

Shenzhen Intellirocks Tech. Co., Ltd.

RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model:

H7121

REPORT NUMBER:

211200839SHA-002

ISSUE DATE:

February 26, 2022

DOCUMENT CONTROL NUMBER:

TTRF15.247-02_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 211200839SHA-002

Applicant: Shenzhen Intellirocks Tech. Co., Ltd.

No.2901-2904, 3002, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community Xili Street, Nanshan

District, Shenzhen, Guangdong, China.

Manufacturer: Airplove (Xiamen) Electronic Co., Ltd.

3F, No.823-1, Fangshan Dong Er Road, Xiang'an District, Xiamen

Factory Airplove (Xiamen) Electronic Co., Ltd.

3F, No.823-1, Fangshan Dong Er Road, Xiang'an District, Xiamen

FCC ID: 2AQA6-H7121 **IC:** 25450-H7121

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2020): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

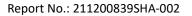
RSS-Gen Issue 5 (March 2019) Amendment 1: General Requirements for Compliance of Radio Apparatus

Project Engineer
Eric Li

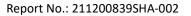
REVIEWED BY:

REVIEWED BY:

Reviewer
Wakeyou Wang

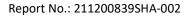

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Content


RE	VISIC	ON HISTORY	4
MI	EASU	JREMENT RESULT SUMMARY	5
1	G	GENERAL INFORMATION	6
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
	1.2	TECHNICAL SPECIFICATION	
	1.3	DESCRIPTION OF TEST FACILITY	7
2	T	EST SPECIFICATIONS	8
	2.1	STANDARDS OR SPECIFICATION	8
	2.2	MODE OF OPERATION DURING THE TEST	
	2.3	TEST SOFTWARE LIST	8
	2.4	TEST PERIPHERALS LIST	8
	2.5	TEST ENVIRONMENT CONDITION:	8
	2.6	INSTRUMENT LIST	g
	2.7	MEASUREMENT UNCERTAINTY	11
3	R	RADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	12
	3.1	LIMIT	12
	3.2	MEASUREMENT PROCEDURE	12
	3.3	TEST CONFIGURATION	14
	3.4	TEST RESULTS OF RADIATED EMISSIONS	16
4	P	POWER LINE CONDUCTED EMISSION	18
	4.1	LIMIT	18
	4.2	TEST CONFIGURATION	18
	4.3	MEASUREMENT PROCEDURE	19
	4.4	TEST RESULTS OF POWER LINE CONDUCTED EMISSION	20

Revision History

Report No.	Version	Description	Issued Date
211200839SHA-002	Rev. 01	Initial issue of report	February 26, 2022

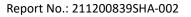


Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Radiated Emissions below 1GHz	15.205 & 15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207	RSS-Gen Issue 5 Clause 8.8	Pass

Notes: 1: NA =Not Applicable

1 GENERAL INFORMATION

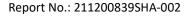

1.1 Description of Equipment Under Test (EUT)

Product name:	Smart Air Purifier		
Type/Model/PMN/HVIN:	H7121		
	This is a C2PC report base on the original report 210701060SHA-		
	001, the client adds an alternative switching power supply board		
	for different factory, there is no change for the RF part, after		
	technical analysis and evaluation, only the conducted emission		
Description of EUT:	and radiated emission below 1GHz was retested.		
Rating:	120V~,60Hz,36W		
Category of EUT:	Class B		
EUT type:	☐ Table top ☐ Floor standing		
Software Version:	/		
Hardware Version:	/		
Sample received date:	2022.1.3		
Sample No:	0220103-06-001		
Date of test:	2022.1.6-2022.1.13		

1.2 Technical Specification

Frequency Band:	2402MHz to 2480MHz
Support Standards:	Bluetooth Low Energy
Type of Modulation:	GFSK
Channel Number:	40
Channel Separation:	2MHz
Antenna Information:	3dBi, PCB antenna

