

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: IC Shenzhen Intellirocks Tech. Co., Ltd. No. 2901-2904, 3002, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue,Xili Community, Xili Street, Nanshan District, Shenzhen, Guangdong, China SZNS210715-61178E-RF 2AQA6-H619E 25450-H619E

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	RGBIC LED Strip Lights
Model No.:	H619E
Multiple Model(s) No.:	H618A, H618C, H618E, H619A, H619B, H619C, H619D(model
	difference see product declaration letter of similarity)
Date Received:	2021/07/15
Date of Test:	2021/12/21~2022/01/06
Report Date:	2022/01/06

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü EMC Engineer Approved By:

R6bort Li

Robert Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in tuil, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 22: 2021-11-09

Page 1 of 95

FCC&RSS- BLE&2.4G Wi-Fi

TABLE OF CONTENTS

GENERAL INFORMATION		4
PRODUCT DESCRIPTION FOR EQUIPM	ENT UNDER TEST (EUT)	
		4
		5
		5
TEST EQUIPMENT LIST		
FCC \$15.247 (I) & \$2.1091- MAXIMU	M PERMISSIBLE EXPOSURE (MI	PE)15
RSS-102 § 4 –EXPOSURE LIMITS		
0		
§15.203 & RSS-GEN §6.8 ANTENNA	A REQUIREMENT	
0	-	
ANTENNA CONNECTOR CONSTRUCTI	ON	
§15.207 (A) & RSS-GEN §8.8 AC LI	NE CONDUCTED EMISSIONS	
APPLICABLE STANDARD		
		OUS EMISSIONS40
	с с	
EMI TEST RECEIVER & SPECTRUM A	NALYZER SETUP	41
§15.247 (A)(2) & RSS-GEN§6.7 RSS- BANDWIDTH		NDWIDTH & 6 DB EMISSION 65
TEST DATA		
Version 22: 2021-11-09	Page 2 of 95	FCC&RSS- BLE&2.4G Wi-Fi

§15.247(B)(3) & RSS-247 § 5.4(D) MAXIMUM CONDUCTED OUTPUT POWER	67
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
§15.247(D) & RSS-247 § 5.5 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	69
APPLICABLE STANDARD	69
Test Procedure	
TEST DATA	
§15.247(E) & RSS-247 § 5.2 (B) POWER SPECTRAL DENSITY	70
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	71
APPENDIX WI-FI	72
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	80
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	
APPENDIX BLE	
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	H619E
Frequency Range	BLE: 2402-2480MHz Wi-Fi: 2412-2462MHz
Maximum Conducted Peak Output Power	BLE: 1.34dBm Wi-Fi: 11.74dBm(802.11b), 10.24dBm(802.11g) 11.28 dBm(802.11n-HT20)
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM
Antenna Specification*	BLE: 1.5dBi Wi-Fi: 1.5dBi (It is provided by the applicant)
Voltage Range	DC 24V from Adaper
Sample serial number	SZNS210715-61178E-RF-S1 for H619E SZNS210715-61178E-RF-S2 for H618E (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter 1 information (for model: H619E)	Model: CW2403000 Input: AC 100-240V, 50/60Hz, 1.2A MAX Output: DC 24.0V, 3.0A
Adapter 2 information (for model: H618A)	Model: CW2400500US Input: AC 100-240V, 50/60Hz, 0.4A MAX Output: DC 24.0V, 500mA
Adapter 3 information (for model: H618C)	Model: CW2400750US Input: AC 100-240V, 50/60Hz, 0.4A MAX Output: DC 24.0V, 750mA
Adapter 4 information (for model: H618E& H619C)	Model: BI36L-240150-AdU Input: AC 100-240V, 50/60Hz, 1.2A Output: DC 24.0V, 1.5A
Adapter 5 information (for model: H619A)	Model: CW2401000US Input: AC 100-240V, 50/60Hz, 0.8A MAX Output: DC 24.0V, 1000mA
Adapter 6 information (for model: H619B)	Model: CW2401000US Input: AC 100-240V, 50/60Hz, 0.8A MAX Output: DC 24.0V, 1.0A
Adapter 7 information (for model: H619D)	Model: CW2402000US Input: AC 100-240V, 50/60Hz, 1.2A MAX Output: DC 24.0V, 2000mA

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules, RSS-247 and RSS-GEN.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output por	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
- · ·	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1℃
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

Version 22: 2021-11-09

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

For 802.11b, 802.11g, 802.11n-HT20, EUT was tested with Channel 1, 6 and 11.

Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"BK32xx RF Test_V1.8.2" was used for the BLE test and "AmebaZ2_mptool_1V3"* was used to the Wi-Fi test.

The device was tested with the worst case was performed as below:

Mode	Date rate		Power Level	
Mode	Date l'ate	Low Channel	Middle Channel	High Channel
802.11b	1Mbps	60	60	60
802.11g	6Mbps	58	58	58
802.11n-HT20	MCS0	58	58	58
BLE	1Mbps	Default	Default	Default

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

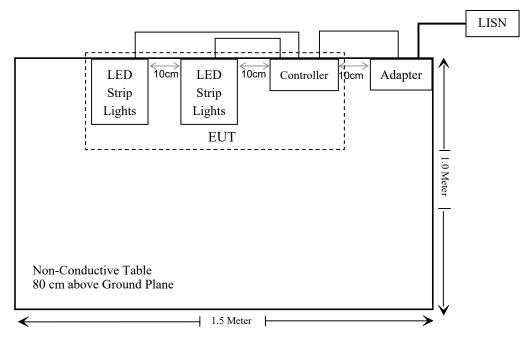
External I/O Cable

For H619E

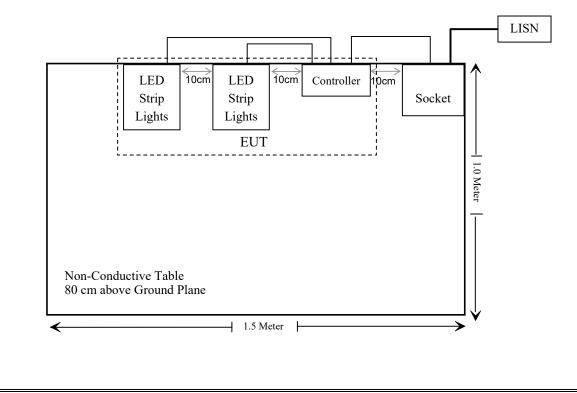
Cable Description	Length (m)	From	То
Un-shielding Detachable AC Cable	1.5	LISN	Adapter
Un-shielding Detachable DC Cable	1.2	Adapter	EUT
Un-shielding Non-detachable DC Cable	1.2	Controller	LED Strip Lights

For H618E

Cable Description	Length (m)	From	То
Un-shielding Detachable AC Cable	1.0	LISN	Socket
Un-shielding Detachable DC Cable	1.7	Adapter	EUT
Un-shielding Non-detachable DC Cable	1.2	Controller	LED Strip Lights


Version 22: 2021-11-09

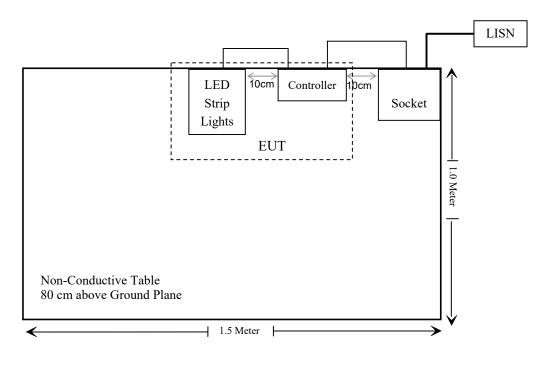
Report No.: SZNS210715-61178E-RF


Block Diagram of Test Setup

For conducted emission:

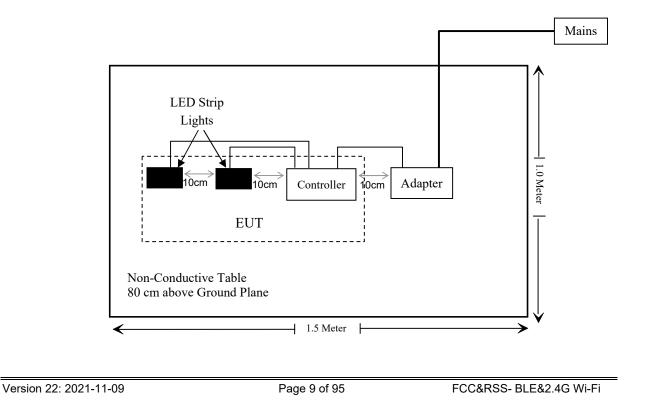
For H619E:

For H618E/H619D:

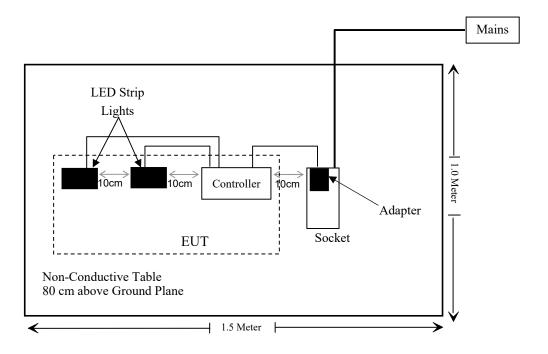


Version 22: 2021-11-09

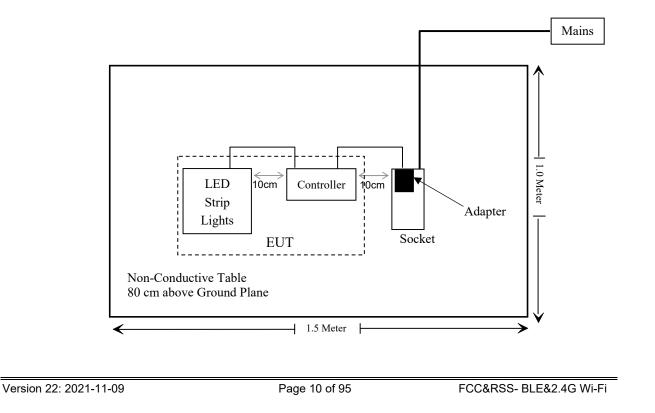
FCC&RSS- BLE&2.4G Wi-Fi


Report No.: SZNS210715-61178E-RF

For H618A/H618C/H619A/ H619B/H619C:

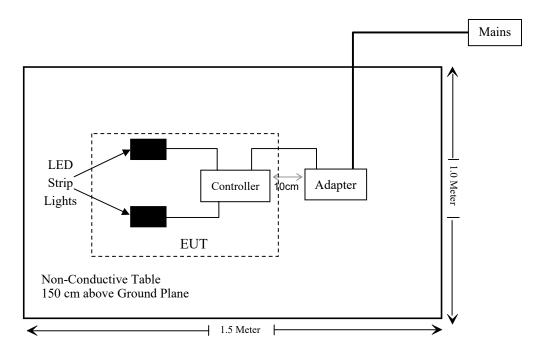

For radiated emission: (below 1GHz)

For H619E:



Report No.: SZNS210715-61178E-RF

For H618E/H619D:



For H618A/H618C/H619A/ H619B/H619C:

Report No.: SZNS210715-61178E-RF

For radiated emission: (above 1GHz)

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§15.247 (i), §2.1091	5.247 (i), §2.1091 RSS-102 § 4 MAXIMUM PERMISSIBLE EXPOSURE (MPE)& EXPOSURE LIMITS		Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Emiss	sions Test		
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
R & S L.I.S.N.		ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50ΩCoaxial Switch	MP59B	6200506474	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
Conducted Emission	Test Software: e3 19821	b (V9)			
		Radiated Emissi	ons Test		
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/11/09	2022/11/08
Quinstar	Quinstar Amplifier		15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2020/12/25	2021/12/24

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
RF Conducted Test								
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23			
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW). G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

Mode Frequency		Antenna Gain		Max Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
2.4G Wi-Fi	2412-2462	1.5	1.41	12.0	15.85	20	0.0044	1
BLE	2402-2480	1.5	1.41	1.5	1.41	20	0.0004	1

Note: 1. the tune up conducted power was declared by the applicant 2. the 2.4G Wi-Fi, BLE can transmit at the same time.

Simultaneous transmitting consideration:

The ratio=MPE_{2.4GWi-Fi}/limit+ MPE_{BLE}/limit=0.0044/1+0.0004/1=0.0048<1.0

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

RSS-102 § 4 – EXPOSURE LIMITS

Applicable Standard

According to RSS-102 § 4:

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)						
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)		
0.003-10 ²¹	83	90	-	Instantaneous*		
0.1-10	-	0.73/ f	-	6**		
1.1-10	87/ f ^{0.5}	-	-	6**		
10-20	27.46	0.0728	2	6		
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6		
48-300	22.06	0.05852	1.291	6		
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6		
6000-15000	61.4	0.163	10	6		
15000-150000	61.4	0.163	10	616000/ f ^{1.2}		
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}		

Note: f is frequency in MHz.

* Based on nerve stimulation (NS). ** Based on specific absorption rate (SAR).

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. W/m²)

P = power input to the antenna (in appropriate units, e.g., W). G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

For worst case:

	Frequency	Antenna Gain		Max Tune-up Power		Evaluation	Power	MPE Limit
Mode	(MHz)	(dBi)	(numeric)	(dBm)	(W)	Distance (m)	Density (W/m ²)	(W/m^2)
2.4G Wi-Fi	2412-2462	1.5	1.41	12.0	0.016	0.2	0.045	5.37
BLE	2402-2480	1.5	1.41	1.5	0.001	0.2	0.003	5.35

Note: 1. the tune up conducted power was declared by the applicant 2. the 2.4G Wi-Fi, BLE can transmit at the same time.

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.045/5.37 + 0.003/5.35 = 0.009 < 1.0$$

Result: Compliance

Note: To maintain compliance with the RF exposure guidelines, place the equipment at least 0.2 m from nearby persons.

