

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (1) of (35)

TEST REPORT Part 15 Subpart C 15.247

Equipment under test	Base station
Model name	TGBS900BA
FCC ID	2AQ9G-TGBS900BA
Applicant	Trianglecnc co., Ltd.
Manufacturer	Trianglecnc co., Ltd.
Date of test(s)	2019.01.09 ~ 2019.01.30
Date of issue	2019.04.01

Issued to

Trianglecnc co., Ltd.

B-720, Building Kumkang Penterium IT tower, 282, Hagui-ro, Dongang-gu, Anyang-si, Gyeonggi-go, Republic of Korea Tel: +82-02-6408-7874/ Fax: +82-031-423-7874

> Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
22	
Yeong-Jun, Cho	Hyeon-Su, Jang
Test engineer	Technical manager

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (2) of (35)

Revision history

Revision	Date of issue	Test report No.	Description
-	2019.04.01	KES-RF-19T0033	Initial

Test report No .: KES-RF-19T0033 Page (3) of (35)

TABLE OF CONTENTS

1.	Gene	eral information	4
	1.1.	EUT description	4
	1.2.	Test configuration	5
	1.3.	Information about derivative model	
	1.4.	Accessory information	5
	1.5.	Software and Firmware description	5
	1.6.	Measurement results explanation example	
	1.7.	Measurement Uncertainty	6
	1.8.	Frequency/channel operations	6
	2.	Summary of tests	7
	3.	Test result	8
	3.1.	$20 \mathrm{dB} \mathrm{bandwidth} \dots$	8
	3.2.	Output power 1	10
	3.3.	Carrier frequency separation	
	3.4.	Number of hopping frequency 1	13
	3.5.	Time of occupancy	4
	3.5.	Radiated restricted band and emissions 1	۱5
	3.8.	AC conducted emissions	31
Арр	endix	A. Measurement equipment	33
App	endix	1 1	
		* *	

1. General information

Applicant:	Trianglecnc co., Ltd.			
Applicant address:	B-720, Building Kumkang	Penterium IT tower, 282, Hagui-	ro, Dongang-gu,	
	Anyang-si, Gyeonggi-go, R	Republic of Korea		
Test site:	KES Co., Ltd.			
Test site address:	3701, 40, Simin-daero 365b	beon-gil, Dongan-gu, Anyang-si,		
	Gyeonggi-do, 14057, Korea	1		
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea			
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148			
	ISED Registration No.: 232	298		
FCC rule part(s):	15.247			
FCC ID:	2AQ9G-TGBS900BA			
Test device serial No.:	Production	Pre-production	Engineering	

1.1. EUT description

Equipment under test	Base station
Frequency range	FHSS: 906.4 MHz ~923.5 MHz
Model:	TGBS900BA
Modulation technique	FHSS
Antenna specification	Antenna type : Dipole antenna, Peak gain : 2.850 dBi
Power source	AC 120 V
Number of channels	FHSS : 50

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals. 15.247(g): The system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): The system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 50 RF channels.

Equal hopping frequency use

The channels of this system will be used equally over the long-term distribution of the hopsets.

Example of a 50 hopping sequence in data mode:

03, 24, 31, 20, 05, 10, 43, 36, 23, 30, 11, 06, 09, 50, 01, 40, 13, 44, 07, 08, 49, 16, 41, 34, 21, 04, 15, 12, 29, 22, 35, 18, 27, 32, 39, 46, 33, 42, 37, 38, 17, 14, 47, 26, 45, 28, 19, 48, 25, 02, 10, 35, 36, 38, 01, 06, 43, 02, 03, 48, 16, 34, 15, 25, 11, 41, 12, 42, 40, 14, 20, 13, 49, 05, 50, 45, 07, 47, 17, 18, 29, 32, 33, 08, 24, 22, 39, 37, 23, 30, 44, 09, 19, 04, 21, 28, 31, 46, 27, 26

System receiver input bandwidth

Each channel bandwidth is 1 MHz.

The system receivers have input bandwidth that match the hopping channel bandwidth of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2. Test configuration

The Trianglecnc co., Ltd. Base station FCC ID: 2AQ9G-TGBS900BA,

was tested per the guidance of ANSI C63.10-2013 and DA 00-705. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

1.3. Information about derivative model

N/A

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.5. Software and Firmware description

The software and firmware installed in the EUT is version 3.20

1.6. Measurement results explanation example

For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 0.98 + 30.00 = 30.98 (dB)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Test report No.: KES-RF-19T0033 Page (6) of (35)

1.7. Measurement Uncertainty

Test Item		Uncertainty		
Uncertainty for Conduction emission test		2.62 dB		
	9kHz - 30MHz	4.54 dB		
Uncertainty for Radiation emission test (include Fundamental emission)	30MHz - 1GHz	4.36 dB		
(include Fundamental emission)	Above 1 GHz	5.00 dB		
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95%				
confidence level using a coverage factor of k=2.				

