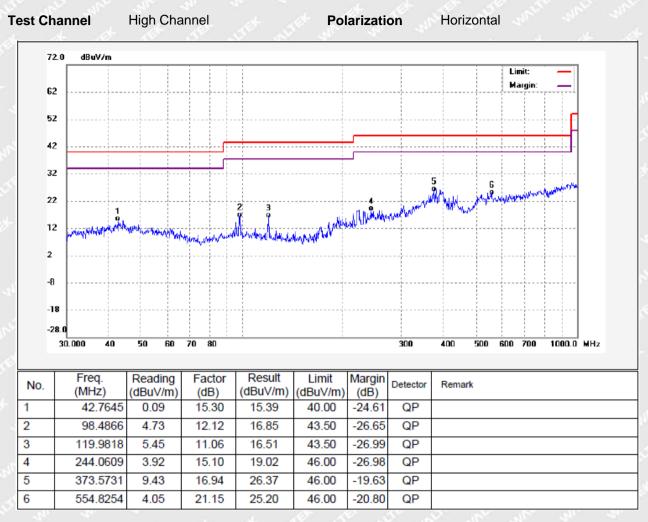
Test Frequency: 30MHz ~ 1GHz


Test Mode: 802.11b (worst case)

Test Channel Low Channel **Polarization** Vertical 72.0 dBuV/m Limit: Margin: 62 52 42 32 22 12 2 -8 -18 -28.0 30.000 40 50 60 70 80 300 400 500 600 700 1000.0 MHz Freq. Reading Factor Result Limit Margin Detector Remark No. (dBuV/m) (dBuV/m) (MHz) (dBuV/m) (dB) (dB) -25.29 QP 36.9600 2.31 12.40 40.00 1 14.71 2 45.5988 0.41 13.52 13.93 40.00 -26.07 QP 3 120.0238 4.78 12.46 17.24 43.50 -26.26 QP 4 224.4406 2.43 14.89 17.32 46.00 -28.68 QP 407.3716 5 12.67 19.04 31.71 46.00 -14.29 QΡ 6 592.2184 10.73 23.35 34.08 46.00 -11.92QP







Test Frequency: 1GHz~ 18GHz

Test Mode: 802.11b (worst case)

<i>1</i> -	Danaisias	CIE IN	Carlot Contract	RX An	tenna	2	Compatad	FCC Part 15.247	
Frequency (MHz)	Receiver Reading (dBµV/m)	Detector (PK/QP/AVG)	Turn table Angle (°)	Height (m)	Polar (H/V)	Corrected Factor (dB)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
311	725	, , , , , , , , , , , , , , , , , , ,	802.11	b_Low	Chann	el	W.C. O	ne the	-24
4824.25	39.02	Peak	238	1.3	Н	-3.55	35.47	74	-38.53
4824.25	28.73	AVG	235	1.2	H	-3.55	25.18	54	-28.82
7236.75	37.15	Peak	211	1.7	Н	3.1	40.25	74	-33.75
7236.75	28.97	AVG	224	1.8	Н	3.1	32.07	54	-21.93
4824.5	41.08	Peak	94	1.1	V	-3.42	37.66	74	-36.34
4824.5	32.67	AVG	85	1.2	٧	-3.42	29.25	54	-24.75
7236.5	39.65	Peak	295	1.2	V	3 20	42.65	74	-31.35
7236.5	28.44	AVG	287	1.3	V	3	31.44	54	-22.56

71, .	Receiver	_	J 1	RX An	tenna	Corrected	Corrected Amplitude (dBµV/m)	FCC Part 15.247	
Frequency (MHz)	Reading (dBµV/m)	Detector (PK/QP/AVG)	Turn table Angle (°)	Height (m)	Polar (H/V)	Corrected Factor (dB)		Limit (dBµV/m)	Margin (dB)
Jiet ni	1/32	10°	802.11k	_Middle	Chanr	nel	10 10	LITE IN	Jet and
4874	39.79	Peak	319	1.5	Н	-3.43	36.36	74	-37.64
4874	30.28	AVG	295	1.3	H	-3.43	26.85	54	-27.15
7311.75	40.32	Peak	286	1.7	H	3.21	43.53	74	-30.47
7311.75	30.17	AVG	274	1.9	Н	3.21	33.38	54	-20.62
4874.25	39.19	Peak	145	1.1	V	-3.28	35.91	74	-38.09
4874.25	28.72	AVG	137	1.2	V.	-3.28	25.44	54	-28.56
7311.5	39.28	Peak	121	1.5	V	3.11	42.39	74	-31.61
7311.5	30.74	AVG	118	1.6	V	3.11	33.85	54	-20.15