§ 15.203 & RSS-Gen §6.8 ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has an internal antenna arrangement for BLE and an internal antenna arrangement for Wi-Fi which was permanently attached and the antenna gain is 1.5 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

ANT	Туре	Antenna Gain	Impedance
BLE ANT	РСВ	1.5 dBi	50 Ω
Wi-Fi ANT	РСВ	1.5 dBi	50 Ω

Result: Compliant

§ 15.207 (a) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS

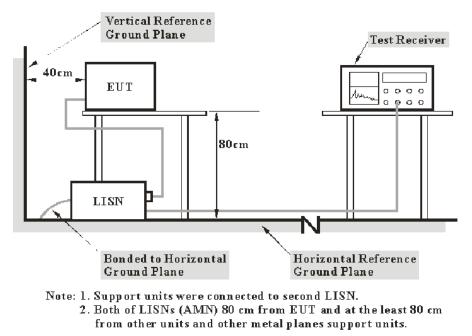
Applicable Standard

FCC § 15.207 (a) & RSS-GEN §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits					
Frequency range	Conducted I	Conducted limit (dBµV)			
(MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹			
0.5 - 5	56	46			
5 - 30	60	50			


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 & RSS-247/RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

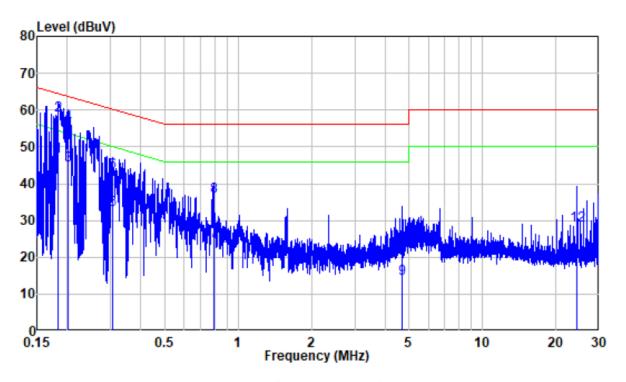
The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over Limit = Level – Limit Level = Read Level – Factor

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	55~60 %
ATM Pressure:	101.0 kPa

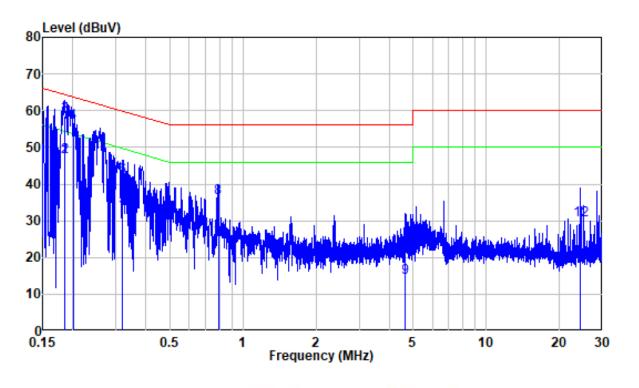

The testing was performed by Bin Duan on 2021-12-24 and 2022-01-06.

EUT operation mode: Transmitting (worst case is 802.11b mode, high channel)

Report No.: SZNS210715-61178E-RF

For H619E

AC 120V/60 Hz, Line


		Read			
Freq	Factor	Level	Level		

Limit Over Line Limit Remark

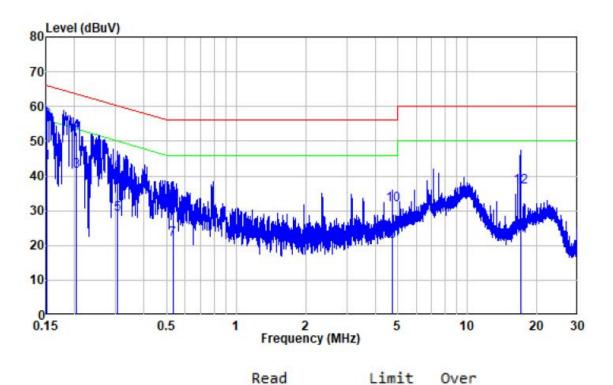
_	MHz	dB	dBuV	dBuV	dBuV	dB	·
1	0.184	9.83	37.57	47.40	54.32	-6.92	Average
2	0.184	9.83	48.68	58.51	64.32	-5.81	QP
3	0.201	9.80	35.23	45.03	53.56	-8.53	Average
4	0.201	9.80	46.47	56.27	63.56	-7.29	QP
5	0.305	9.80	23.08	32.88	50.11	-17.23	Average
6	0.305	9.80	33.22	43.02	60.11	-17.09	QP
7	0.793	9.81	14.78	24.59	46.00	-21.41	Average
8	0.793	9.81	26.61	36.42	56.00	-19.58	QP
9	4.703	9.98	4.14	14.12	46.00	-31.88	Average
10	4.703	9.98	11.62	21.60	56.00	-34.40	QP
11	24.432	10.34	7.47	17.81	50.00	-32.19	Average
12	24.432	10.34	18.47	28.81	60.00	-31.19	QP

Report No.: SZNS210715-61178E-RF

AC 120V/60 Hz, Neutral

		Read
Freq	Factor	Level

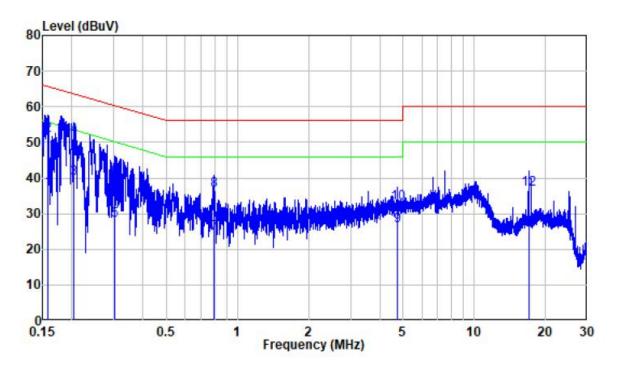
Read Limit evel Level Line


LIMIT	over	
Line	Limit	Remark

-	MHz	dB	dBuV	dBuV	dBuV	dB	-	-
1	0.184	9.97	37.32	47.29	54.29	-7.00	Average	
2	0.184	9.97	37.48	47.45	54.29	-6.84	Average	
3	0.184	9.97	48.69	58.66	64.29	-5.63	QP	
4	0.200	10.00	46.75	56.75	63.60	-6.85	QP	
5	0.321	9.95	23.87	33.82	49.69	-15.87	Average	
6	0.321	9.95	31.92	41.87	59.69	-17.82	QP	
7	0.791	9.91	14.90	24.81	46.00	-21.19	Average	
8	0.791	9.91	26.21	36.12	56.00	-19.88	QP	
9	4.656	10.05	4.39	14.44	46.00	-31.56	Average	
10	4.656	10.05	11.49	21.54	56.00	-34.46	QP	
11	24.432	10.29	8.80	19.09	50.00	-30.91	Average	
12	24.432	10.29	19.97	30.26	60.00	-29.74	QP	

Report No.: SZNS210715-61178E-RF

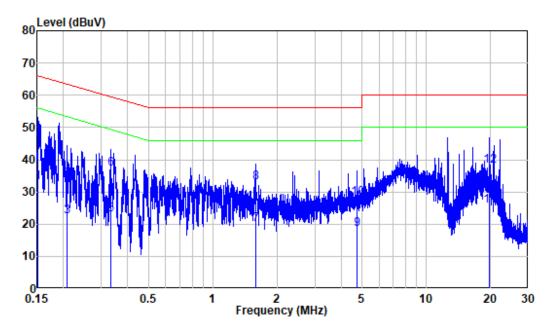
For H618E


AC 120V/60 Hz, Line

	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.151	9.90	33.92	43.82	55.92	-12.10	Average
2	0.151	9.90	45.97	55.87	65.92	-10.05	QP
3	0.204	9.80	31.44	41.24	53.43	-12.19	Average
4	0.204	9.80	42.83	52.63	63.43	-10.80	QP
5	0.306	9.80	19.29	29.09	50.08	-20.99	Average
6	0.306	9.80	31.04	40.84	60.08	-19.24	QP
7	0.531	9.81	11.98	21.79	46.00	-24.21	Average
8	0.531	9.81	22.66	32.47	56.00	-23.53	QP
9	4.724	9.98	11.23	21.21	46.00	-24.79	Average
10	4.724	9.98	21.72	31.70	56.00	-24.30	QP
11	16.939	10.11	13.72	23.83	50.00	-26.17	Average
12	16.939	10.11	26.76	36.87	60.00	-23.13	QP

Report No.: SZNS210715-61178E-RF

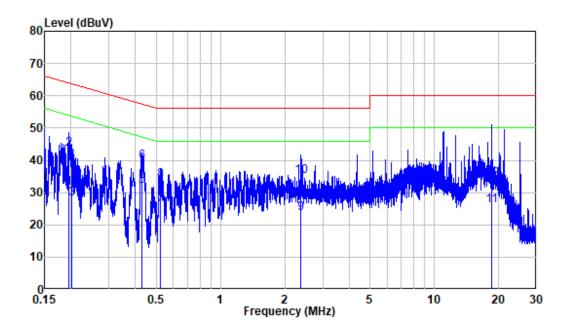
AC 120V/60 Hz, Neutral



			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.159	9.92	27.06	36.98	55.53	-18.55	Average
2	0.159	9.92	42.00	51.92	65.53	-13.61	QP
3	0.204	10.00	29.93	39.93	53.45	-13.52	Average
4	0.204	10.00	41.70	51.70	63.45	-11.75	QP
5	0.303	9.95	18.23	28.18	50.17	-21.99	Average
6	0.303	9.95	30.07	40.02	60.17	-20.15	QP
7	0.793	9.91	14.43	24.34	46.00	-21.66	Average
8	0.793	9.91	26.66	36.57	56.00	-19.43	QP
9	4.728	10.05	16.41	26.46	46.00	-19.54	Average
10	4.728	10.05	22.84	32.89	56.00	-23.11	QP
11	16.939	10.11	15.12	25.23	50.00	-24.77	Average
12	16.939	10.11	26.70	36.81	60.00	-23.19	QP

Report No.: SZNS210715-61178E-RF

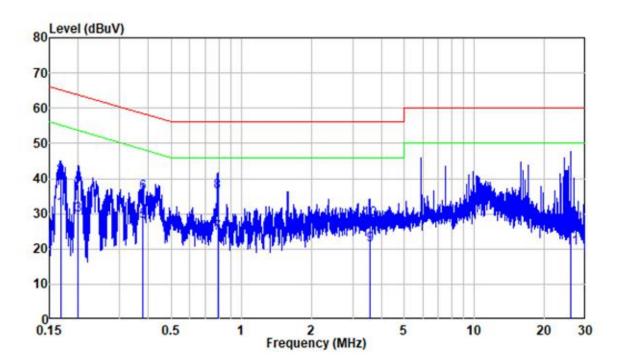
For H618A


AC 120V/60 Hz, Line

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.152	9.90	22.89	32.79	55.88	-23.09	Average
2	0.152	9.90	36.51	46.41	65.88	-19.47	QP
3	0.208	9.80	12.47	22.27	53.28	-31.01	Average
4	0.208	9.80	24.89	34.69	63.28	-28.59	QP
5	0.332	9.80	13.26	23.06	49.39	-26.33	Average
6	0.332	9.80	27.43	37.23	59.39	-22.16	QP
7	1.585	9.89	10.08	19.97	46.00	-26.03	Average
8	1.585	9.89	23.00	32.89	56.00	-23.11	QP
9	4.737	9.98	8.37	18.35	46.00	-27.65	Average
10	4.737	9.98	18.02	28.00	56.00	-28.00	QP
11	19.687	10.19	15.60	25.79	50.00	-24.21	Average
12	19.687	10.19	27.70	37.89	60.00	-22.11	QP

Report No.: SZNS210715-61178E-RF

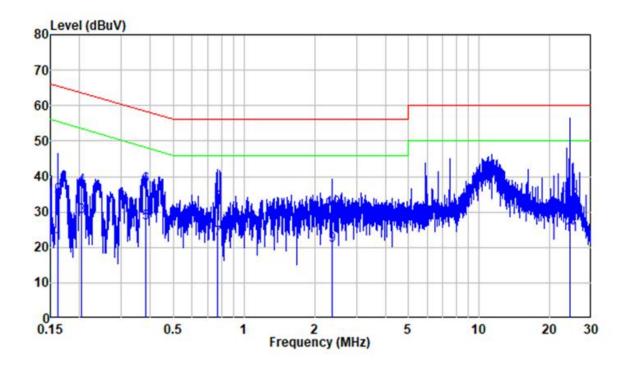
AC 120V/60 Hz, Neutral



			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.195	9.99	21.52	31.51	53.83	-22.32	Average
2	0.195	9.99	33.54	43.53	63.83	-20.30	QP
3	0.200	10.00	17.96	27.96	53.60	-25.64	Average
4	0.200	10.00	29.71	39.71	63.60	-23.89	QP
5	0.429	9.92	22.08	32.00	47.28	-15.28	Average
6	0.429	9.92	29.77	39.69	57.28	-17.59	QP
7	0.522	9.91	16.25	26.16	46.00	-19.84	Average
8	0.522	9.91	23.92	33.83	56.00	-22.17	QP
9	2.371	9.94	13.56	23.50	46.00	-22.50	Average
10	2.371	9.94	24.95	34.89	56.00	-21.11	QP
11	18.536	10.16	15.72	25.88	50.00	-24.12	Average
12	18.536	10.16	24.07	34.23	60.00	-25.77	QP

Report No.: SZNS210715-61178E-RF

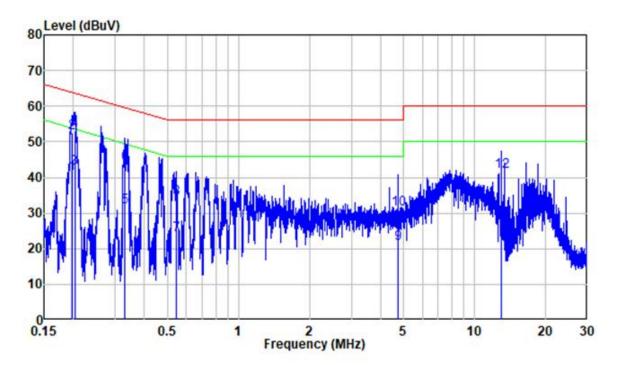
For H618C


AC 120V/60 Hz, Line

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.168	9.86	21.16	31.02	55.08	-24.06	Average
2	0.168	9.86	30.49	40.35	65.08	-24.73	QP
3	0.200	9.80	19.65	29.45	53.61	-24.16	Average
4	0.200	9.80	28.51	38.31	63.61	-25.30	QP
5	0.378	9.80	18.02	27.82	48.32	-20.50	Average
6	0.378	9.80	26.26	36.06	58.32	-22.26	QP
7	0.791	9.81	14.66	24.47	46.00	-21.53	Average
8	0.791	9.81	26.43	36.24	56.00	-19.76	QP
9	3.549	9.94	11.28	21.22	46.00	-24.78	Average
10	3.549	9.94	18.43	28.37	56.00	-27.63	QP
11	26.018	10.39	9.95	20.34	50.00	-29.66	Average
12	26.018	10.39	16.59	26.98	60.00	-33.02	QP