1.8. Frequency/channel operations

Ch.	Frequency (Mz)
01	904.6
•	-
25	914.8
-	-
50	923.5

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (7) of (35)

2. Summary of	tests	
Reference	Test description	Test results
15.247(a)(1)(i)	20 dB bandwidth	Pass
15.247(b)(2)	Output power	Pass
15.247(a)(1)	Channel separation	Pass
15.247(a)(1)(i)	Number of channels	Pass
15.247(a)(1)(i)	Time of occupancy	Pass
15.205, 15.209	Radiated restricted band and emission	Pass
15.207(d)	Conducted band edge and out of band emissions	Pass
15.207(a)	AC conducted emissions	Pass

Test report No.: KES-RF-19T0033 Page (8) of (35)

3. Test result
3.1. 20 dB bandwidth
Test procedure
DA 00-705

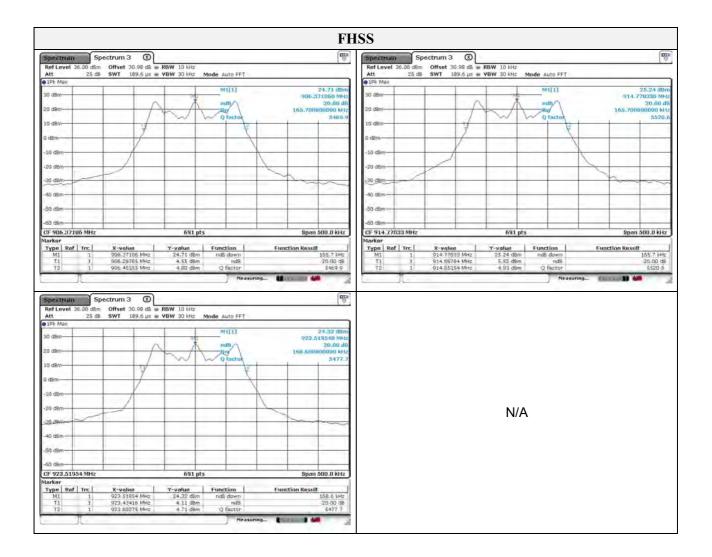
Test setting

- 1. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- 2. RBW \geq 1% of the 20 dB bandwidth
- 3. VBW \ge RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Sweep = auto couple
- 7. Trace mode = max hold

Limit

According to §15.247(a)(1)(i), For frequency hopping systems operating in the 902-928 MHz band: if t he 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 ho pping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 s econds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or gre ater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any f requency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test results		
Frequency(Mz)	20 dB bandwidth(Mz)	Limit(Mb)
906.4	0.166	
914.8	0.166	0.250
923.5	0.169	



KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

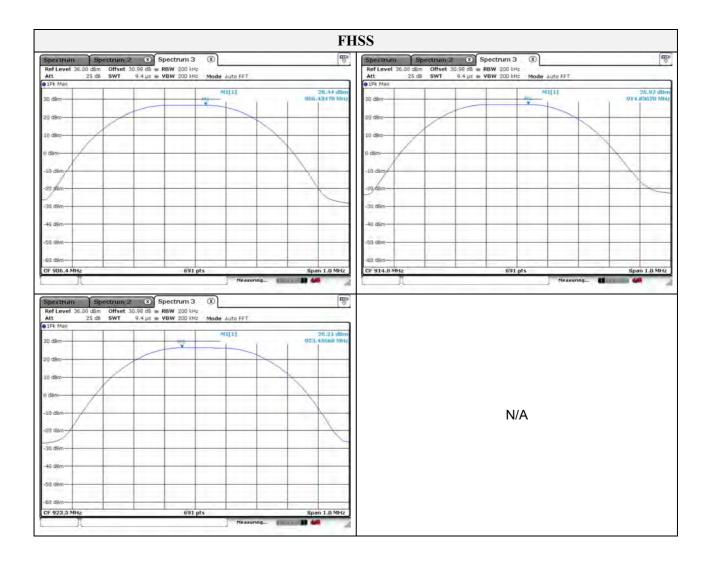
Test report No.: KES-RF-19T0033 Page (9) of (35)