Frequency Band:	2400MHz ~ 2483.5MHz	
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)	
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)	
	IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK)	
Type of Modulation:	IEEE 802.11n(HT20): OFDM (64-QAM, 16-QAM, QPSK, BPSK)	
Operating Frequency:	2412MHz to 2462MHz for IEEE 802.11b/g/n(HT20)	
Channel Number:	11 Channels for 802.11b, 802.11g and 802.11n(HT20)	
Channel Separation:	5 MHz	
Antenna:	PCB Antenna, 3dBi	



1.3 Description of Test Facility

Name: Intertek Testing Services Shanghai	
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is	CNAS Accreditation Lab
recognized,	Registration No. CNAS L0139
certified, or accredited by these	FCC Accredited Lab
organizations:	Designation Number: CN1175
	IC Registration Lab
	Registration code No.: 2042B-1
	VCCI Registration Lab
	Registration No.: R-4243, G-845, C-4723, T-2252
	A2LA Accreditation Lab
	Certificate Number: 3309.02

2 TEST SPECIFICATIONS

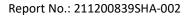
2.1 Standards or specification

47CFR Part 15 (2020) ANSI C63.10 (2013) KDB 558074 (v05r02) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (March 2019) Amendment 1

2.2 Mode of operation during the test

While testing the transmitter mode of the EUT, the internal modulation is applied. All the Bluetooth and WiFi mode were pre-tested and the worst case of WiFi mode was chosen to perform the test and the result was listed in the report.

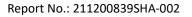
2.3 Test software list


Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

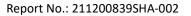
2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	DELL 5480	

2.5 Test environment condition:


Test items	Temperature	Humidity
Radiated Emissions	26°C	54% RH
Power line conducted emission	26°C	54% RH

2.6 Instrument list


Conducted Emission						
Used	Equipment	Manufacturer	Type	Internal no.	Due date	
\boxtimes	Test Receiver	R&S	ESCS 30	EC 2107	2022-07-14	
	A.M.N.	R&S	ESH2-Z5	EC 3119	2022-11-10	
	A.M.N.	R&S	ENV 216	EC 3393	2022-07-14	
	A.M.N.	R&S	ENV4200	EC 3558	2022-06-11	
Radiated E	mission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date	
	Test Receiver	R&S	ESIB 26	EC 3045	2022-09-16	
	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2022-09-24	
	Pre-amplifier	R&S	AFS42- 00101800-25- S-42	EC5262	2022-06-11	
	Horn antenna	R&S	HF 906	EC 3049	2022-01-17	
	Horn antenna	ETS	3117	EC 4792-1	2022-02-25	
	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2022-07-09	
	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2022-03-14	
RF test						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date	
	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2022-03-16	
	Power sensor	Agilent	U2021XA	EC 5338-1	2022-03-16	
	Vector Signal Generator	Agilent	N5182B	EC 5175	2022-03-16	
	Universal Radio Communication Tester	R&S	CMW500	EC5944	2022-12-09	
	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2022-03-16	
	Mobile Test System	Litepoint	lqxel	EC 5176	2022-01-16	
	Test Receiver	R&S	ESCI 7	EC 4501	2022-09-16	
	Climate chamber	GWS	MT3065	EC 6021	2022-07-04	
	Spectrum Analyzer	Keysight	N9030B	EC 6078	2022-06-11	
Tet Site						

TEST REPORT

Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Shielded room	Zhongyu	-	EC 2838	2022-01-12
	Shielded room	Zhongyu	1	EC 2839	2022-01-12
\boxtimes	Semi-anechoic chamber	Albatross project	-	EC 3048	2022-07-14
	Fully-anechoic chamber	Albatross project	-	EC 3047	2022-07-14
Additional	instrument				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
\boxtimes	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2022-03-03
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3481	2023-01-04
\boxtimes	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3442	2023-01-04
\boxtimes	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3324	2022-09-05
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2022-07-14

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

Report No.: 211200839SHA-002

3 Radiated Emissions in restricted frequency bands

Test result: Pass

3.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

3.2 Measurement Procedure

The EUT was tested according to Subclause 11.12 of ANSI C63.10.