Report No.: SZNS210715-61178E-RF

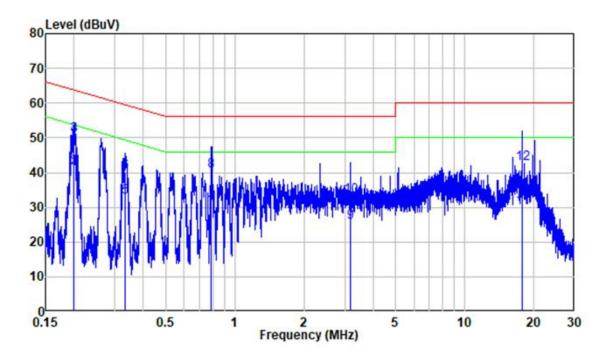
AC 120V/60 Hz, Neutral



			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.162	9.93	11.23	21.16	55.38	-34.22	Average
2	0.162	9.93	24.58	34.51	65.38	-30.87	QP
3	0.204	10.00	18.69	28.69	53.44	-24.75	Average
4	0.204	10.00	27.19	37.19	63.44	-26.25	QP
5	0.381	9.93	17.03	26.96	48.25	-21.29	Average
6	0.381	9.93	27.43	37.36	58.25	-20.89	QP
7	0.768	9.91	12.40	22.31	46.00	-23.69	Average
8	0.768	9.91	22.34	32.25	56.00	-23.75	QP
9	2.363	9.94	10.74	20.68	46.00	-25.32	Average
10	2.363	9.94	20.87	30.81	56.00	-25.19	QP
11	24.432	10.29	13.17	23.46	50.00	-26.54	Average
12	24.432	10.29	22.58	32.87	60.00	-27.13	QP

Report No.: SZNS210715-61178E-RF

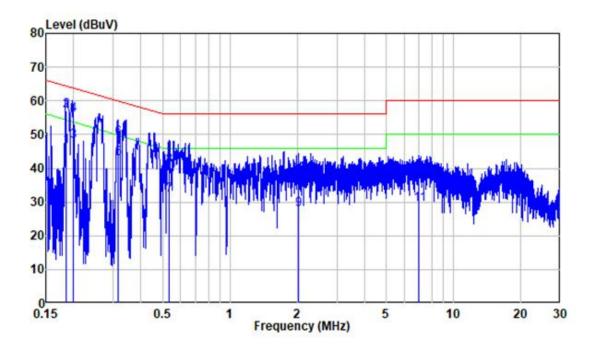
For H619A


AC 120V/60 Hz, Line

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark	
-	MHz	dB	dBuV	dBuV	dBuV	dB		
1	0.197	9.81	31.32	41.13	53.73	-12.60	Average	
2	0.197	9.81	42.79	52.60	63.73	-11.13	QP	
3	0.202	9.80	32.81	42.61	53.51	-10.90	Average	
4	0.202	9.80	43.31	53.11	63.51	-10.40	QP	
5	0.330	9.80	21.78	31.58	49.45	-17.87	Average	
6	0.330	9.80	33.97	43.77	59.45	-15.68	QP	
7	0.544	9.81	14.15	23.96	46.00	-22.04	Average	
8	0.544	9.81	24.36	34.17	56.00	-21.83	QP	
9	4.731	9.98	11.58	21.56	46.00	-24.44	Average	
10	4.731	9.98	21.17	31.15	56.00	-24.85	QP	
11	12.997	10.07	16.11	26.18	50.00	-23.82	Average	
12	12.997	10.07	31.60	41.67	60.00	-18.33	QP	

Report No.: SZNS210715-61178E-RF

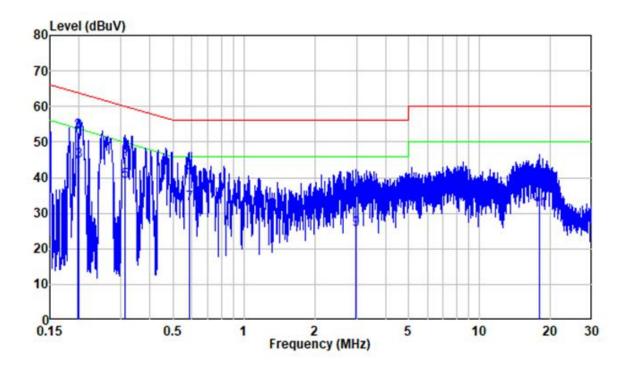
AC 120V/60 Hz, Neutral



	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.200	10.00	31.09	41.09	53.62	-12.53	Average
2	0.200	10.00	31.35	41.35	53.62	-12.27	Average
3	0.200	10.00	40.58	50.58	63.62	-13.04	QP
4	0.200	10.00	40.78	50.78	63.62	-12.84	QP
5	0.334	9.94	22.99	32.93	49.36	-16.43	Average
6	0.334	9.94	30.19	40.13	59.36	-19.23	QP
7	0.791	9.91	19.61	29.52	46.00	-16.48	Average
8	0.791	9.91	30.63	40.54	56.00	-15.46	QP
9	3.169	10.00	15.60	25.60	46.00	-20.40	Average
10	3.169	10.00	23.31	33.31	56.00	-22.69	QP
11	17.731	10.14	19.79	29.93	50.00	-20.07	Average
12	17.731	10.14	32.31	42.45	60.00	-17.55	QP

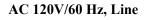
Report No.: SZNS210715-61178E-RF

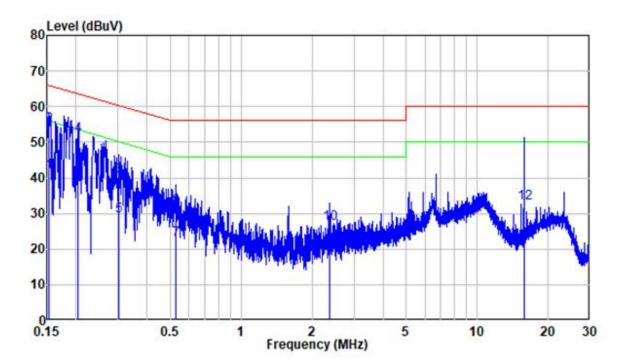
For H619B


AC 120V/60 Hz, Line

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.185	9.83	36.72	46.55	54.26	-7.71	Average
2	0.185	9.83	47.29	57.12	64.26	-7.14	QP
3	0.200	9.80	38.29	48.09	53.61	-5.52	Average
4	0.200	9.80	46.08	55.88	63.61	-7.73	QP
5	0.315	9.80	33.08	42.88	49.84	-6.96	Average
6	0.315	9.80	39.09	48.89	59.84	-10.95	QP
7	0.533	9.81	22.05	31.86	46.00	-14.14	Average
8	0.533	9.81	30.81	40.62	56.00	-15.38	QP
9	2.017	9.92	17.98	27.90	46.00	-18.10	Average
10	2.017	9.92	28.24	38.16	56.00	-17.84	QP
11	7.002	10.07	19.13	29.20	50.00	-20.80	Average
12	7.002	10.07	27.31	37.38	60.00	-22.62	QP

Report No.: SZNS210715-61178E-RF

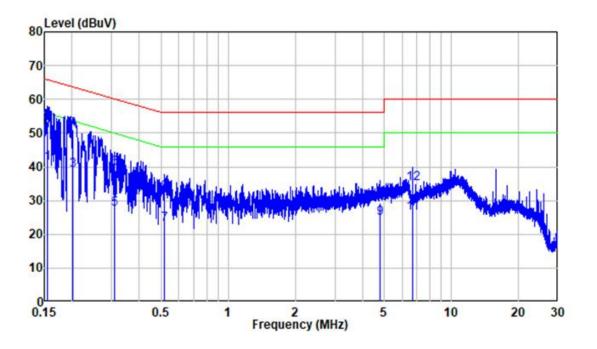

AC 120V/60 Hz, Neutral



	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark	
-	MHz	dB	dBuV	dBuV	dBuV	dB	-	_
1	0.198	10.00	32.64	42.64	53.71	-11.07	Average	
2	0.198	10.00	42.98	52.98	63.71	-10.73	QP	
3	0.200	10.00	34.58	44.58	53.61	-9.03	Average	
4	0.200	10.00	42.62	52.62	63.61	-10.99	QP	
5	0.312	9.95	28.84	38.79	49.93	-11.14	Average	
6	0.312	9.95	35.84	45.79	59.93	-14.14	QP	
7	0.584	9.91	22.84	32.75	46.00	-13.25	Average	
8	0.584	9.91	31.40	41.31	56.00	-14.69	QP	
9	2.980	9.99	15.44	25.43	46.00	-20.57	Average	
10	2.980	9.99	25.84	35.83	56.00	-20.17	QP	
11	17.920	10.14	20.70	30.84	50.00	-19.16	Average	
12	17.920	10.14	28.07	38.21	60.00	-21.79	QP	

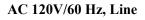
Report No.: SZNS210715-61178E-RF

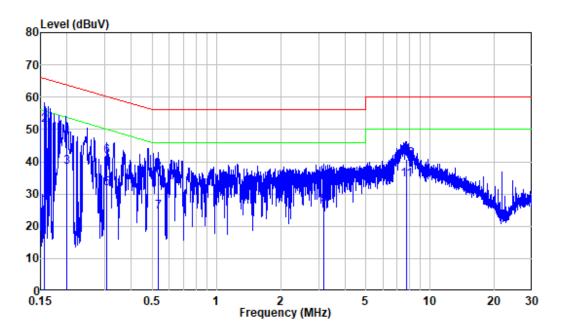
For H619C



Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
MHz	dB	dBuV	dBuV	dBuV	dB	
0.153	9.89	31.79	41.68	55.85	-14.17	Average
0.153	9.89	44.75	54.64	65.85	-11.21	QP
0.203	9.80	30.22	40.02	53.48	-13.46	Average
0.203	9.80	42.02	51.82	63.48	-11.66	QP
0.303	9.80	19.38	29.18	50.15	-20.97	Average
0.303	9.80	30.55	40.35	60.15	-19.80	QP
0.530	9.81	12.77	22.58	46.00	-23.42	Average
0.530	9.81	21.98	31.79	56.00	-24.21	QP
2.376	9.92	7.59	17.51	46.00	-28.49	Average
2.376	9.92	17.35	27.27	56.00	-28.73	QP
15.770	10.08	11.36	21.44	50.00	-28.56	Average
15.770	10.08	22.95	33.03	60.00	-26.97	QP
	MHz 0.153 0.203 0.203 0.303 0.303 0.530 0.530 2.376 2.376 15.770	0.153 9.89 0.153 9.89 0.203 9.80 0.203 9.80 0.303 9.80 0.303 9.80 0.530 9.81 0.530 9.81 2.376 9.92 2.376 9.92 15.770 10.08	Freq Factor Level MHz dB dBuV 0.153 9.89 31.79 0.153 9.89 44.75 0.203 9.80 30.22 0.203 9.80 42.02 0.303 9.80 19.38 0.303 9.80 30.55 0.530 9.81 12.77 0.530 9.81 21.98 2.376 9.92 7.59 2.376 9.92 17.35 15.770 10.08 11.36	Freq Factor Level Level MHz dB dBuV dBuV 0.153 9.89 31.79 41.68 0.153 9.89 44.75 54.64 0.203 9.80 30.22 40.02 0.203 9.80 42.02 51.82 0.303 9.80 19.38 29.18 0.303 9.80 30.55 40.35 0.530 9.81 12.77 22.58 0.530 9.81 21.98 31.79 2.376 9.92 7.59 17.51 2.376 9.92 17.35 27.27 15.770 10.08 11.36 21.44	Freq Factor Level Level Line MHz dB dBuV dBuV dBuV dBuV 0.153 9.89 31.79 41.68 55.85 0.153 9.89 44.75 54.64 65.85 0.203 9.80 30.22 40.02 53.48 0.203 9.80 42.02 51.82 63.48 0.303 9.80 19.38 29.18 50.15 0.303 9.80 30.55 40.35 60.15 0.530 9.81 12.77 22.58 46.00 0.530 9.81 21.98 31.79 56.00 2.376 9.92 7.59 17.51 46.00 2.376 9.92 17.35 27.27 56.00 15.770 10.08 11.36 21.44 50.00	Freq Factor Level Level Line Limit MHz dB dBuV dBuV dBuV dB 0.153 9.89 31.79 41.68 55.85 -14.17 0.153 9.89 44.75 54.64 65.85 -11.21 0.203 9.80 30.22 40.02 53.48 -13.46 0.203 9.80 42.02 51.82 63.48 -11.66 0.303 9.80 19.38 29.18 50.15 -20.97 0.303 9.80 19.38 29.18 50.15 -19.80 0.530 9.81 12.77 22.58 46.00 -23.42 0.530 9.81 21.98 31.79 56.00 -24.21 2.376 9.92 7.59 17.51 46.00 -28.49 2.376 9.92 17.35 27.27 56.00 -28.73 15.770 10.08 11.36 21.44 50.00 -28.56

Report No.: SZNS210715-61178E-RF

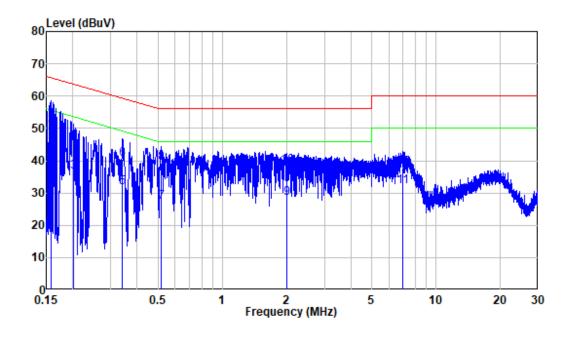

AC 120V/60 Hz, Neutral



	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.155	9.91	31.12	41.03	55.71	-14.68	Average
2	0.155	9.91	43.60	53.51	65.71	-12.20	QP
3	0.202	10.00	28.88	38.88	53.52	-14.64	Average
4	0.202	10.00	40.97	50.97	63.52	-12.55	QP
5	0.309	9.95	17.57	27.52	50.00	-22.48	Average
6	0.309	9.95	29.48	39.43	60.00	-20.57	QP
7	0.517	9.91	13.04	22.95	46.00	-23.05	Average
8	0.517	9.91	22.44	32.35	56.00	-23.65	QP
9	4.784	10.05	14.62	24.67	46.00	-21.33	Average
10	4.784	10.05	19.32	29.37	56.00	-26.63	QP
11	6.693	10.07	16.31	26.38	50.00	-23.62	Average
12	6.693	10.07	24.83	34.90	60.00	-25.10	QP