Page 22 of 51

Frequency F	Receiver Reading (dBµV/m)	Detector (PK/QP/AVG)	Turn table Angle (°)	RX Antenna		Commontod	Corrected	FCC Part 15.247	
				Height (m)	Polar (H/V)	Corrected Factor (dB)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
LITE IS	STER JAN	W. Care	802	.11b_Hig	ıh Chann	el	et et	300	State 1
4924.75	39.05	Peak	71	1.7	Н	-3.14	35.91	74	-38.09
4924.75	28.39	AVG	83	1.9	Н	-3.14	25.25	54	-28.75
7386	38.82	Peak	251	1.5	JE H J	3.22	42.04	74	-31.96
7386	28.47	AVG	263	1.4	Н	3.22	31.69	54	-22.31
4924.5	39.54	Peak	354	1.2	V	-3.14	36.4	74	-37.6
4924.5	28.08	AVG	338	1.3	+ V	-3.14	24.94	54	-29.06
7386.25	41.03	Peak	135	1.1	V	3.22	44.25	74	-29.75
7386.25	31.38	AVG	127	1.3	V	3.22	34.6	54	-19.4

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Reference No.: WTF21F07070451W001 Page 23 of 51

6.4 Power Spectral Density

6.4.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.4.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause11.10.3, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz. .
- d) Set VBW \geq 3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

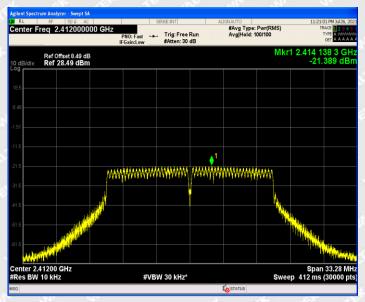
6.4.3 Test Result

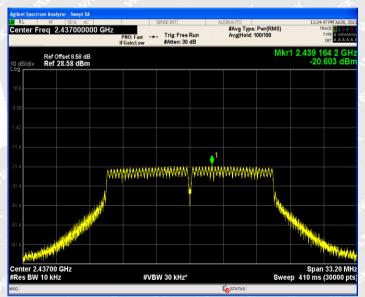
Test Mode	Test Channel(MHz)	Test Result (dBm/10kHz)	Limit (dBm/3kHz)	
	2412	-15.76	8	
802.11b	2437	-15.43	8	
	2462	-13.58	8	
and the a	2412	-21.39	8,000	
802.11g	2437	-20.6	8	
	2462	-19.03	8	
At At Set Set	2412	-22.31	8 /- 2	
802.11n-HT20	2437	-20.09	8 41	
	2462	-19.38	. 8	

Test plots:

