RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in $\S 1.1307$ (b)

FCC ID: 2AQ9M-SIM3200
EUT Specification

EUT	RFID module
Frequency band (Operating)	WLAN: $2.412 \mathrm{GHz} \sim 2.462 \mathrm{GHz}$ WLAN: $5.18 \mathrm{GHz} \sim 5.24 \mathrm{GHz}$ WLAN: $5.745 \mathrm{GHz} \sim 5.825 \mathrm{GHz}$ Others: RFID: 902.75~927.25MHz
Device category	Portable ($<20 \mathrm{~cm}$ separation) Mobile ($>20 \mathrm{~cm}$ separation) Others \qquad
Exposure classification	Occupational/Controlled exposure General Population/Uncontrolled exposure
Antenna diversity	Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Antenna gain (Max)	4 dBi
Evaluation applied	MPE Evaluation SAR Evaluation

Limits for Maximum Permissible Exposure(MPE)

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Average Time	
(A) Limits for Occupational/Control Exposures					
$\mathbf{3 0 0 - 1 5 0 0}$	--	-	F/300	$\mathbf{6}$	
$\mathbf{1 5 0 0 - 1 0 0 0 0 0}$	--	-	$\mathbf{5}$	$\mathbf{6}$	
(B) Limits for General Population/Uncontrol Exposures					
$\mathbf{3 0 0 - 1 5 0 0}$	--	-	F/1500	$\mathbf{3 0}$	
$\mathbf{1 5 0 0 - 1 0 0 0 0 0}$	--	-	$\mathbf{1}$	$\mathbf{3 0}$	

Friis transmission formula: $\mathbf{P d}=($ Pout*G) $\mathbf{(4 * p i * R 2)}$

Where
$\mathrm{Pd}=$ Power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout=output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$\mathrm{R}=$ distance between observation point and center of the radiator in cm
Pd the limit of MPE. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Max Measurement Result

Operating Mode	Measured Power	Tune up tolerance	Max. Tune up Power	Antenna Gain	Power density at 20 cm	Power density Limits $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
	(dBm)	(dBm)	(dBm)	(dBi)	$\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	
RFID	29.850	29.850	± 1	30.850	4	2421

Note: These 4 antennas are from the same RF feed point. The antenna ports are all transmitted individually, not simultaneously.

Result: No Standalone SAR test is required.