3.2. Output power Test procedure DA 00-705

Test setting

- 1. Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2. RBW > the 20 dB bandwidth of the emission being measured
- 3. VBW \geq RBW
- 4. Sweep = Auto
- 5. Detector function = Peak
- 6. Trace = Max hold

Limit


According to §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

Test results

Frequency(Mb)	Channel no.	Measured power		Peak Power Limit	
		(dBm)	(W)	(dBm)	(W)
906.4	01	26.44	0.44	30.00	1.00
914.8	25	26.92	0.49	30.00	1.00
923.5	50	26.21	0.42	30.00	1.00

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (11) of (35)

Test report No.: KES-RF-19T0033 Page (12) of (35)

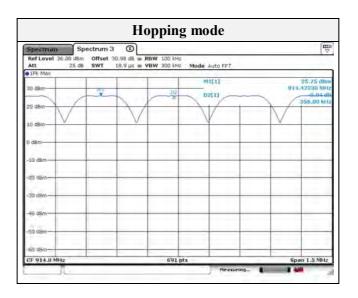
3.3. Carrier frequency separation

Test procedure

DA 00-705

Test Setting

- 1. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
- 2. Span = wide enough to capture the peaks of two adjacent channels
- 3. Resolution (or IF) Bandwidth (RBW) \geq 1% of the span
- 4. Video (or Average) Bandwidth (VBW) \geq RBW
- 5. Sweep = auto
- 6. Detector function = peak
- 7. Trace = max hold


Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Limit

According to §15.247(a)(1)(i), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test results

Frequency(Mz)	Channel no.	Channel Separation (畑)
914.8	25	0.356

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Test report No.: KES-RF-19T0033 Page (13) of (35)

3.4. Number of hopping frequency Test procedure DA 00-705

Test setting

- 1. The EUT must have its hopping function enabled.
- 2. Frequency range: 905 MHz \sim 925 MHz
- 3. Span = the frequency band of operation $\frac{1}{2}$
- 4. RBW = 1 M/z (\geq 1% of the span)
- 5. VBW = 1 M $(\geq RBW)$
- 6. Sweep = auto
- 7. Detector function = peak
- 8. Trace = max hold

All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

According to 15.247(a)(1)(i), For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

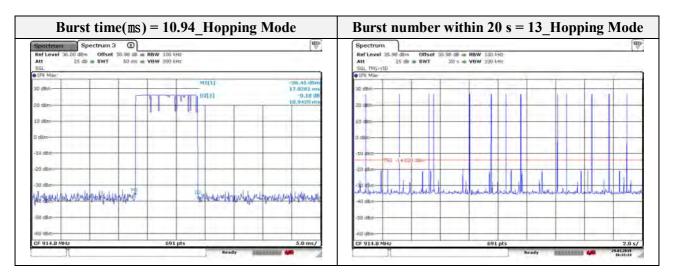
Test results

Frequency	Number of hopping frequency	Limit
906.4 ~ 923.5 MHz	50	\geq 50

Spectrum		ectrum 3	Ø						(T)
Ref Level Att	36.00 dBm 25 dB	Offset 30 SWT		RBW 100 kH		Auto FFT			_
PiPk Max	-	-				_	-	-	-
30 d8m				1.1.1.2					
20 080	100000	AAAAA	0000	000000	10000	////////	MAAAA	hannan	20
	11100	11111	11100	1111	Winne		I h h n d l		
10 dBm									
0 dBm					2 million (1997)				
-10 dBm		-				-			
-20 0500									-
-30 dBm									true
-40 gBm									
-50 0Bm			-			-		-	-
-60 d8m		_	_	-	-		_		_
Start 905.	MHz		_	691	ofs			Ston	25.0 MHz

Test report No.: KES-RF-19T0033 Page (14) of (35)