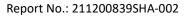
For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

Report No.: 211200839SHA-002

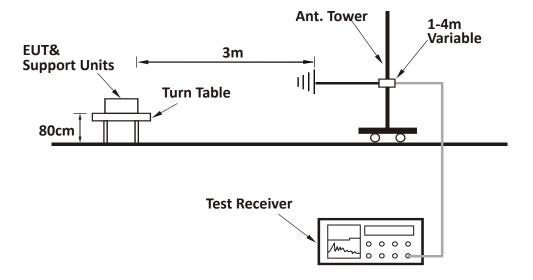

TEST REPORT

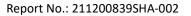
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz $^{\sim}$ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detector function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

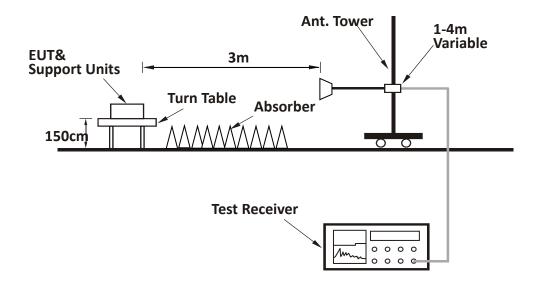
Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were and the worst-case emissions were reported.

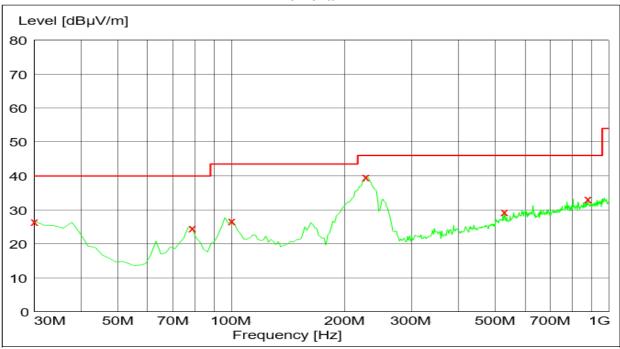



3.3 Test Configuration

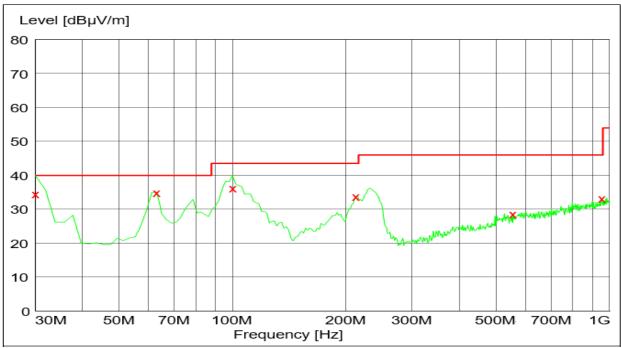
For Radiated emission below 30MHz:

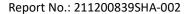

For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:



3.4 Test Results of Radiated Emissions


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


The worst waveform from 30MHz to 1000MHz is listed as below:

Horizontal

Vertical

TEST REPORT

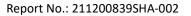
Test data below 1GHz

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	30.00	26.70	40.00	13.30	PK
Н	78.60	24.80	40.00	15.20	PK
Н	99.98	26.90	43.50	16.60	PK
Н	226.33	39.80	46.00	6.20	PK
Н	529.58	29.60	46.00	16.40	PK
Н	879.48	33.30	46.00	12.70	PK
V	30.00	34.70	40.00	6.30	QP
V	63.05	35.00	40.00	5.00	PK
V	99.98	36.30	43.50	7.20	QP
V	212.73	33.80	43.50	9.70	PK
V	554.85	28.80	46.00	17.20	PK
V	951.40	33.30	46.00	12.70	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (- Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