Report No.: SZNS210715-61178E-RF

For H619D



	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.156	9.89	16.39	26.28	55.66	-29.38	Average
2	0.156	9.89	41.44	51.33	65.66	-14.33	QP
3	0.200	9.80	28.67	38.47	53.61	-15.14	Average
4	0.200	9.80	37.53	47.33	63.61	-16.28	QP
5	0.307	9.80	21.82	31.62	50.06	-18.44	Average
6	0.307	9.80	31.71	41.51	60.06	-18.55	QP
7	0.532	9.81	14.71	24.52	46.00	-21.48	Average
8	0.532	9.81	26.81	36.62	56.00	-19.38	QP
9	3.184	9.93	16.69	26.62	46.00	-19.38	Average
10	3.184	9.93	23.73	33.66	56.00	-22.34	QP
11	7.753	10.08	24.45	34.53	50.00	-15.47	Average
12	7.753	10.08	30.52	40.60	60.00	-19.40	QP

Report No.: SZNS210715-61178E-RF

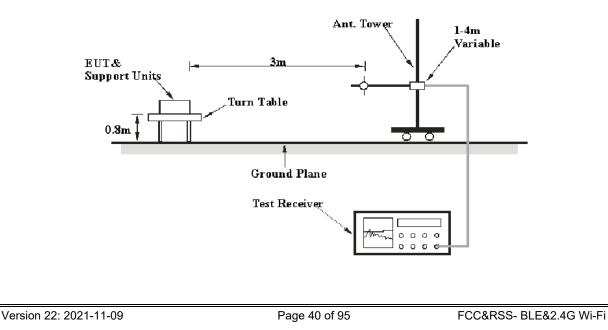
AC 120V/60 Hz, Neutral

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
St	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.159	9.92	16.24	26.16	55.53	-29.37	Average
2	0.159	9.92	40.98	50.90	65.53	-14.63	QP
3	0.200	10.00	26.50	36.50	53.60	-17.10	Average
4	0.200	10.00	35.83	45.83	63.60	-17.77	QP
5	0.340	9.94	21.72	31.66	49.20	-17.54	Average
6	0.340	9.94	30.55	40.49	59.20	-18.71	QP
6 7 8	0.518	9.91	17.41	27.32	46.00	-18.68	Average
8	0.518	9.91	29.33	39.24	56.00	-16.76	QP
9	2.001	9.92	18.42	28.34	46.00	-17.66	Average
10	2.001	9.92	28.39	38.31	56.00	-17.69	QP
11	6.955	10.07	21.86	31.93	50.00	-18.07	Average
12	6.955	10.07	27.54	37.61	60.00	-22.39	QP

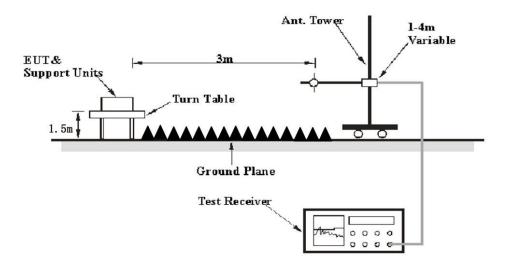
§15.205, §15.209, §15.247(d) & RSS-GEN § 8.10 & RSS-247 § 5.5 SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


According to RSS-GEN § 8.10 & RSS-247 § 5.5

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in table 5 and table 6.


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247 & RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	РК
	1MHz	$10 \text{ Hz}^{\text{Note 1}}$	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

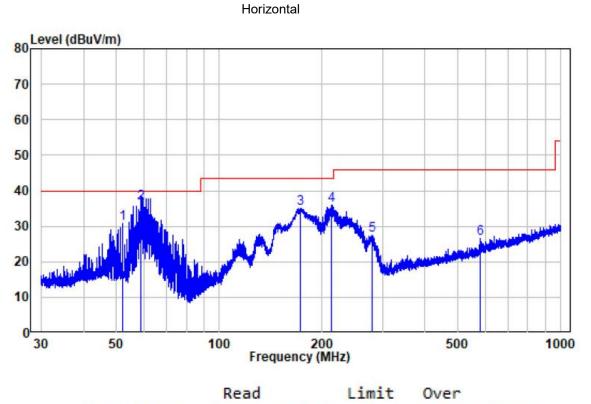
Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin/over limit of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over Limit = Corrected Amplitude/Level - Limit Corrected Amplitude/Level = Reading - Corrected Factor

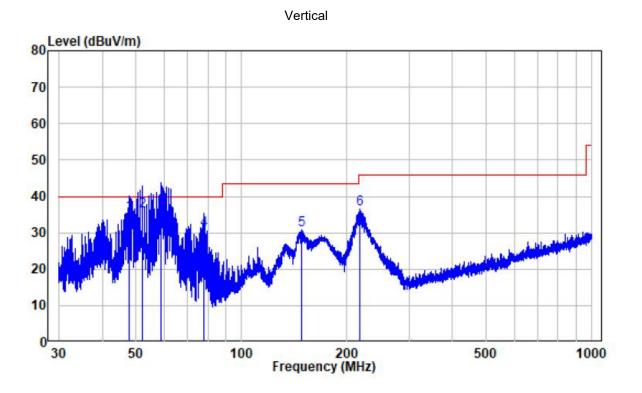
Test Data

Environmental Conditions


Temperature:	21~25 °C
Relative Humidity:	62~64 %
ATM Pressure:	101.0 kPa

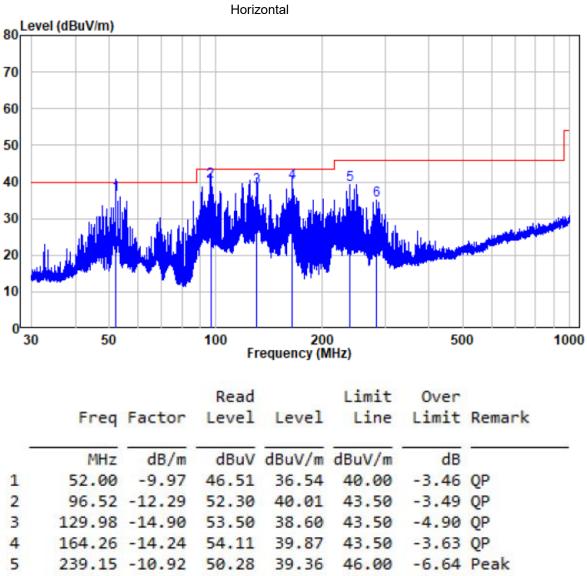
The testing was performed by Bin Duan from 2021-12-23 to 2022-01-06 for below 1GHz and 2021-12-23 for above 1GHz.

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)


30 MHz~1 GHz: (worst case is 802.11b mode, high channel)

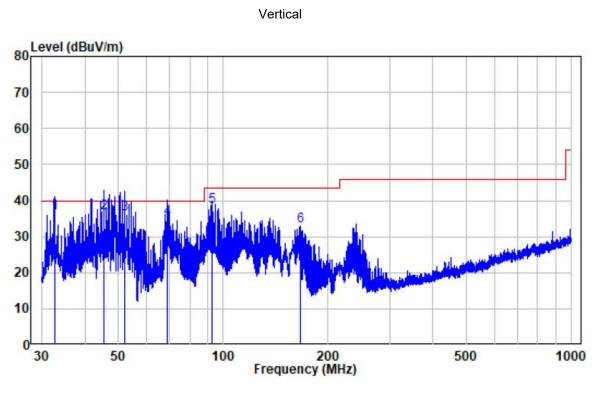
For H619E

	Freq	Factor	Level	Level	Line	Limit	Remark	
8	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	<u></u>	_
1	52.00	-9.97	40.80	30.83	40.00	-9.17	Peak	
2	58.69	-10.16	46.84	36.68	40.00	-3.32	QP	
3	172.22	-13.36	48.34	34.98	43.50	-8.52	Peak	
4	213.11	-11.75	47.80	36.05	43.50	-7.45	Peak	
5	279.66	-9.60	36.94	27.34	46.00	-18.66	Peak	
6	579.94	-3.36	29.81	26.45	46.00	-19.55	Peak	


Report No.: SZNS210715-61178E-RF

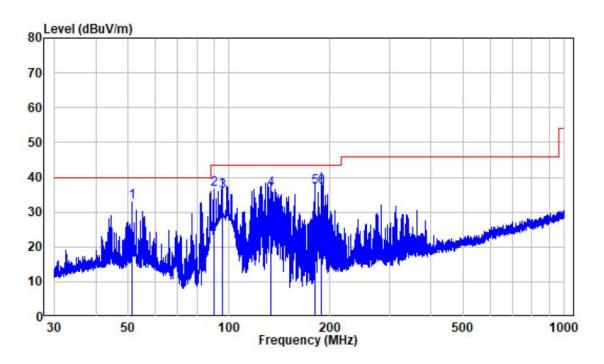
	Freq	Factor		Level			Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	() <u></u>
1	47.66	-10.00	45.36	35.36	40.00	-4.64	QP
2	52.00	-9.97	45.85	35.88	40.00	-4.12	QP
3	58.66	-10.15	45.91	35.76	40.00	-4.24	QP
4	78.00	-16.61	47.26	30.65	40.00	-9.35	QP
5	147.92	-15.38	46.23	30.85	43.50	-12.65	Peak
6	216.78	-11.59	47.97	36.38	46.00	-9.62	Peak

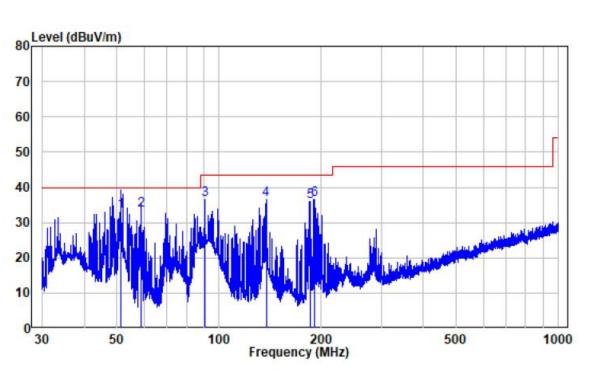
Report No.: SZNS210715-61178E-RF



283.23 -9.50 44.62 35.12 46.00 -10.88 Peak

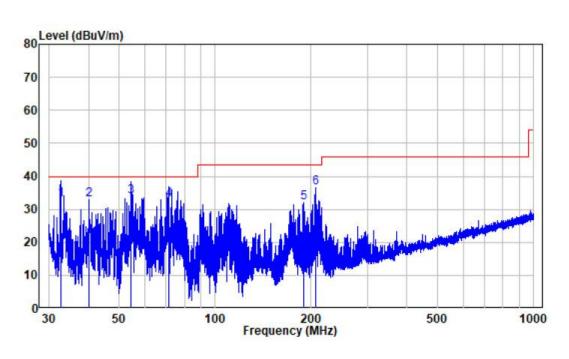
6

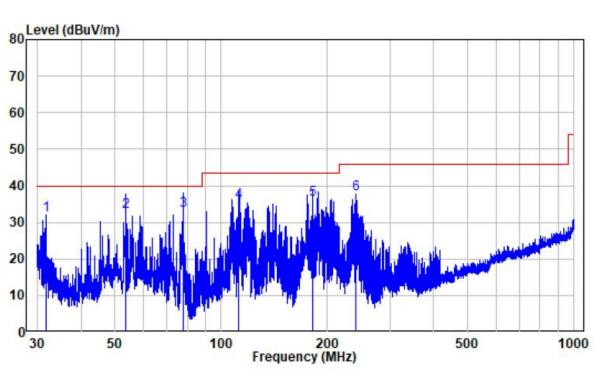

Report No.: SZNS210715-61178E-RF


	Freq	Factor			Limit Line		Remark
2	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	32.69	-12.07	48.57	36.50	40.00	-3.50	QP
2	45.30	-9.95	46.52	36.57	40.00	-3.43	QP
з	51.98	-9.97	46.20	36.23	40.00	-3.77	QP
4	68.93	-14.27	49.27	35.00	40.00	-5.00	QP
5	92.95	-13.01	51.23	38.22	43.50	-5.28	QP
6	167.02	-13.88	46.84	32.96	43.50	-10.54	Peak

FCC&RSS- BLE&2.4G Wi-Fi

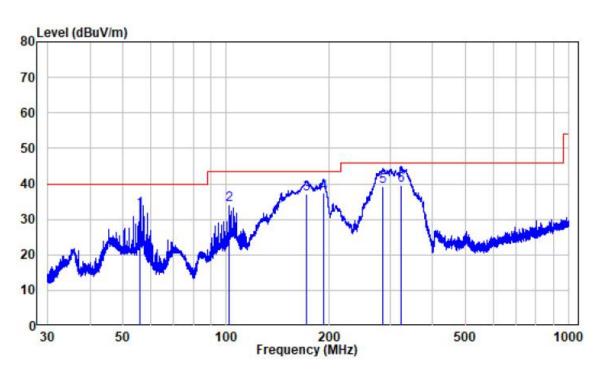
For H618A


	Freq	Factor	Read Level		Limit Line		
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.211	-9.95	42.81	32.86	40.00	-7.14	Peak
2	89.826	-14.06	50.58	36.52	43.50	-6.98	Peak
3	95.720	-12.35	48.26	35.91	43.50	-7.59	QP
4	132.743	-14.98	51.49	36.51	43.50	-6.99	QP
5	180.412	-12.72	49.85	37.13	43.50	-6.37	QP
6	188.660	-11.74	48.96	37.22	43.50	-6.28	QP

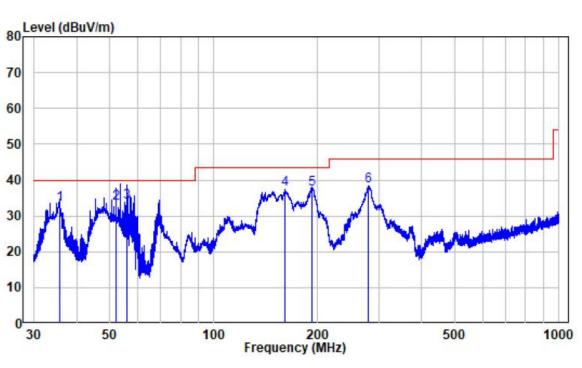

Vertical	

	Freq	Factor		Level	Limit Line	Over Limit	Remark
8	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.211	-9.95	43.21	33.26	40.00	-6.74	QP
2	58.690	-10.16	43.70	33.54	40.00	-6.46	QP
3	90.617	-13.79	50.29	36.50	43.50	-7.00	Peak
4	137.481	-15.28	51.72	36.44	43.50	-7.06	Peak
5	185.219	-12.16	48.20	36.04	43.50	-7.46	Peak
6	190.322	-11.52	48.12	36.60	43.50	-6.90	Peak