3.5. Time of occupancy Test procedure DA 00-705

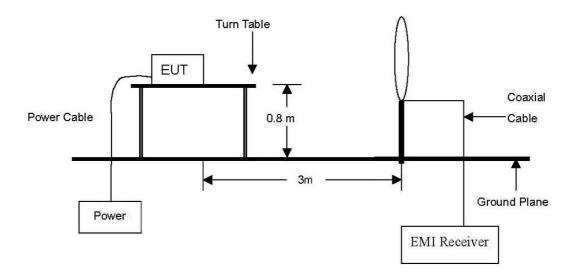

Test setting

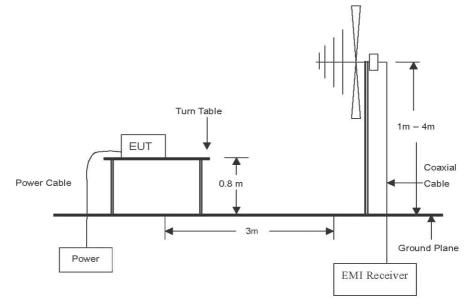
- 1. The EUT must have its hopping function enabled.
- 2. Span = zero span, centered on a hopping channel
- 4. RBW = 1 M
- 5. VBW = 1 MHz (\geq RBW)
- 6. Sweep = as necessary to capture the entire dwell time per hopping channel
- 7. Detector function = peak
- 8. Trace = max hold

Limit

According to 15.247(a)(1)(i), For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

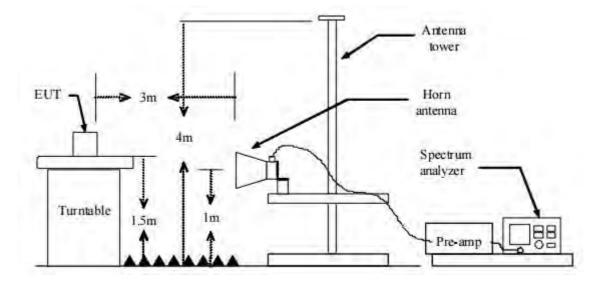
Frequency (Mz)	Burst time (ms)	Burst number	Time of occupancy (ms)	Limit (ms)
914.8	10.94	13	144.22	400.00




3.5. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 Mz Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz emissions.

Test report No.: KES-RF-19T0033 Page (16) of (35)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test report No.: KES-RF-19T0033 Page (17) of (35)

Test procedure

- 1. The EUT is placed on a turntable, which is 0.8 m (below 1 GHz) and 1.5 m (above 1 GHz) ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Spectrum analyzer settings for f < 1 GHz:

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz $VBW \ge RBW$ Sweep = auto Detector function = quasi peakTrace = max hold

- 8. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
- Span = wide enough to fully capture the emission being measured

RBW = 1 Mb $VBW \ge RBW$ Sweep = auto Detector function = peakTrace = max hold

- 9. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - Span = wide enough to fully capture the emission being measured
 - RBW = 1 ML

VBW $\geq 1/T$ Hz, where T= pulse width in seconds

- Sweep = auto
- Detector function = average
- Trace = max hold

10. Duty Cycle Correction Factor (50 channel hopping)

- a. Time to cycle through all channels = $\Delta t = \tau [ms] \times 50$ channels = 547 ms, where $\tau =$ pulse width
- b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H '=1
- c. Worst Case Dwell Time = τ [ms] × H' = 10.94 ms
- d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -19.22 dB

Test report No.: KES-RF-19T0033 Page (18) of (35)

Note:

- 1. The spectrum is measured from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1 GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20 dB of the respective limits were not reported.
- 2. When Average result is different from peak result over 20 dB (over-averaging), according to 15.35 (c), as a "duty cycle correction factor", pulse averaging with 20 log(duty cycle) has to be used. Duty cycle correction factor = 20log(dwell time/100 ms)
- 3. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Field strength($dB\mu V/m$) = Level($dB\mu V$) + Correction factors(dB/m) + Cable loss(dB) + or $F_d(dB)$
- 6. Correction factors(dB/m) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB)
- 7. Margin(dB) = Limit(dB μ /m) Field strength(dB μ /m)
- 8. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.
- 9. All channels, modes, and modulations/data rates were investigated among DSS band.
- Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.
- 10. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 11. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m / D_s)$

 $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. F_d = $20\log(D_m / D_s)$

Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µN/m)
$0.009 \sim 0.490$	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30~88	3	100**
88~216	3	150**
216~960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

www.kes.co.kr

Test report No.: KES-RF-19T0033 Page (20) of (35)