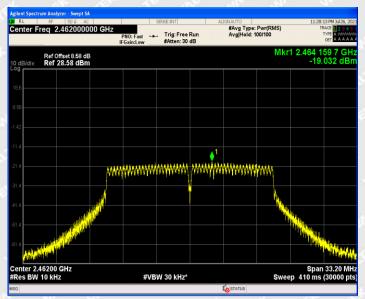
802.11b_Low Channel

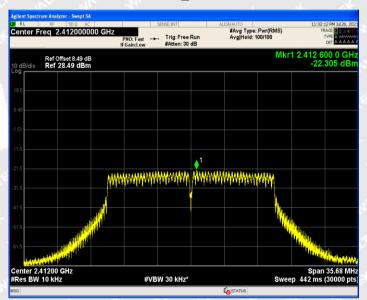
802.11b_Middle Channel


802.11b_High Channel

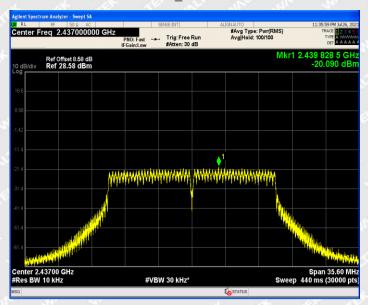


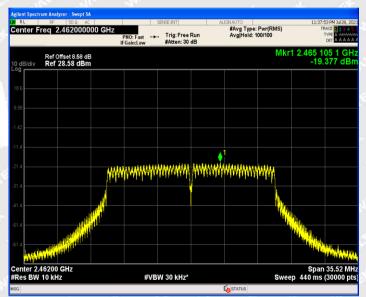
802.11g_Low Channel


802.11g_Middle Channel



802.11g_High Channel


802.11n-HT20_Low Channel



802.11n-HT20_Middle Channel

802.11n-HT20_High Channel

6.5 DTS Bandwidth

6.5.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.5.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

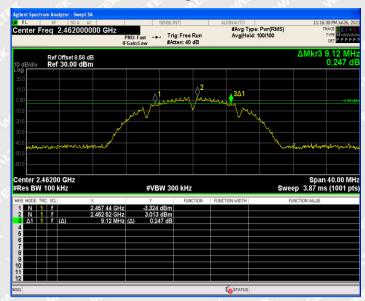
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.5.3 Test Result

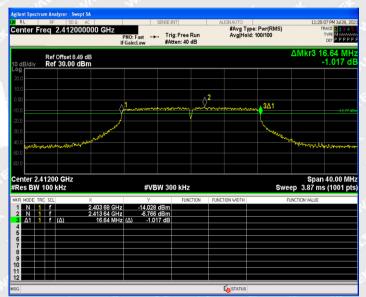
Test Mode	Test Channel(MHz)	Test Result (MHz)	Limit kHz
	2412	9.120	≥ 500
802.11b	2437	9.160	≥ 500
	2462	9.120	≥ 500
TER MALLE WALLE	2412	16.640	≥ 500
802.11g	2437	16.600	≥ 500
	2462	16.600	≥ 500
SER STER ST	2412	17.840	≥ 500
802.11n-HT20	2437	17.800	≥ 500
	2462	17.760	≥ 500

Test plots:

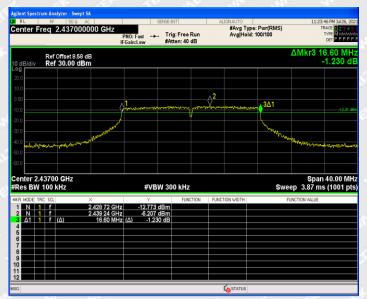
802.11b_Low Channel



802.11b_Middle Channel



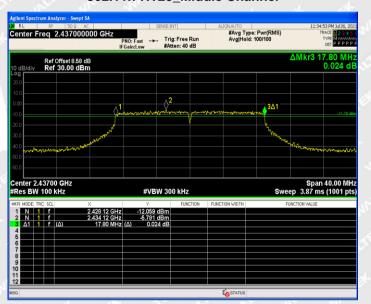
802.11b_High Channel


802.11g_Low Channel

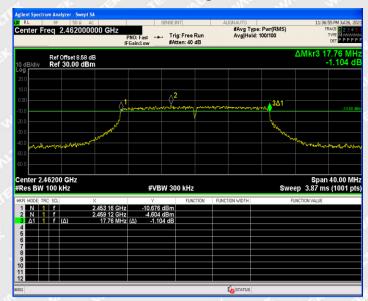


802.11g_Middle Channel


802.11g_High Channel



802.11n-HT20_Low Channel



802.11n-HT20_Middle Channel

802.11n-HT20_High Channel

WALTEK

Reference No.: WTF21F07070451W001 Page 35 of 51

6.6 RF Output Power

6.6.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

6.6.2 Test Procedure

According to the KDB-558074 D01 v05r02 Subclause 8.3.2.2 and ANSI C63.10-2013 Subclause11.9.2.2, when this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≥RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Page 36 of 51