For H618C

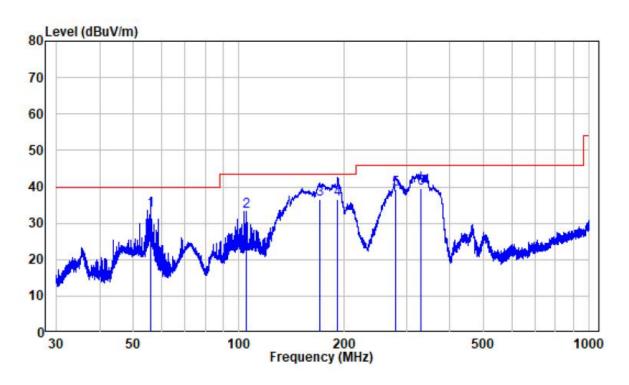


	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	32.677	-12.07	45.12	33.05	40.00	-6.95	QP
2	40.205	-10.31	43.34	33.03	40.00	-6.97	Peak
3	54.356	-10.32	44.26	33.94	40.00	-6.06	QP
4	71.299	-15.32	48.25	32.93	40.00	-7.07	QP
5	189.489	-11.65	43.61	31.96	43.50	-11.54	Peak
6	206.398	-11.84	48.34	36.50	43.50	-7.00	Peak

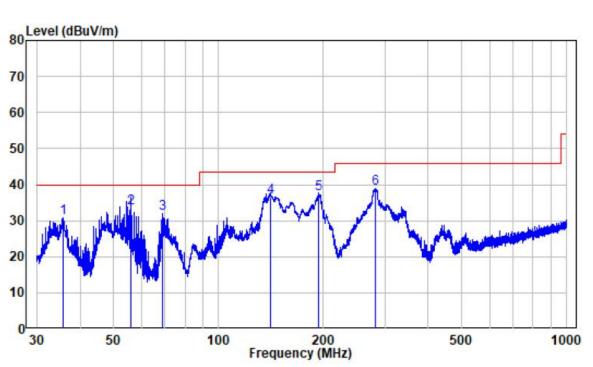


	Freq	Factor			Limit Line	Over Limit	Remark
_	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	31.857	-12.19	44.25	32.06	40.00	-7.94	Peak
2	53.576	-10.28	43.30	33.02	40.00	-6.98	QP
3	78.002	-16.61	49.87	33.26	40.00	-6.74	QP
4	112.278	-12.29	47.98	35.69	43.50	-7.81	QP
5	181.204	-12.63	48.96	36.33	43.50	-7.17	QP
6	240.725	-10.86	48.52	37.66	46.00	-8.34	Peak

For H619A



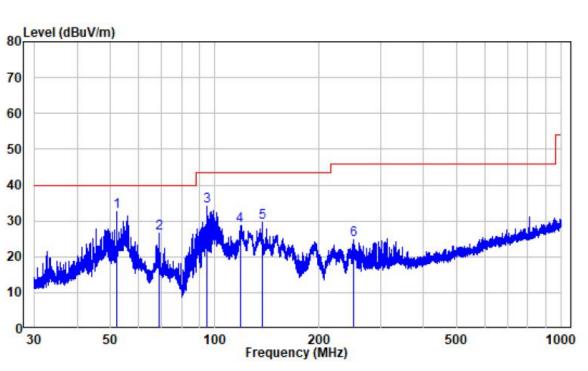
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	· <u> </u>
1	55.927	-10.19	42.69	32.50	40.00	-7.50	QP
2	102.046	-11.57	45.81	34.24	43.50	-9.26	Peak
3	171.017	-13.48	50.69	37.21	43.50	-6.29	QP
4	192.503	-11.27	48.60	37.33	43.50	-6.17	QP
5	285.978	-9.42	48.56	39.14	46.00	-6.86	QP
6	322.754	-8.35	47.95	39.60	46.00	-6.40	QP



	Freq	Factor		Level	Limit Line	Over Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.828	-11.26	44.56	33.30	40.00	-6.70	QP
2	52.002	-9.97	43.59	33.62	40.00	-6.38	QP
3	55.927	-10.19	43.98	33.79	40.00	-6.21	QP
4	160.627	-14.22	51.60	37.38	43.50	-6.12	Peak
5	192.587	-11.27	48.70	37.43	43.50	-6.07	QP
6	280.884	-9.56	47.78	38.22	46.00	-7.78	Peak

For H619B

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	55.927	-10.19	43.69	33.50	40.00	-6.50	QP
2	104.765	-11.81	45.04	33.23	43.50	-10.27	Peak
3	169.599	-13.62	50.23	36.61	43.50	-6.89	QP
4	190.990	-11.41	47.95	36.54	43.50	-6.96	QP
5	279.779	-9.59	48.96	39.37	46.00	-6.63	QP
6	330.629	-7.95	47.57	39.62	46.00	-6.38	QP

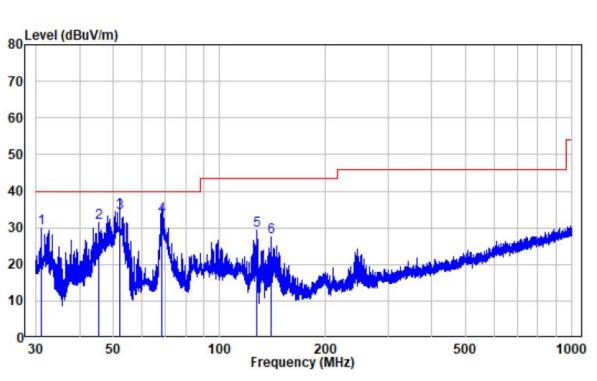

Vertical

	Freq	Factor		Level	Limit Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.875	-11.24	42.02	30.78	40.00	-9.22	Peak
2	55.952	-10.19	43.76	33.57	40.00	-6.43	QP
3	68.933	-14.27	46.18	31.91	40.00	-8.09	Peak
4	140.959	-15.49	52.16	36.67	43.50	-6.83	QP
5	193.518	-11.30	48.79	37.49	43.50	-6.01	QP
6	281.871	-9.52	48.38	38.86	46.00	-7.14	Peak

For H619C

80 Level (dBuV/m) L.L Frequency (MHz)

	Freq	Factor		Level			Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	33.489	-11.94	44.02	32.08	40.00	-7.92	Peak
2	45.296	-9.95	43.55	33.60	40.00	-6.40	Peak
3	52.002	-9.97	43.94	33.97	40.00	-6.03	QP
4	68.933	-14.27	45.49	31.22	40.00	-8.78	Peak
5	98.099	-12.23	41.10	28.87	43.50	-14.63	Peak
6	139.056	-15.40	42.68	27.28	43.50	-16.22	Peak


V	ert	ica	al

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	52.002	-9.97	42.45	32.48	40.00	-7.52	Peak
2	68.963	-14.28	40.85	26.57	40.00	-13.43	Peak
3	94.968	-12.49	46.70	34.21	43.50	-9.29	Peak
4	118.134	-13.19	41.85	28.66	43.50	-14.84	Peak
5	136.699	-15.16	44.77	29.61	43.50	-13.89	Peak
6	251.732	-10.70	35.52	24.82	46.00	-21.18	Peak

For H619D

80 Level (dBuV/m) З Frequency (MHz)

	Freq	Factor			Limit Line		Remark
1	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	48.057	-10.00	42.36	32.36	40.00	-7.64	QP
2	51.233	-9.95	43.69	33.74	40.00	-6.26	QP
3	96.099	-12.30	45.86	33.56	43.50	-9.94	Peak
4	128.057	-14.71	47.48	32.77	43.50	-10.73	Peak
5	139.056	-15.40	47.14	31.74	43.50	-11.76	Peak
6	257.648	-10.59	40.97	30.38	46.00	-15.62	Peak

Ver	tical

	Freq	Factor	Level	Level	Limit	Limit	Remark	
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	17	
1	31.098	-12.28	42.16	29.88	40.00	-10.12	Peak	
2	45.296	-9.95	41.39	31.44	40.00	-8.56	Peak	
3	52.002	-9.97	43.97	34.00	40.00	-6.00	QP	
4	68.511	-14.07	47.26	33.19	40.00	-6.81	QP	
5	127.609	-14.64	43.91	29.27	43.50	-14.23	Peak	
6	140.281	-15.46	43.05	27.59	43.50	-15.91	Peak	

1 GHz-25 GHz: (pre-scan all models, model H619E was worst case)

For Wi-Fi

Б	Re	eceiver	T (11	Rx An	tenna	Corrected	Corrected	T • •/	N .		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	802.11b Mode										
Low Channel (2412 MHz)											
2310	68.02	РК	336	1.7	Н	-7.24	60.78	74	-13.22		
2310	53.85	AV	336	1.7	Н	-7.24	46.61	54	-7.39		
2310	68.48	PK	163	1.8	V	-7.24	61.24	74	-12.76		
2310	53.86	AV	163	1.8	V	-7.24	46.62	54	-7.38		
2390	69.06	PK	5	1.8	Н	-7.22	61.84	74	-12.16		
2390	55.10	AV	5	1.8	Η	-7.22	47.88	54	-6.12		
2390	69.29	PK	359	1.5	V	-7.22	62.07	74	-11.93		
2390	54.97	AV	359	1.5	V	-7.22	47.75	54	-6.25		
4824	57.13	PK	286	1.5	Н	-3.53	53.60	74	-20.40		
4824	50.92	AV	286	1.5	Н	-3.53	47.39	54	-6.61		
4824	55.98	РК	167	1.6	V	-3.53	52.45	74	-21.55		
4824	52.18	AV	167	1.6	V	-3.53	48.65	54	-5.35		
			Middle (Channel	(2437N	/Hz)					
4874	57.77	PK	155	1.9	Η	-3.41	54.36	74	-19.64		
4874	52.84	AV	155	1.9	Н	-3.41	49.43	54	-4.57		
4874	56.47	PK	343	1.8	V	-3.41	53.06	74	-20.94		
4874	49.61	AV	343	1.8	V	-3.41	46.2	54	-7.80		
			High C	hannel (2462 M	IHz)					
2483.5	69.75	РК	52	1.8	Н	-7.2	62.55	74	-11.45		
2483.5	54.84	AV	52	1.8	Н	-7.2	47.64	54	-6.36		
2483.5	68.92	PK	168	1.7	V	-7.2	61.72	74	-12.28		
2483.5	54.82	AV	168	1.7	V	-7.2	47.62	54	-6.38		
2500	68.86	РК	8	1.9	Н	-7.18	61.68	74	-12.32		
2500	54.21	AV	8	1.9	Н	-7.18	47.03	54	-6.97		
2500	68.60	PK	80	1.7	V	-7.18	61.42	74	-12.58		
2500	54.22	AV	80	1.7	V	-7.18	47.04	54	-6.96		
4924	57.58	PK	45	2.0	Н	-3.16	54.42	74	-19.58		
4924	50.77	AV	45	2.0	Н	-3.16	47.61	54	-6.39		
4924	55.36	PK	251	1.8	V	-3.16	52.2	74	-21.80		
4924	48.55	AV	251	1.8	V	-3.16	45.39	54	-8.61		

Report No.: SZNS210715-61178E-RF

Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)	
	802.11g Mode									
Low Channel (2412 MHz)										
2310	67.34	PK	246	2.0	Н	-7.24	60.1	74	-13.90	
2310	52.95	AV	246	2.0	Н	-7.24	45.71	54	-8.29	
2310	67.56	PK	92	1.9	V	-7.24	60.32	74	-13.68	
2310	52.94	AV	92	1.9	V	-7.24	45.7	54	-8.30	
2390	68.05	РК	28	2.0	Н	-7.22	60.83	74	-13.17	
2390	54.15	AV	28	2.0	Н	-7.22	46.93	54	-7.07	
2390	68.56	PK	141	1.7	V	-7.22	61.34	74	-12.66	
2390	54.12	AV	141	1.7	V	-7.22	46.9	54	-7.10	
4824	54.17	РК	305	1.9	Н	-3.53	50.64	74	-23.36	
4824	54.95	РК	119	1.6	V	-3.53	51.42	74	-22.58	
			Middle (Channel	(2437 1	MHz)				
4874	55.18	РК	216	1.5	Н	-3.41	51.77	74	-22.23	
4874	54.99	РК	112	2.0	V	-3.41	51.58	74	-22.42	
			High C	hannel (2462 M	IHz)				
2483.5	69.01	РК	163	1.6	Н	-7.2	61.81	74	-12.19	
2483.5	54.88	AV	163	1.6	Н	-7.2	47.68	54	-6.32	
2483.5	68.68	РК	29	1.5	V	-7.2	61.48	74	-12.52	
2483.5	54.82	AV	29	1.5	V	-7.2	47.62	54	-6.38	
2500	69.05	РК	282	1.7	Н	-7.18	61.87	74	-12.13	
2500	54.25	AV	282	1.7	Н	-7.18	47.07	54	-6.93	
2500	68.28	РК	160	1.7	V	-7.18	61.1	74	-12.90	
2500	54.32	AV	160	1.7	V	-7.18	47.14	54	-6.86	
4924	54.09	РК	31	1.7	Н	-3.16	50.93	74	-23.07	
4924	54.35	РК	79	1.8	V	-3.16	51.19	74	-22.81	

Report No.: SZNS210715-61178E-RF

E	Receiver		Turntable	Rx An	tenna	Corrected	Corrected	T ••4	Marti	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
802.11n20 Mode										
Low Channel (2412 MHz)										
2310	67.65	PK	322	1.9	Н	-7.24	60.41	74	-13.59	
2310	53.04	AV	322	1.9	Н	-7.24	45.8	54	-8.20	
2310	68.30	PK	192	1.9	V	-7.24	61.06	74	-12.94	
2310	53.01	AV	192	1.9	V	-7.24	45.77	54	-8.23	
2390	68.67	PK	109	1.8	Н	-7.22	61.45	74	-12.55	
2390	54.24	AV	109	1.8	Н	-7.22	47.02	54	-6.98	
2390	68.19	PK	135	1.6	V	-7.22	60.97	74	-13.03	
2390	54.18	AV	135	1.6	V	-7.22	46.96	54	-7.04	
4824	54.31	PK	201	2.1	Н	-3.53	50.78	74	-23.22	
4824	54.91	РК	344	1.8	V	-3.53	51.38	74	-22.62	
	-		Middle C	Channel	(2437N	IHz)				
4874	55.38	РК	298	1.5	Н	-3.41	51.97	74	-22.03	
4874	54.34	PK	323	1.8	V	-3.41	50.93	74	-23.07	
			High Cł	nannel (2	2462 M	Hz)				
2483.5	69.08	PK	209	1.9	Н	-7.2	61.88	74	-12.12	
2483.5	54.87	AV	209	1.9	Н	-7.2	47.67	54	-6.33	
2483.5	68.63	РК	205	2.0	V	-7.2	61.43	74	-12.57	
2483.5	54.84	AV	205	2.0	V	-7.2	47.64	54	-6.36	
2500	68.92	РК	120	1.7	Н	-7.18	61.74	74	-12.26	
2500	54.24	AV	120	1.7	Н	-7.18	47.06	54	-6.94	
2500	68.67	РК	144	1.7	V	-7.18	61.49	74	-12.51	
2500	54.23	AV	144	1.7	V	-7.18	47.05	54	-6.95	
4924	54.48	РК	300	1.7	Н	-3.16	51.32	74	-22.68	
4924	54.37	РК	352	2.0	V	-3.16	51.21	74	-22.79	