Test results (Below 3	80 M±) – Worst cas	se			
Mode:	FHSS				
Distance of measurer	nent: 3 meter	3 meter			
Channel: 1 (Worst case)			-		
	Horizontal			Vertical	
KES SAC #4(10 m) Model Ophrafor KES AC Power Remark1 [d8(u/m)]	- 30) MHz LOOP ANT RE TEST>> Standard :	KES D-SAC #4(10 m)	KES SAC #4(10 m) Model : Op, Mode : Operator : Remark1 : IdB(U/(m))	< <d (0.009="" -="" 30)="" ant="" loop="" mhz="" re="" test="">> Standard :</d>	KES D-SAC #4(10 m)
		<pre><fco -="" 30="" 9="" hhz="" mhz_15_209<br="">Lmil(OP) <new data=""> Spectrum(H,PK)</new></fco></pre>			CFOC 9 kHz - 30 MHz_15_2093 Umat(OP) CNew Data Spectrum(V,PK)

70

60

0.01

Wall

Hil

11111

0.10

1 1 1 1 1 1

1.00

Frequency

10.00

30.00 [MHz]

- No spurious emissions were detected

11111

Frequency

1,00

10,00

30,00 [MHz]

1111

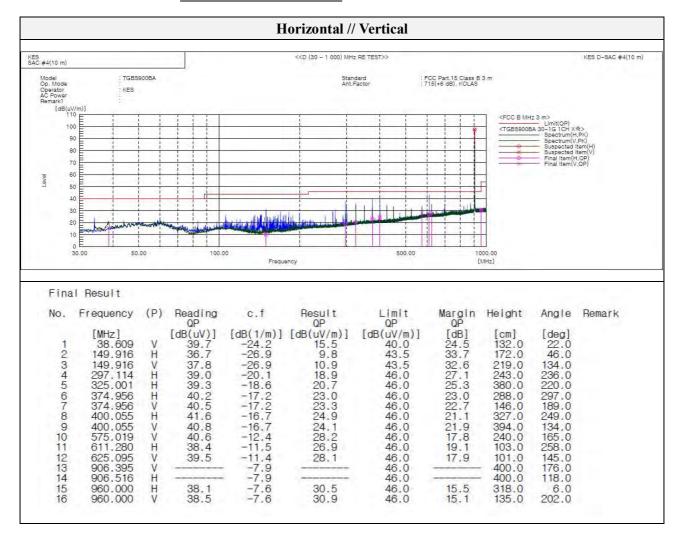
HH

0,10

1949 70 60

50

40


20

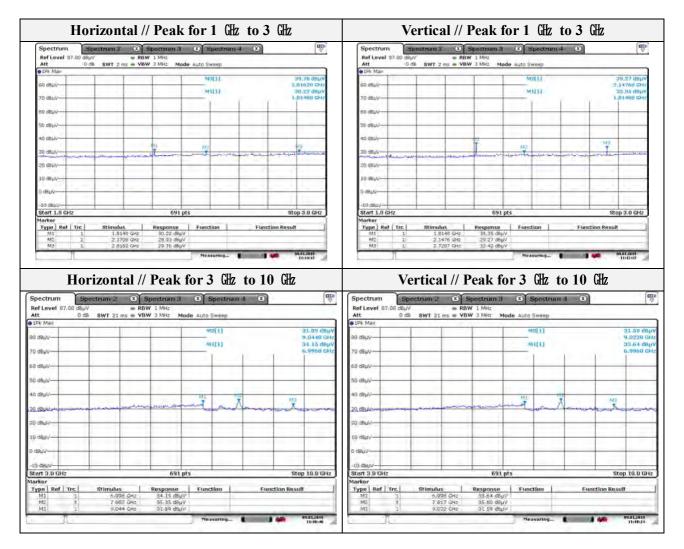
0.01

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (21) of (35)

Test results (Below 1 000	M±z) – Worst case
Mode:	FHSS
Distance of measurement:	3 meter
Channel:	1 (Worst case)

* 906.395 Mtz(Vertical) / 906.516 Mtz(Horizontal) is Fundamental.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr


Test report No.: KES-RF-19T0033 Page (22) of (35)

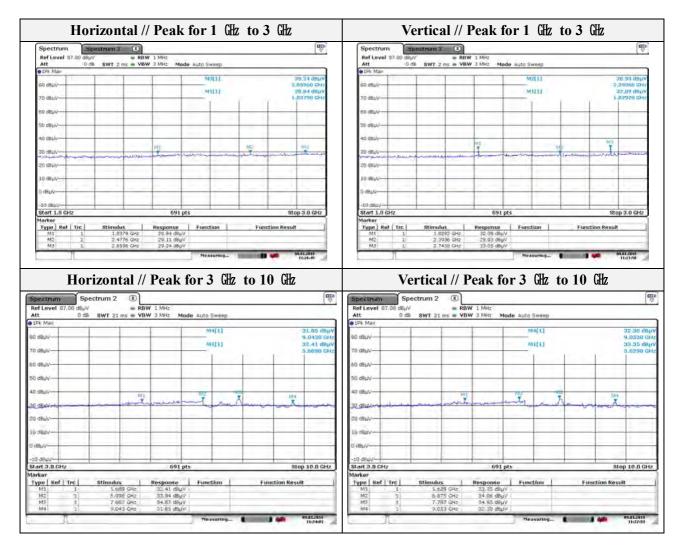
Test results (Above 1 000 Mb)