6.6.3 Test Result

Modulation	Test Channel (MHz)	Reading (dBm)	Output Power (mW)	Limit (mW)
	2412	6.96	4.966	1000
802.11b	2437	11.21	13.213	1000
	2462	12.49	17.742	1000
802.11g	2412	7.58	5.728	1000
	2437	8.12	6.486	1000
	2462	9.43	6.486	1000
802.11n-HT20	2412	6.69	4.667	1000
	2437	8.21	6.622	1000
	2462	9.39	8.690	1000

Reference No.: WTF21F07070451W001 Page 37 of 51

Test plots:

802.11b_Low Channel

802.11b_Middle Channel

802.11b_High Channel

802.11g_Low Channel

802.11g_Middle Channel

802.11g_High Channel

802.11n-HT20_Low Channel

802.11n-HT20_Middle Channel

802.11n-HT20_High Channel

WALTEK

6.7 Out of Band Emissions

6.7.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

6.7.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge,

as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz

for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Those emissions must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Waltek Testing Group (Foshan) Co., Ltd.

http://www.waltek.com.cn

Note that the method of measurement KDB publication number: 913591 may be used for the radiated band edge measurements.

B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

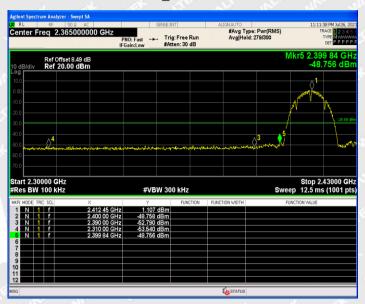
- a) RBW = as specified in Table 9/
- b) VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.
- f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

Table 9—RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

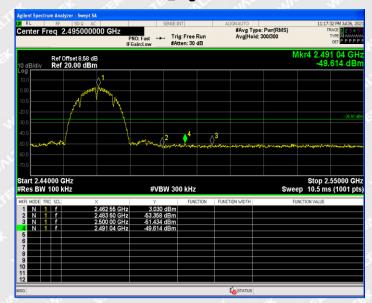
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1.



6.7.3 Test Result

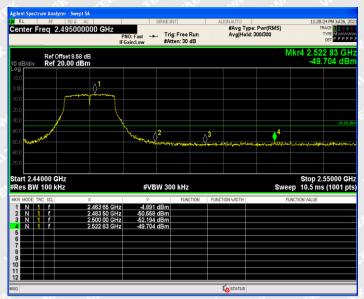
Test Mode	Channel (MHz)	Ref Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
000 445	2412	1.11	-48.76	<=-28.89	Pass
802.11b	2462	3.03	-49.61	<=-26.97	Pass
000.44*	2412	-6.80	-39.22	<=-36.8	Pass
802.11g	2462	-4.89	-49.7	<=-34.89	Pass
000 44 × LITO	2412	-7.25	-39.45	<=-37.25	Pass
802.11n-HT20	2462	-4.54	-49.23	<=-34.53	Pass

Test Plots:

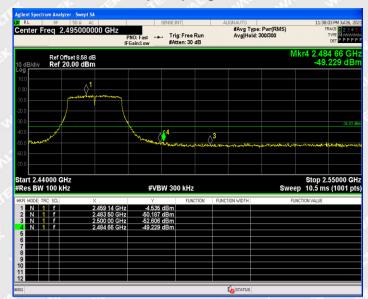

802.11b_Low Channel



802.11b_High Channel


802.11g_Low Channel

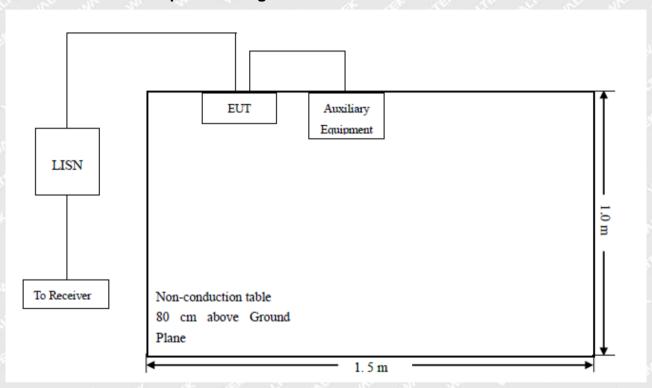
802.11g_High Channel



802.11n(HT20)_Low Channel

802.11n(HT20)_High Channel

WALTEK


6.8 Conducted Emissions

6.8.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013measurement procedure. The specification used was with the FCC Part 15.207Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in themiddle. The spacing between the peripherals was 10 cm.