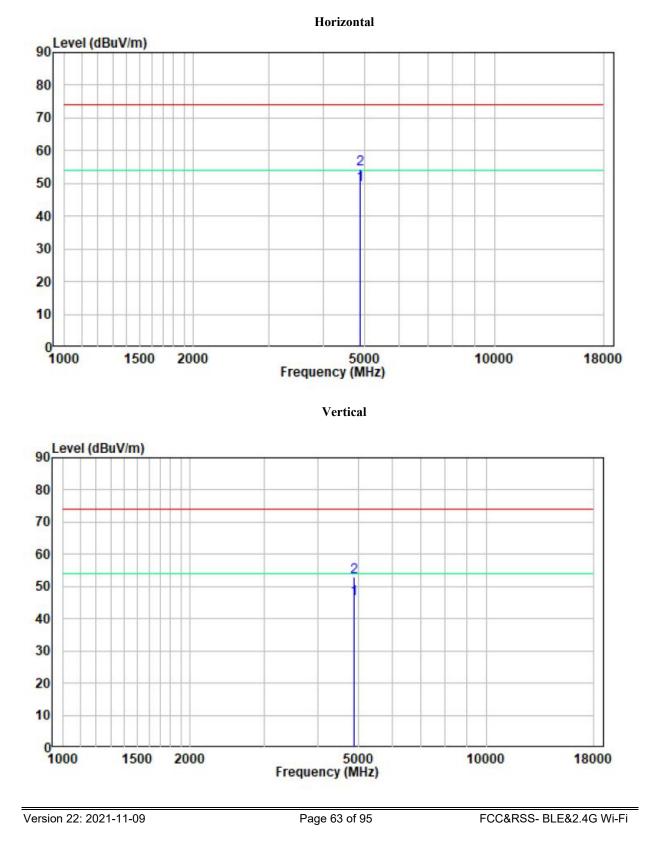
BLE:

F	Re	eceiver	T4 b-1-	Rx Ar	itenna	Corrected	Corrected	T ::4	Mauria	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel (2402 MHz)										
2310	67.56	РК	257	2.0	Н	-7.24	60.32	74	-13.68	
2310	54.47	AV	257	2.0	Н	-7.24	47.23	54	-6.77	
2310	68.29	PK	50	1.9	V	-7.24	61.05	74	-12.95	
2310	54.59	AV	50	1.9	V	-7.24	47.35	54	-6.65	
2390	68.53	РК	119	1.7	Н	-7.22	61.31	74	-12.69	
2390	56.01	AV	119	1.7	Н	-7.22	48.79	54	-5.21	
2390	67.97	РК	299	1.5	V	-7.22	60.75	74	-13.25	
2390	55.61	AV	299	1.5	V	-7.22	48.39	54	-5.61	
4804	59.41	РК	207	1.8	Н	-3.51	55.90	74	-18.10	
4804	51.61	AV	207	1.8	V	-3.51	48.10	54	-5.90	
4804	59.18	РК	350	2.0	Н	-3.51	55.67	74	-18.33	
4804	50.72	AV	350	2.0	V	-3.51	47.21	54	-6.79	
			Middle C	hannel	(2440 N	(Hz)				
4880	58.72	PK	15	1.6	Н	-3.38	55.34	74	-18.66	
4880	50.35	AV	15	1.6	V	-3.38	46.97	54	-7.03	
4880	57.78	РК	67	2.1	Н	-3.38	54.40	74	-19.60	
4880	48.27	AV	67	2.1	V	-3.38	44.89	54	-9.11	
		L	High Ch	annel (2	2480 M	Hz)				
2483.5	69.73	РК	191	2.1	Н	-7.2	62.53	74	-11.47	
2483.5	57.07	AV	191	2.1	Н	-7.2	49.87	54	-4.13	
2483.5	68.65	PK	192	1.9	V	-7.2	61.45	74	-12.55	
2483.5	56.93	AV	192	1.9	V	-7.2	49.73	54	-4.27	
2500	68.34	PK	84	1.9	Н	-7.18	61.16	74	-12.84	
2500	55.73	AV	84	1.9	Н	-7.18	48.55	54	-5.45	
2500	68.98	PK	233	2.1	V	-7.18	61.8	74	-12.20	
2500	55.79	AV	233	2.1	V	-7.18	48.61	54	-5.39	
4960	57.46	РК	194	1.8	Н	-3.01	54.45	74	-19.55	
4960	47.70	AV	194	1.8	V	-3.01	44.69	54	-9.31	
4960	55.93	РК	327	1.7	Н	-3.01	52.92	74	-21.08	
4960	45.50	AV	327	1.7	V	-3.01	42.49	54	-11.51	

Note:

 $Corrected \ Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$

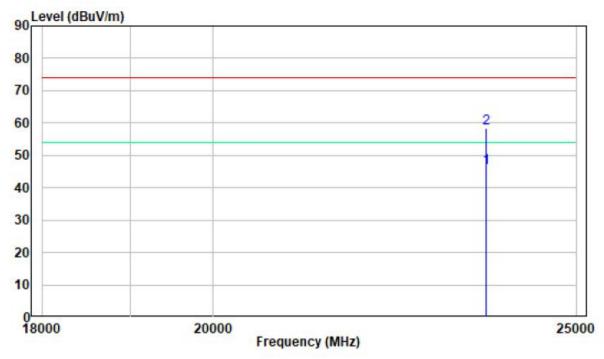
Corrected Amplitude = Corrected Factor + Reading

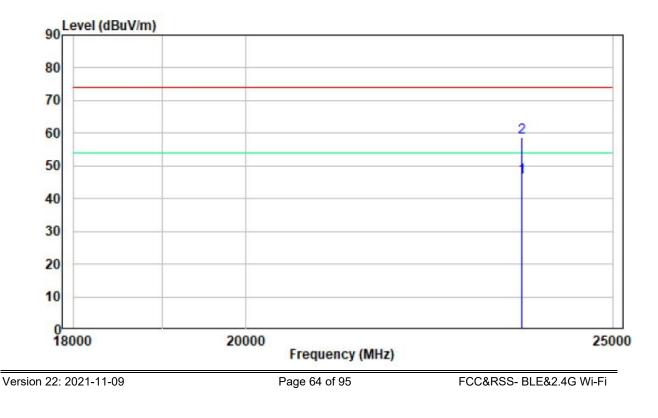

Margin = Corrected. Amplitude - Limit

The other spurious emission which is 20dB to the limit was not recorded.

The test result of peak was less than the limit of Average, so just peak value were recorded.

1-18 GHz:


Pre-scan for 802.11b Low Channel


18 -25GHz:

Pre-scan for 802.11b Low Channel

§15.247 (a)(2) & RSS-Gen§6.7 RSS-247 § 5.2 (a) 99% OCCUPIED BANDWIDTH & 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "6 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

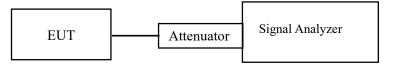
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 6 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 6 dB bandwidth if the device is not transmitting continuously.


• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 6 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

Version 22: 2021-11-09

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed

in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

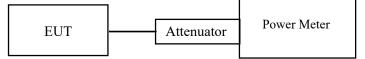
The testing was performed by Black Ding on 2021-12-21 and 2021-12-22.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§15.247(b)(3) & RSS-247 § 5.4(d) MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

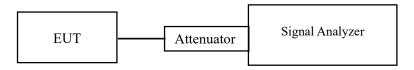
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Black Ding on 2021-12-21 and 2021-12-22.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.


§ 15.247(d) & RSS-247 § 5.5 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

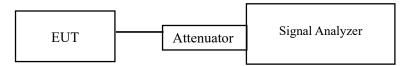
Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Black Ding on 2021-12-21 and 2021-12-22.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§15.247(e) & RSS-247 § 5.2 (b) POWER SPECTRAL DENSITY


Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

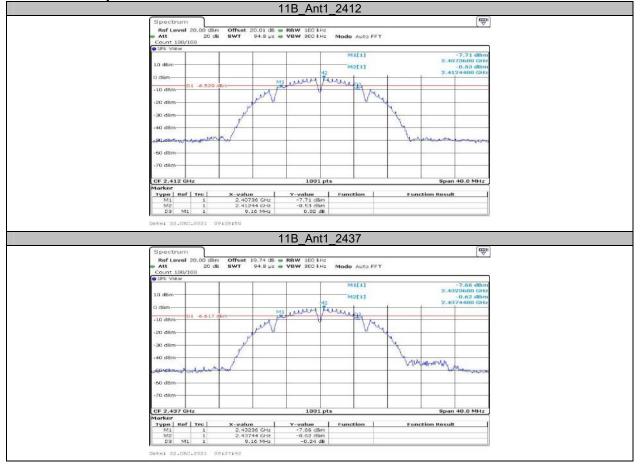
Test Data

Environmental Conditions

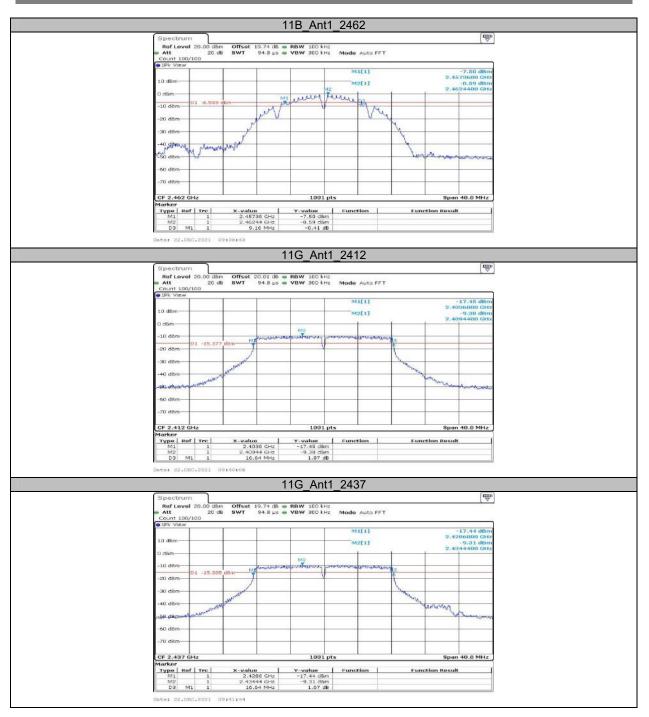
Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Black Ding on 2021-12-21 and 2021-12-22.

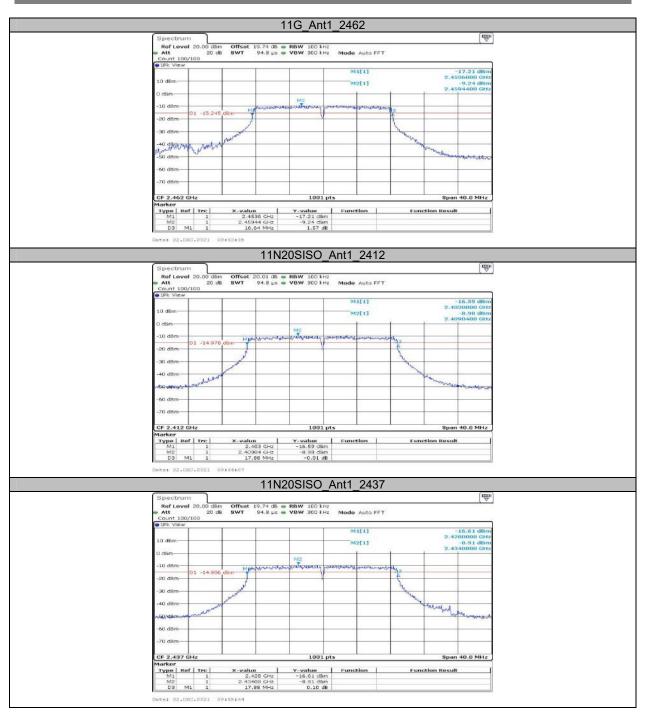
EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

APPENDIX Wi-Fi

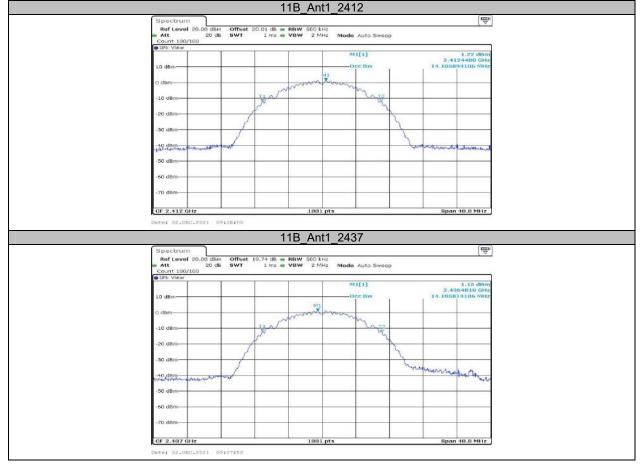

Appendix A: DTS Bandwidth Test Result

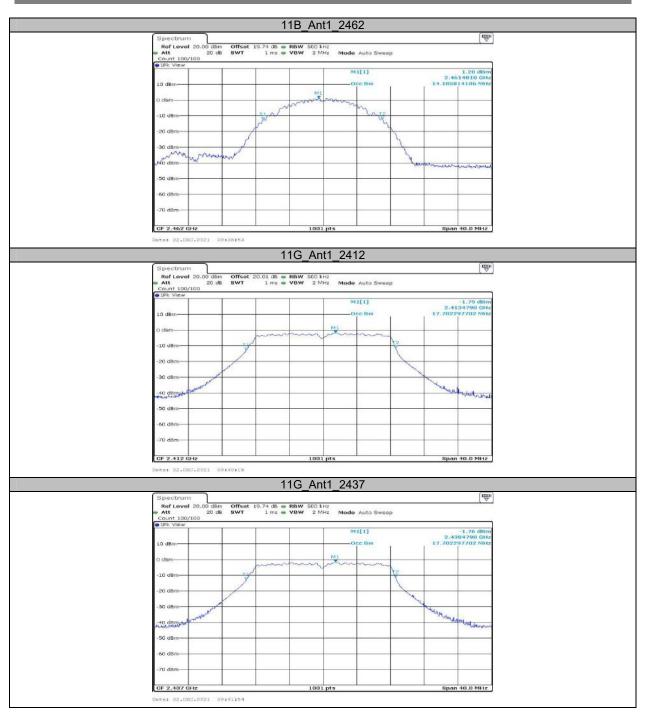
Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	9.160	0.5	PASS
11B	Ant1	2437	9.160	0.5	PASS
		2462	9.160	0.5	PASS
	Ant1	2412	16.640	0.5	PASS
11G		2437	16.640	0.5	PASS
		2462	16.640	0.5	PASS
	Ant1	2412	17.880	0.5	PASS
11N20SISO		2437	17.880	0.5	PASS
		2462	17.880	0.5	PASS