Mode:	FHSS
Distance of measurement:	3 meter
Channel:	01

- Spurious								
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 814.80	30.22	Peak	Н	31.64	-	61.86	74.00	12.14
1 814.80	30.22	Average	Н	31.64	-19.22	42.64	54.00	11.36
2 170.80	28.93	Peak	Н	33.85	-	62.78	74.00	11.22
2 170.80	28.93	Average	Н	33.85	-19.22	43.56	54.00	10.44
2 816.20	29.76	Peak	Н	35.73	-	65.49	74.00	8.51
2 816.20	29.76	Average	Н	35.73	-19.22	46.27	54.00	7.73
1 814.80	35.35	Peak	V	31.64	-	66.99	74.00	7.01
1 814.80	35.35	Average	V	31.64	-19.22	47.77	54.00	6.23
2 147.60	29.27	Peak	V	33.76	-	63.03	74.00	10.97
2 147.60	29.27	Average	V	33.76	-19.22	43.81	54.00	10.19
2 720.70	32.42	Peak	V	35.52	-	67.94	74.00	6.06
2 720.70	32.42	Average	V	35.52	-19.22	48.72	54.00	5.28

Note.

1. No spurious emission were detected above 3 GHz.


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (24) of (35)

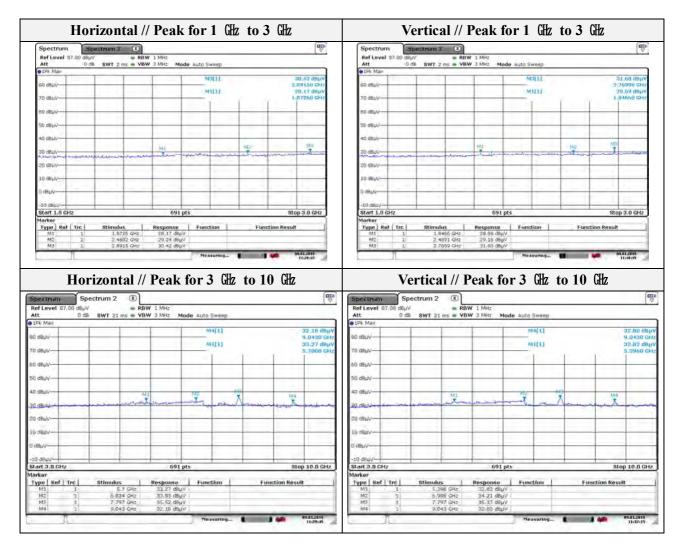
Test results (Above 1 000 Mb)

Mode:	FHSS
Distance of measurement:	3 meter
Channel:	25

Spurio	us							
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 837.90	28.84	Peak	Н	31.84	-	60.68	74.00	13.32
1 837.90	28.84	Average	Н	31.84	-19.22	41.46	54.00	12.54
2 477.60	29.11	Peak	Н	34.95	-	64.06	74.00	9.94
2 477.60	29.11	Average	Н	34.95	-19.22	44.84	54.00	9.16
2 859.60	29.24	Peak	Н	35.83	-	65.07	74.00	8.93
2 859.60	29.24	Average	Н	35.83	-19.22	45.85	54.00	8.15
1 829.20	32.09	Peak	V	31.76	-	63.85	74.00	10.15
1 829.20	32.09	Average	V	31.76	-19.22	44.63	54.00	9.37
2 393.60	28.93	Peak	V	34.65	-	63.58	74.00	10.42
2 393.60	28.93	Average	V	34.65	-19.22	44.36	54.00	9.64
2 743.80	33.05	Peak	V	35.57	-	68.62	74.00	5.38
2 743.80	33.05	Average	V	35.57	-19.22	49.40	54.00	4.60

Note.