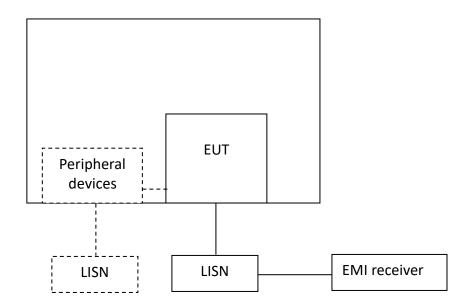

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

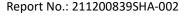
Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;

Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

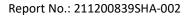

4 Power line conducted emission


Test result: Pass

4.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
Trequency of Emission (Wills)	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

4.2 Test Configuration

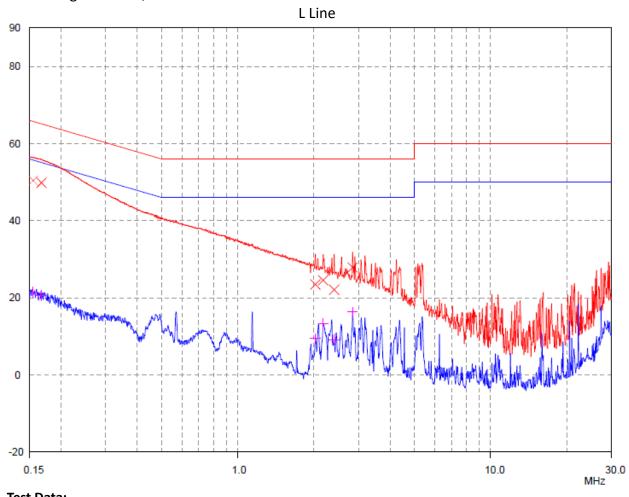


4.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

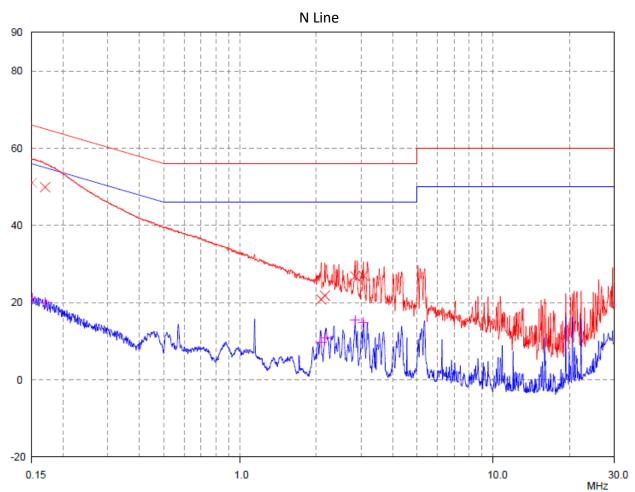


TEST REPORT

4.4 Test Results of Power line conducted emission

Test Curve:

Test Voltage AC 120V, 60Hz



Test Data:

Frequency (MHz)	Quasi-peak			Average		
	level dB(μV)	Limit dB(μV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.15	50.42	65.74	15.32	21.50	55.74	34.24
0.17	49.85	65.10	15.25	20.58	55.10	34.52
2.03	23.48	56.00	32.52	9.44	46.00	36.56
2.18	24.54	56.00	31.46	13.33	46.00	32.67
2.40	22.10	56.00	33.90	9.09	46.00	36.91
2.84	27.88	56.00	28.12	16.31	46.00	29.69

TEST REPORT

Test Data:

Frequency	Quasi-peak			Average		
(MHz)	level dB(μV)	Limit dB(μV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.15	51.06	65.97	14.91	21.05	55.97	34.92
0.17	49.89	64.97	15.08	19.90	54.97	35.07
2.09	20.82	56.00	35.18	9.78	46.00	36.22
2.16	21.80	56.00	34.20	10.94	46.00	35.06
2.84	26.82	56.00	29.18	15.46	46.00	30.54
3.07	26.98	56.00	29.02	14.95	46.00	31.05

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.