6.8.2 Basic Test Setup Block Diagram

6.8.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

6.8.4 Measurement Description

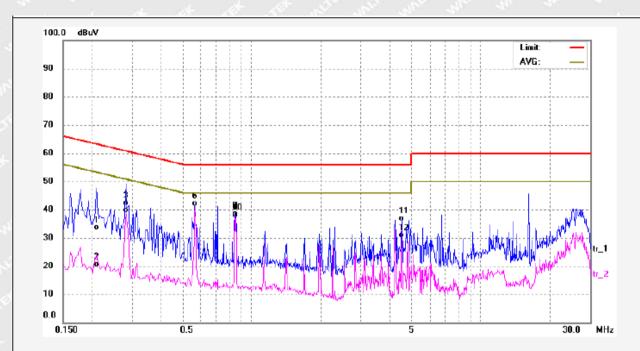
The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.8.5 Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF(Voltage Division Facotr), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Measurement=Reading Level+Correct Factor
Correct Facotor=LISN VDF+Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:


Margin=Limit-Measurement

Reference No.: WTF21F07070451W001

6.8.6 Test Result

Communication mode(AC 120V/60Hz) **Test Mode Polarity** Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Remark
1	0.2100	23.03	9.66	32.69	63.20	-30.51	QP	
2	0.2100	9.88	9.66	19.54	53.20	-33.66	AVG	
3	0.2827	31.72	9.67	41.39	60.73	-19.34	QP	
4	0.2827	29.21	9.67	38.88	50.73	-11.85	AVG	
5	0.5660	31.40	9.70	41.10	56.00	-14.90	QP	
6	0.5660	31.38	9.70	41.08	46.00	-4.92	AVG	
7	0.8460	28.01	9.70	37.71	56.00	-18.29	QP	
8	0.8460	28.01	9.70	37.71	56.00	-18.29	QP	
9	0.8460	27.48	9.70	37.18	46.00	-8.82	AVG	
10	0.8460	27.49	9.70	37.19	46.00	-8.81	AVG	
11	4.5179	26.01	9.83	35.84	56.00	-20.16	QP	
12	4.5179	19.95	9.83	29.78	46.00	-16.22	AVG	