1. No spurious emission were detected above 3 GHz.


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0033 Page (26) of (35)

Test results (Above 1 000 Mb)

Mode:	FHSS
Distance of measurement:	3 meter
Channel:	50

- Spurious								
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 872.60	28.17	Peak	Н	32.13	-	60.30	74.00	13.70
1 872.60	28.17	Average	Н	32.13	-19.22	41.08	54.00	12.92
2 460.20	29.24	Peak	Н	34.88	-	64.12	74.00	9.88
2 460.20	29.24	Average	Н	34.88	-19.22	44.90	54.00	9.10
2 891.50	30.42	Peak	Н	35.90	-	66.32	74.00	7.68
2 891.50	30.42	Average	Н	35.90	-19.22	47.10	54.00	6.90
1 846.60	29.69	Peak	Н	31.91	-	61.60	74.00	12.40
1 846.60	29.69	Average	Н	31.91	-19.22	42.38	54.00	11.62
2 489.10	29.18	Peak	V	34.99	-	64.17	74.00	9.83
2 489.10	29.18	Average	V	34.99	-19.22	44.95	54.00	9.05
2 769.90	31.60	Peak	V	35.63	-	67.23	74.00	6.77
2 769.90	31.60	Average	V	35.63	-19.22	48.01	54.00	5.99

Note.

1. No spurious emission were detected above 3 GHz.

Test report No.: KES-RF-19T0033 Page (28) of (35)

3.6 Conducted spurious emissions & band edge **Test procedure**

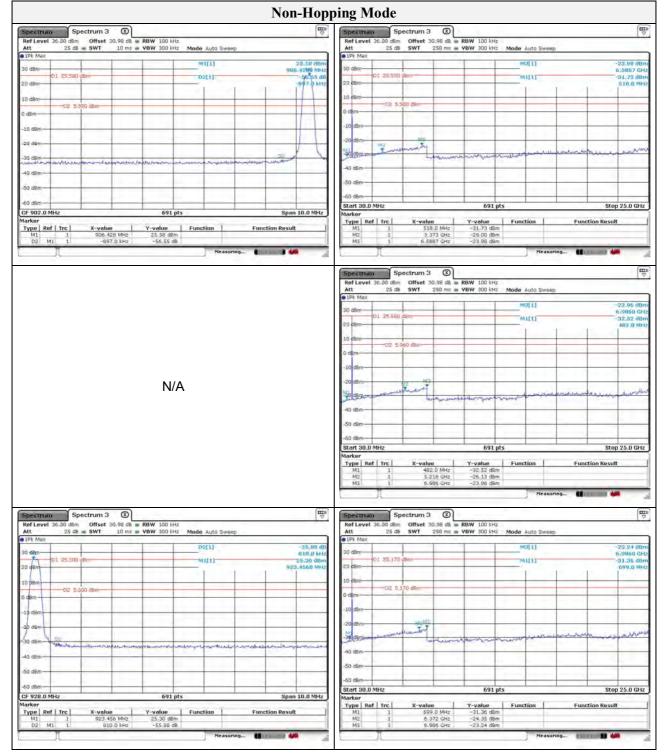
DA 00-705

Test setting

1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.

- 2. RBW = 100 kHz
- 3. VBW \geq 300 kHz
- 4. Detector = Peak
- 5. Number of sweep points \geq 2 \times Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Limit


According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spe ctrum or digitally modulated intentional radiator is operating, the radio frequency power that is produc ed by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the b and that contains the highest level of the desired power, based on either an RF conducted or a radiate d measurement, provided the transmitter demonstrates compliance with the peak conducted power limit s. If the transmitter complies with the conducted power limits based on the use of RMS averaging ov er a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in secti on 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in s ection 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see sect ion 15.205(c))

www.kes.co.kr

Test report No.: KES-RF-19T0033 Page (29) of (35)

Test results

Test report No .: KES-RF-19T0033 Page (30) of (35)

Lower Band-edge	Upper Band-edge
m Spectrum 3 🛞	Spectrum Spectrum 3 (2)
25 dB SWT 10 ms VBW 300 kHz Mode Auto Sweep	Ref Level 36.00 dBm Offset 30.98 dB RBW 100 kHz Att 25 dB SWT 10 ms VBW 300 kHz Mode Auto Sweep
02[1]	•1Pk Max -54,60 dB 02[1] -57.07
	630 kM 2 30 dam 1.0130 M
	25 51 4014 [1] 25.260 0800 M1[1] 25.260 0800 923,4560 M
-C2 5 570 dbn	10 dBm 02 5-200 mm
122 3 3/0 delvi	0 dBm-
	-10 dBm
	-20 dBm
02	-30 (Bm b) - 50
anton wanter and a second and a static dama and a static and the	
	-40 dBm-
	-50 dBm-
	-60 d8m-
1MHz 691 pts Span 1	10.0 MHz CF 928.0 MHz 691 pts Span 10.0 M
	Marker
Xef Trc X-value Y-value Function Function Result 1 906.443 MHz 25.57 dBm Function Function Function	Type Ref Trc X-value Y-value Function Function Result M1 1 923.456 MHz 25.26 dBm 5.26 dBm