Test Graphs

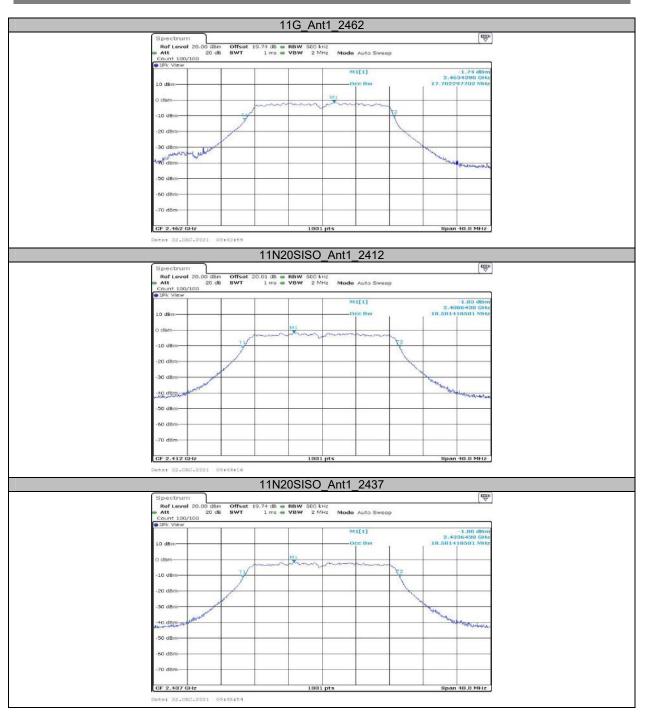
Report No.: SZNS210715-61178E-RF

Report No.: SZNS210715-61178E-RF


Report No.: SZNS210715-61178E-RF


Report No.: SZNS210715-61178E-RF

Appendix B: Occupied Channel Bandwidth Test Result

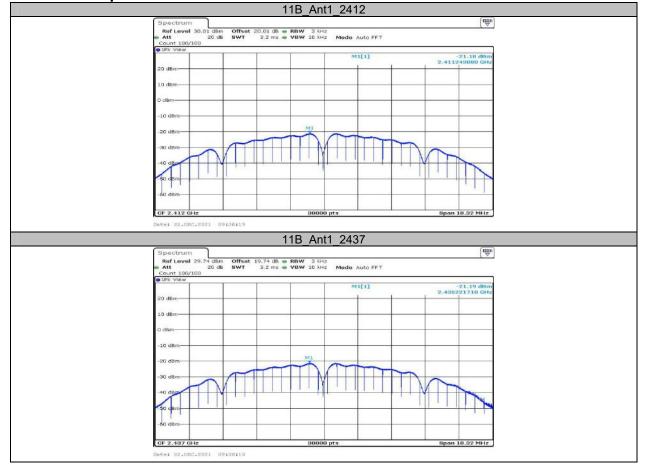

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2412	14.106		PASS
11B	Ant1	2437	14.186		PASS
		2462	14.186		PASS
		2412	17.702		PASS
11G	Ant1	2437	17.702		PASS
		2462	17.702		PASS
		2412	18.581		PASS
11N20SISO	Ant1	2437	18.581		PASS
		2462	18.581		PASS

Report No.: SZNS210715-61178E-RF

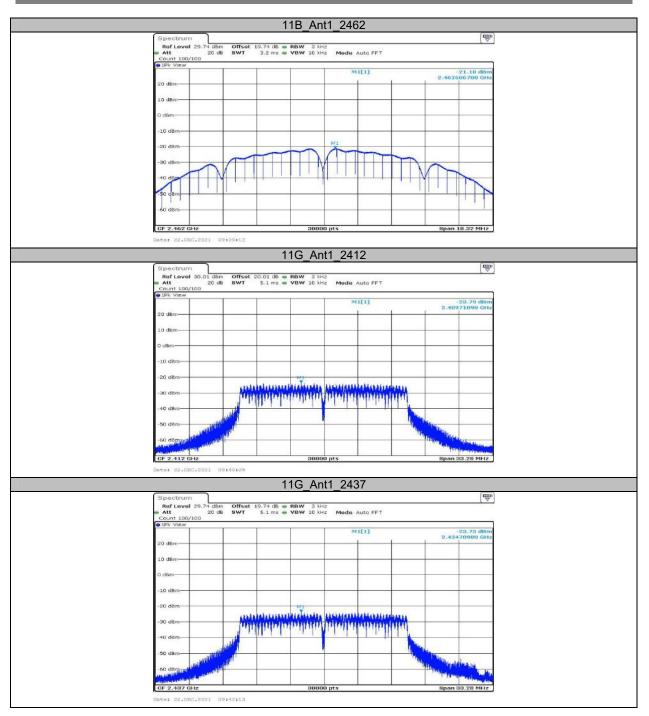
Report No.: SZNS210715-61178E-RF

Report No.: SZNS210715-61178E-RF

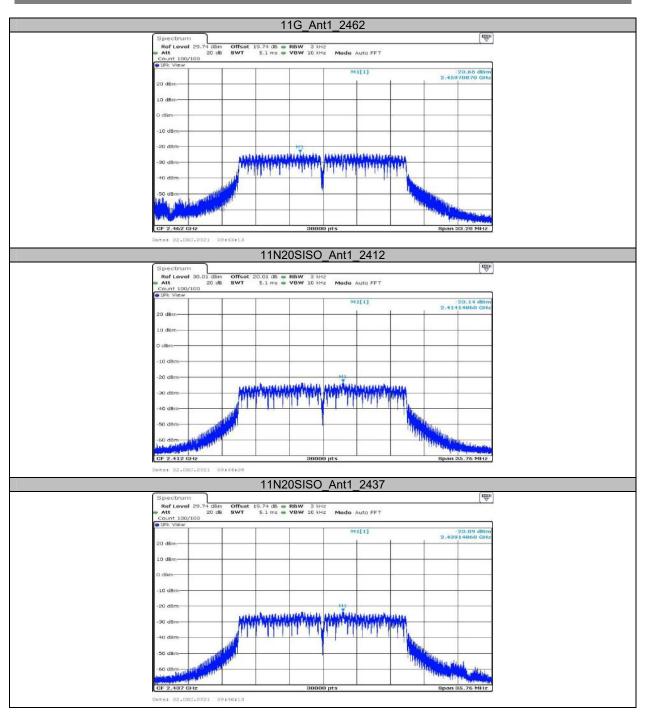
Spectrum		
 Att 20 dB SWT Count 100/100 	4 dB RBW 500 kHz 1 ms VBW 2 MHz Mode Auto Sweep	
 1Pk View 		
10 d8m	M1[1] Occ 8w	-1.69 dBm 2.4586430 GHz 18.581418581 MHz
0 dBm	MI month	
-10 dBm-	2	
-20 d8m		
-30 dam		The second
V40 dem		mature and the server
-50 dBm		
-60 dBm		
-70 dBm-		
CF 2.462 GHz	1001 pts	Span 40.0 MHz

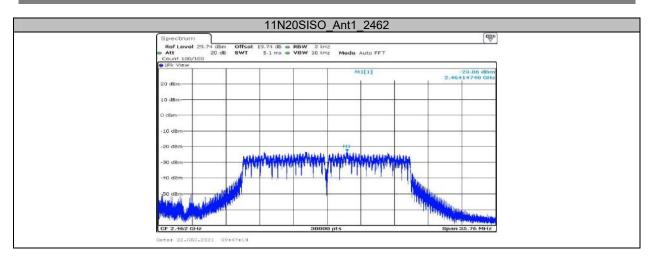

Appendix C: Maximum conducted output power Test Result

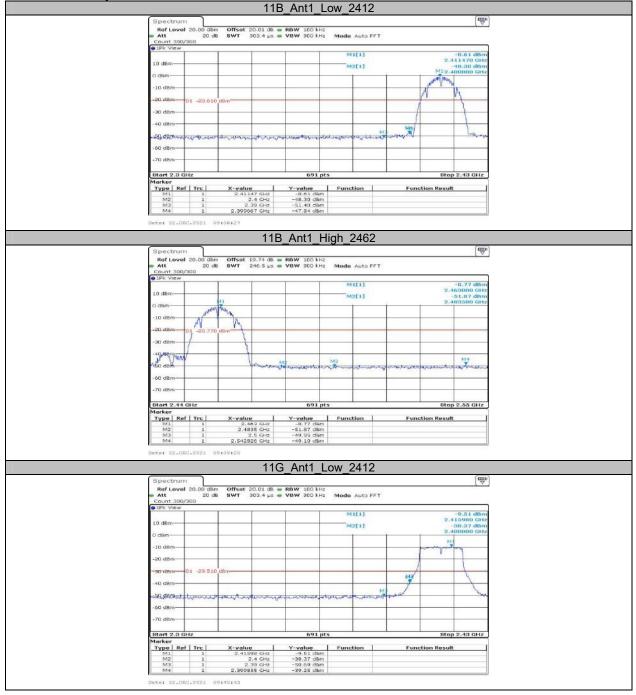
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	11.48	≤30	PASS
11B	Ant1	2437	11.63	≤30	PASS
		2462	11.74	≤30	PASS
		2412	10.02	≤30	PASS
11G	Ant1	2437	10.24	≤30	PASS
		2462	10.09	≤30	PASS
		2412	10.71	≤30	PASS
11N20SISO	Ant1	2437	11.02	≤30	PASS
		2462	11.28	≤30	PASS

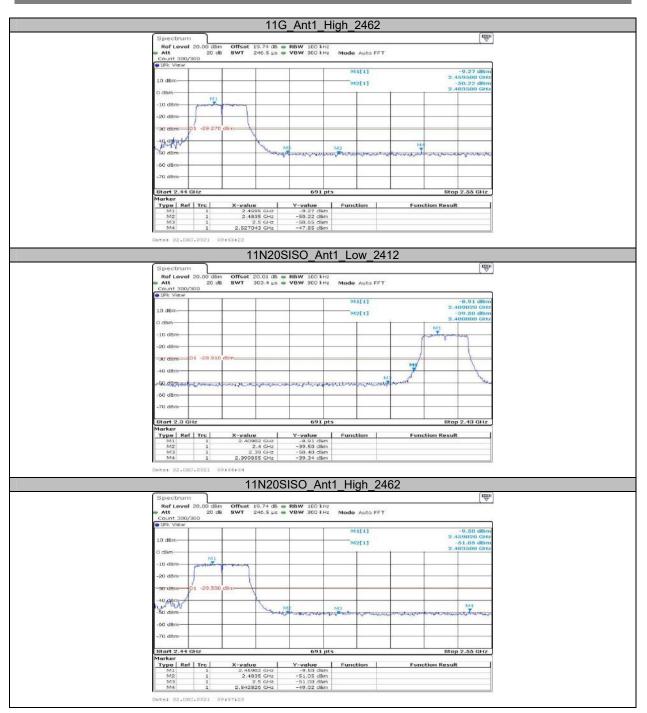

Note: the maximum antenna gain is 1.5dBi, the maximum EIRP=11.74dBm+1.5dBi=13.24dBm<36dBm, so EUT compliance with EIRP limit of ISEDC.

Appendix D: Maximum power spectral density Test Result


Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-21.18	≤8	PASS
11B	Ant1	2437	-21.19	≤8	PASS
		2462	-21.18	≤8	PASS
		2412	-23.79	≤8	PASS
11G	Ant1	2437	-23.73	≤8	PASS
		2462	-23.65	≤8	PASS
		2412	-23.14	≤8	PASS
11N20SISO	Ant1	2437	-23.09	≤8	PASS
		2462	-23.06	≤8	PASS


Report No.: SZNS210715-61178E-RF

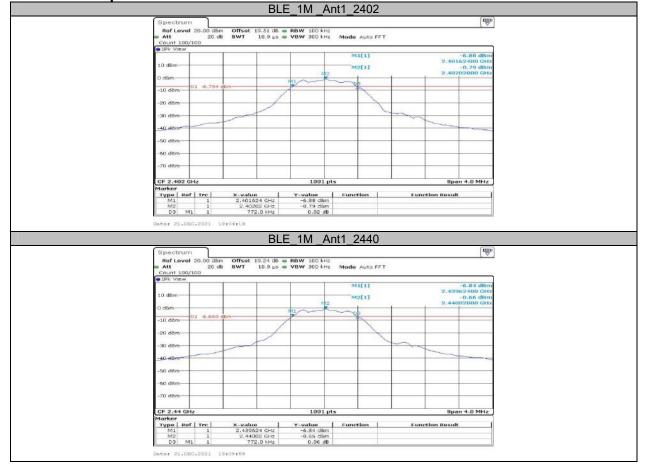

Report No.: SZNS210715-61178E-RF


Report No.: SZNS210715-61178E-RF

Appendix E: Band edge measurements Test Graphs

Report No.: SZNS210715-61178E-RF

Appendix F: Duty Cycle Test Result


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11B	Ant1	2437	30.00	30.00	100.00
11G	Ant1	2437	30.00	30.00	100.00
11N20SISO	Ant1	2437	30.00	30.00	100.00

rest oraphs										
				1	1B_Ant	t1_243	57			
	Spectrur									
	Ref Leve	al 20.00 dBn	Offset	19.74 dB	RBW 10 M	HZ				
	SGL TRG:1	/ID	- SWI	Jo ms	1014 10 101					
	e 1Pk Clrw			1		1	12	1	1	
	10 dBm									
		TRG 5.500	dem						-	
	0 dBm									
	-10 dBm	-								
	-20 dBm									
	-30 dBm	-							-	
	-40 dBm									
	-50 dBm					-	-			-
	-60 dBm	-					-		-	
	-70 dBm									
	GF 2.437	GHz			1001	pts				3.0 ms/
	Date: 32.D		9:37:30							
				4	10 1	4 040	7			
				1	1G_An	n_243	57			
	Spectrur		Official	10.74 db =	BBW 10 M	LIN.				("
	Att	al 20.00 dBn 20 dB	swr	30 ms .	RBW 10 M VBW 10 M	HZ				
	SGL TRG: V	VID								
			CONCERNENCE PROV						and the second	
	development	TRG 6.700	مداديا الالالعالية	indexelocation and the second second	البادية والمايية	halladhaladha	لمتعقله بالترفاح بالترف	and the second second	dedistribution	alladistically
	0 dBm									
	-10 dBm									
	-20 d8m	-								
	-30 dem									
	-30 dBm									
	-40 d8m	-							-	
	-50 dBm									
	-60 dBm			-					-	
	-70 dBm									
	GF 2.437		•		1001	pts				3.0 ms/
	Date: 32.D	GC.3021 0	9:41:32							
				11N2	0SISO	Ant1	2437			
	Spectrur	71				_	-			[₩
	Ref Leve	al 20.00 dBn	Offset	19.74 dB 🖷	RBW 10 M	HZ				
	SGL TRG:	20 di /ID	swt	30 ms •	YBW 10 M	HZ				
	IPk Clrw	1		r	1 1			r	r	
	Jane and a local sector	at a back of a back	a desta subscription	al a la hora da	and and a second second	nto Malanda	and second when the	and a lite least on the	tadat of stale	فيعاد بالحاد المع
	12.29/CH201	TRG 6.400	dBm-					a alto det mar		And a second
	0 dBm									
	-10 dBm									
	-10 00/0-									
	-20 d8m									
	-30 dem	-							-	
	-40 d8m	1								
		-			-				-	
	-50 dBm-									
	-50 dBm	-								
	-60 dBm									
	-60 dBm				1001	pts				3.0 ms/
	-60 dBm		9145133		1001	pts				3.0 ms/
21-11-09	-60 dBm		9143103		Page					3.0 ms/