12	20.0 dBuV							
								Limit: — AVG: —
11								Avg
10)0							
90	·							
80	,		ļļļļ.					
70	,							
	-							
60			 -					7 93"
50	M. T.	-						
40)	l Maximi	Man					10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30	2 7	Y JAM JAM	AL ALAPANON	NimmyNamal	rai <mark>l</mark> thailil		Marina M	
	T.ALA	N ₁	Milan	السال			tumili	Millian Landendand Land
20	I Peyle"Rage-yilda	n è appropriate la comp	aPara di National Alban	e iddeisar dille eit eit	rde eldere sjelt dit	ሁን መስለተዘተ	THE PROPERTY.	
	a sure	Mr. mm	, we will	profession and artifletin	uM AMAM	Marion		VIII 2
10	1	ur ham	1 1747	roll out ou within	UM CHATH	Managa		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10 0.0	a			hagin on the allert	AM AMATA	lhtlm-co.		
			0.5		uwi afkahi	lhtlac.	5	30.0 MHz
0.1	0.150 Freq.	Reading	Factor	Result (dBuV)	Limit (dBuV)	Margin (dB)	5 Detector	
No.	0.150				Limit (dBuV)	Margin (dB) -20.65	Detector	30.0 MHz
0.0 No.	0.150 Freq. (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	(dBuV)	(dB)	Detector	30.0 MHz
No.	Freq. (MHz) 0.1884	Reading (dBuV) 33.79	Factor (dB) 9.66	(dBuV) 43.45	(dBuV) 64.10	(dB) -20.65	Detector QP	30.0 MHz
No. 1	Freq. (MHz) 0.1884	Reading (dBuV) 33.79 20.41	Factor (dB) 9.66 9.66	(dBuV) 43.45 30.07	(dBuV) 64.10 54.10	(dB) -20.65 -24.03	Detector QP AVG	30.0 MHz
No. 1 2 3 4	Freq. (MHz) 0.1884 0.1884 1.6940	Reading (dBuV) 33.79 20.41 38.97	Factor (dB) 9.66 9.66 9.74	(dBuV) 43.45 30.07 48.71	(dBuV) 64.10 54.10 56.00	(dB) -20.65 -24.03 -7.29	Detector QP AVG QP	30.0 MHz
No. 1 2 3 4 5 5	Freq. (MHz) 0.1884 0.1884 1.6940	Reading (dBuV) 33.79 20.41 38.97 28.75	Factor (dB) 9.66 9.66 9.74 9.74	(dBuV) 43.45 30.07 48.71 38.49	(dBuV) 64.10 54.10 56.00 46.00	(dB) -20.65 -24.03 -7.29 -7.51	Detector QP AVG QP AVG	30.0 MHz
No. 1 2 3 4 5 5 6	Freq. (MHz) 0.1884 0.1884 1.6940 1.6940 2.8540	Reading (dBuV) 33.79 20.41 38.97 28.75 23.82	Factor (dB) 9.66 9.66 9.74 9.74	(dBuV) 43.45 30.07 48.71 38.49 33.60	(dBuV) 64.10 54.10 56.00 46.00 56.00	(dB) -20.65 -24.03 -7.29 -7.51 -22.40	Detector QP AVG QP AVG QP QP	30.0 MHz
No. 1 2 3 4 5 5 6 7	Freq. (MHz) 0.1884 0.1884 1.6940 1.6940 2.8540 2.8540	Reading (dBuV) 33.79 20.41 38.97 28.75 23.82 18.71	Factor (dB) 9.66 9.66 9.74 9.78 9.78	(dBuV) 43.45 30.07 48.71 38.49 33.60 28.49	(dBuV) 64.10 54.10 56.00 46.00 56.00 46.00	(dB) -20.65 -24.03 -7.29 -7.51 -22.40 -17.51	Detector QP AVG QP AVG QP AVG	30.0 MHz
No.	Freq. (MHz) 0.1884 0.1884 1.6940 1.6940 2.8540 2.8540 8.4500	Reading (dBuV) 33.79 20.41 38.97 28.75 23.82 18.71 39.99	Factor (dB) 9.66 9.66 9.74 9.74 9.78 9.78	(dBuV) 43.45 30.07 48.71 38.49 33.60 28.49 49.93	(dBuV) 64.10 54.10 56.00 46.00 56.00 46.00 60.00	(dB) -20.65 -24.03 -7.29 -7.51 -22.40 -17.51 -10.07	Detector QP AVG QP AVG QP AVG QP AVG	30.0 MHz
No. 1 2 3 4 5 6 7 3 9	Freq. (MHz) 0.1884 0.1884 1.6940 1.6940 2.8540 2.8540 8.4500	Reading (dBuV) 33.79 20.41 38.97 28.75 23.82 18.71 39.99 26.97	Factor (dB) 9.66 9.66 9.74 9.74 9.78 9.78 9.94	(dBuV) 43.45 30.07 48.71 38.49 33.60 28.49 49.93 36.91	(dBuV) 64.10 54.10 56.00 46.00 56.00 46.00 60.00	(dB) -20.65 -24.03 -7.29 -7.51 -22.40 -17.51 -10.07 -13.09	Detector QP AVG QP AVG QP AVG QP AVG AVG	30.0 MHz
	Freq. (MHz) 0.1884 0.1884 1.6940 1.6940 2.8540 2.8540 8.4500 8.4500 16.9140	Reading (dBuV) 33.79 20.41 38.97 28.75 23.82 18.71 39.99 26.97 41.90	Factor (dB) 9.66 9.66 9.74 9.74 9.78 9.78 9.94 10.14	(dBuV) 43.45 30.07 48.71 38.49 33.60 28.49 49.93 36.91 52.04	(dBuV) 64.10 54.10 56.00 46.00 56.00 46.00 50.00 60.00	(dB) -20.65 -24.03 -7.29 -7.51 -22.40 -17.51 -10.07 -13.09 -7.96	Detector QP AVG QP AVG QP AVG QP AVG QP AVG	30.0 MHz

====End of Report=====