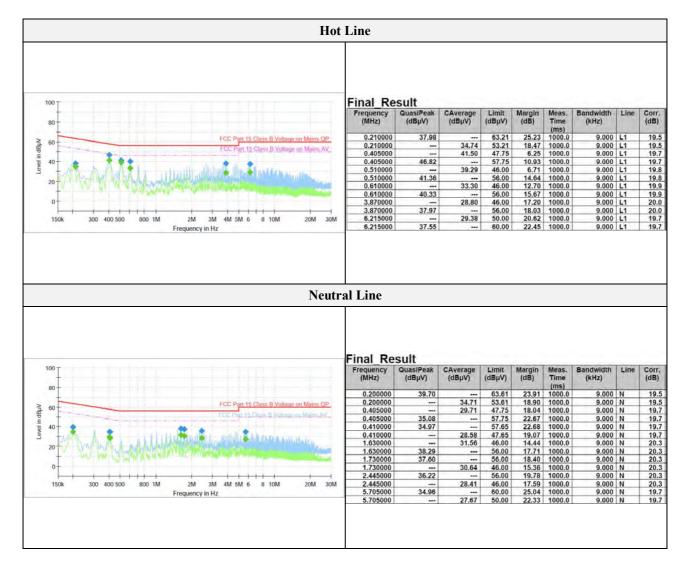
3.8. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Frequency of Emission (MR)	Conducted limit (dBµN/m)		
Frequency of Emission (Mz)	Quasi-peak	Average	
0.15 - 0.50	66 - 56*	56 - 46*	
0.50 - 5.00	56	46	
5.00-30.0	60	50	

Note:


1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

2. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level)

Test report No.: KES-RF-19T0033 Page (32) of (35)

Test results

Test report No.: KES-RF-19T0033 Page (33) of (35)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Cal. Day to Next Cal. day
Spectrum Analyzer	R&S	FSV30	100736	2018.06.28 ~ 2019.06.28 2019.01.09 ~ 2020.01.09
Spectrum Analyzer	R&S	FSV40	101002	2018.06.29 ~ 2019.06.29
8360B Series Swept Signal Generator	HP	83630B	3844A00786	2018.01.22 ~ 2019.01.22 2019.01.15 ~ 2020.01.15
Attenuator	HP	30dB ATTENUATOR ASSEMBLY	3318A05137	2018.01.18 ~ 2019.01.18 2019.01.15 ~ 2020.01.15
Attenuator	HP	8491A	35496	2018.03.21 ~ 2019.03.21 2019.03.11 ~ 2020.03.11
Loop Antenna	Schwarzbeck	FMZB1513	225	2017.05.10 ~ 2019.05.10 2019.02.05 ~ 2021.02.15
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2018.11.26 ~ 2020.11.26
Horn Antenna	A.H	SAS-571	414	2017.02.15 ~ 2019.02.15 2019.02.11 ~ 2021.02.11
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-1802	2017.09.04 ~ 2019.09.04
PREAMPLIFIER	AGILENT	8449B	3008A01967	2018.05.31 ~ 2019.05.31
Attenuator	HP	8491A	32173	2018.03.21 ~ 2019.03.21 2019.03.11 ~ 2020.03.11
Amplifier	R&S	SCU 01	100603	2018.11.26 ~ 2019.11.26
EMI Test Receiver	R&S	ESR3	101781	2018.04.25 ~ 2019.04.25 2019.04.22 ~ 2020.04.22
EMI Test Receiver	R&S	ESU26	100551	2018.04.11 ~ 2019.04.11 2019.04.09 ~ 2020.04.09
Pulse Limiter	R&S	ESH3-Z2	101915	2018.11.26 ~ 2019.11.26
LISN	R&S	ENV216	101787	2019.01.04 ~ 2020.01.04
RF Cable 1	Woken	-	#3	2019.01.09 (Cal. date)
RF Cable 2	Woken	-	# 21	2019.01.09 (Cal. date)

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook computer	LG Electronics Inc.,	LGS53	306QCZP560949