APPENDIX BLE

Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
	BLE_1M Ant1	2402	0.772	0.5	PASS
BLE_1M		2440	0.772	0.5	PASS
		2480	0.772	0.5	PASS

Report No.: SZNS210715-61178E-RF

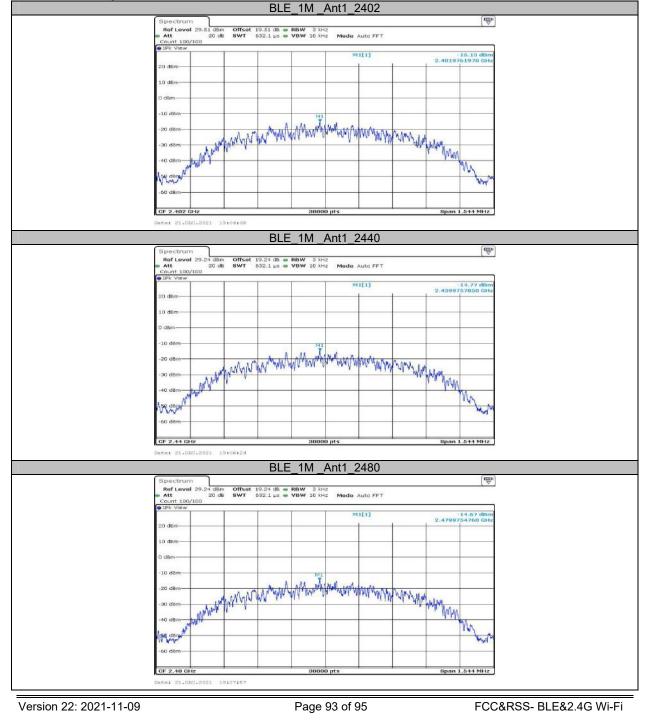
Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.067		PASS
BLE_1M	Ant1	2440	1.067		PASS
		2480	1.063		PASS

		E	BLE 1M	_Ant1_2402				
	Spectrum							
	Ref Level 20.00 de	6m Offset 19.51 dB SWT 37.9	dB = RBW 50 µs = VBW 200	kHz kHz Mode Auto F	FT		100 C	
	Count 100/100				01403			
	APR 100	1		M1[1]		-2	66 dBm	
	10 dBm			Occ Bw		2,40200	167 MHz	
	o dam		0	Km		-		
	-10 dBm-		m	m				
			TY-	12				
	-20 dBm		1					
	-30 dBm	1	8					
	-40 d8m				- man			
	the dem	~						
	-50 dBm-	+ +		+ +				
	-50 dBm-							
	~70 dBm							
				01 pts		Span 4	D MULT	
	CF 2.402 GHz Date: 21.DEC.2021	19:04:29	100					
)			
	Date: 21.DEC.2021			Ant1_2440	1		(m)	
_	Date: 21.DBC.2021 Spectrum Ref Level 20.00 df	Bm Offset 19.24	BLE_1M_	_Ant1_2440	NY 284			
	Spectrum Rof Lovel 20.00 of Att Count 100/100	Bm Offset 19.24	BLE_1M_	_Ant1_2440	NY 284		(cm a)	
	Spectrum Rof Level 20.00 df	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	-2		
	Date: 23.086.2923 Spectrum Rof Level 20.00 df Att 20 Count 100/100 91Pk View	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Spectrum Rof Lovel 20.00 of Att Count 100/100	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	-2. 2.4+0000 1.0669330	51 dBm 400 GHz	_
	Date: 23.086.2923 Spectrum Rof Level 20.00 df Att 20 Count 100/100 91Pk View	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Date: 23.086.2023 Spectrum Rof Lovel 20.00 df Att 20. Count 300/100 IN View 10 dBm 0 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Spectrum Rof Lovel 20.00 dl Att Count 100/100 D lPk View 10 dBm -10 dBm-	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Date: 23.086.2023 Spectrum Rof Lovel 20.00 df Att 20. Count 300/100 IN View 10 dBm 0 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Spectrum Rof Lovel 20.00 dl Att Count 100/100 D lPk View 10 dBm -10 dBm-	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Spectrum Rof Level 20.00 df Att 20. Count 300/100 IPk View 10 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	NY 284	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Rof Level 20.00 df Att 200 © 1Pk View 10 dBm -10 dBm -20 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Spectrum Rof Level 20.00 df Att 20. Count 300/100 IPk View 10 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Spectrum Rof Level 20.00 of Att 20. Count 100/100 9 19k View 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Spectrum Rof Level 20.00 df Att 20. Count 100/100 IPik View I0 dBm 0 dBm -20 dBm -30 dBm -40 dBm -30 dBm -	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021 Spectrum Rof Level 20.00 of Att 20. Count 100/100 9 19k View 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 400 GHz	
	Date: 23.000.2021	Bm Offset 19.24	BLE_1M_	Ant1_2440	FT	2,44000	51 dBm 600 GHz 667 MHz	

Report No.: SZNS210715-61178E-RF

Spectrum					
Count 100/100	19.24 dB 🛑 RBW 37.9 µs 🖶 VBW		Auto FFT		
 1Pk View 					
10 dBm-	 		(1] c Bw		-2.29 dBn 2.48000400 GHz 1.062937063 MHz
o dam	 1	mm			
-10 dBm	 TY N	ere wh	12		
-20 dBm	1		1		
-30 dBm	 \sim		~	m	
-50 dBm					
-60 dBm	 				
-70 dBm-					
CF 2.48 GHz	 	1001 pts			Span 4.0 MHz


Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	0.71	≤30	PASS
BLE_1M	Ant1	2440	1.04	≤30	PASS
		2480	1.34	≤30	PASS

Note: the maximum antenna gain is 1.5dBi, the maximum EIRP=1.34dBm+1.5dBi=2.84dBm<36dBm, so EUT compliance with EIRP limit of ISEDC.

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-15.13	≤8	PASS
BLE_1M	Ant1	2440	-14.77	≤8	PASS
		2480	-14.67	≤8	PASS

Appendix E: Band edge measurements Test Graphs

BLE_1M _Ant1_Low_2402	
Spectrum	
Ref Level 20.00 dBm Offset 19.51 dB = RBW 100 kHz Att 20 dB SWT 132.7 µs = VBW 300 kHz Mode Auto FFT	
Count 300/300	
Mi[i]	-0.91 dBm 2.4020150 GHz
10.d8m M2[1]	-41.56 dBm 2.4000000 GHz
0 dBm	7
-10 dBm	
-20.d8m D1 -20.910 d8m	
-30 dBm	
-40 d8m	19 ×
13 stan - how many of the hard a star way of the many of the start of	-M
- 60 dBm-	· · · · · · · · · · · · · · · · · · ·
-70 d8m	
8tort 2.35 GHz 691 pts 1	Stop 2,405 GHz
Marker	
Type Ref Trc X-value Y-value Function Function R M1 1 2.402015 GHz -0.91 dam Function Function R	tesult
M2 1 2.4 GHz -41.56 dBm M3 1 2.39 GHz -51.60 dBm	
M4 1 2.3999783 GHz -41.57 dBm	
BLE_1M _Ant1_High_2480	
BLE_1M_Ant1_High_2480	(@)
BLE_1M _Ant1_High_2480	
 BLE_1M_Ant1_High_2480	
BLE_1M_Ant1_High_2480	-0.44 dBm 2.400010 GHz
BLE_1M_Ant1_High_2480	-0.44 dBm
BLE_1M_Ant1_High_2480 Spectrum Bef Level 20.00 dbm Offset 19.24 db = RBW 100 kHz Att 20 db SWT Lins = VBW 300 kHz Mode Auto Sweep Offset VBW 300 kHz 10 dbm M11	-0.44 dBm 2.480010 CH2 -47.10 dBm
BLE_1M_Ant1_High_2480 Spectrum Bef Level 20.00 dbm Offset 19:24 db = RBW 100 kH2 Att 20 db BWT SWT 1.1 ms = VBW 300 kH2 Mode Auto Sweep Outstand Bit View 10 dbm -10 dbm	-0.44 dBm 2.480010 CH2 -47.10 dBm
BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dBm Offsot 19:24 dB = RBW 100 kHz Ant 20 dB BWT 1:1ms = VBW 300 kHz Count 300/300 @ IPF View Miliii 10 dBm M1 -20.dBm 01 -90.440 dBm	-0.44 dBm 2.480010 CH2 -47.10 dBm
BLE_1M_Ant1_High_2480 Spectrum Bef Level 20.00 dbm Offset 19:24 db = RBW 100 kH2 Att 20 dB SWT 1:1 ms = VBW 300 kH2 Mode Auto Sweep Count 300/300 IIF View 10 dbm M1 -10 dBm 1, 20.440 dbm -30 dBm 1, 20.440 dbm	-0.44 dBm 2.480010 CH2 -47.10 dBm
BLE_1M_Ant1_High_2480 Spectrum ref toxed 20.00 dbm offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Count 300/300 Offset 19.24 db # RBW 100 kH2 Mage 100 kH2<	-0.44 dBm 2.400010 GHz -47.10 dBm 2.403000 GHz
BLE_1M_Ant1_High_2480	-0.44 dBm 2.400010 GHz -47.10 dBm 2.403000 GHz
BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dbm Offset 19:24 db = RBW 100 kH2 Att 20.00 dbm Offset 19:24 db = RBW 100 kH2 Att 20.00 dbm Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Offset 19:24 db = RBW 100 kH2 Mode Auto Sweep Of dbm M1 Of dbm M1 Of dbm M1 Of d	-0.44 dBm 2.400010 GHz -47.10 dBm 2.403000 GHz
BLE_1M_Ant1_High_2480	-0.44 dBm 2.400010 GHz -47.10 dBm 2.403000 GHz
BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dbm Offset 19.24 db = RBW 100 kH2 Att 20 dB SWT 1.1 ms = VBW 300 kH2 Mode Auto Sweep Count 300/300 SIFk View 10 dbm -10 dbm -20 dBm -30 dbm -00 dBm -30 dbm -40 dbm -30 dbm	-0.44 dBm 2.400010 GHz -47.10 dBm 2.403000 GHz
BLE_1M_Ant1_High_2480 Spectrum Rof toxol 20.00 dbm Offset 19.24 db = RBW 100 Hig Alt 20 db SWT 11 ms = VBW 300 Hig Mode Auto Sweep Image: Sweet 10.24 db = RBW 100 Hig Colspan="2">Colspan="2">Sweet 10.24 db = RBW 100 Hig Colspan="2">Colspan="2">Sweet 10.24 db = RBW 100 Hig Colspan="2">Colspan="2">Colspan="2">Sweet 10.20 Hig Sweet 10.20 Hig Offset 10.20 Hig Sweet 10.20 Hig	-0.44 dBm 2.40010 GHz -47.10 dBm 2.403000 GHz 3.403000 GHz Stop 2.55 GHz
BLE_1MAnt1_High_2480 Spectrum ref toxel 20.00 dbm_Offset 19.24 db = RBW 100 kH2 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Offset 19.24 db = RBW 100 kH2 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Mode Auto Sweep Mode Auto Sweep Colspan="2" Mode Auto Sweep Colspan="2">Mode Auto Sweep Colspan="2">Mode Auto Sweep Colspan="2">Mode Auto Sweep Colspan="2" </td <td>-0.44 dBm 2.40010 GHz -47.10 dBm 2.403000 GHz 3.403000 GHz Stop 2.55 GHz</td>	-0.44 dBm 2.40010 GHz -47.10 dBm 2.403000 GHz 3.403000 GHz Stop 2.55 GHz
BLE_1M_Ant1_High_2480	-0.44 dBm 2.40010 GHz -47.10 dBm 2.403000 GHz 3.403000 GHz Stop 2.55 GHz

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2440	0.15	0.33	45.45

Test Graphs

	el 20.00					W 10 M									
SGL TRG) dB 🖷	SWT	5 m	s . VB	W 10 M	-la								
SGL TRG Pk Cirw								_			_		_	_	
arn ser	1	1		C	-			M1	[1]				-	-0.0	7 dBr
10000														940	4 00.C
10 dBm-			2					01	[1]						.96 dl
O dBm		1	¥							4			- 1	150	1.00 µ
	TRG -5.	500 dB	D			- 11		-						_	2.0
-10 dBm-				1			-	-		-	-			-	-
See. 1. 1975															
-20 dBm-															
-30 dBm-		-	D1											_	-
elsed	HARANSES!	Harb	Rubal	4	<i>leck-where</i> l	**	Ameria		Heren	Shape	hadan !	4	Warth A	Vivia	1
-40 dBm-		9111			_			-		1.1			-	_	
-50 d8m-															
-60 dBm-												-		_	
-de dem															
-70 dBm-	-	-			_					-		-	-		
										1					
CF 2.44	GHz	_				1001	pts			-				500.	0 µs/
Marker		· · · ·													
	tef Tre		x-value			value		uncti	ion		Fund	tion R	asult		
M1 D1	M1 1			40.0 μs 50.0 μs		-0.07 dBr -29.36 d									
D2	M1 1			30.0 µs		-6.07 d									

***** END OF REPORT *****

Version 22: 2021-11-09