

CERTIFICATION TEST REPORT

Report Number. : 12071505-E1V3

- Applicant : SEMICONDUCTOR COMPONENTS INDUSTRIES LLC 5005 E McDowell Rd. Phoenix, AZ 85008 UNITED STATES
 - Model : SPSDEVR1-8
 - FCC ID : 2AQ8Q-SPSDEVR1-8
- EUT Description : UHF RFID Reader
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date Of Issue: October 05, 2018

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP Lab code: 200065-0

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	9/21/2018	Initial Issue	
V2	10/05/2018	Updated antenna gain in section 5.3 Updated results in section 8.5 Updated results in section 9.1	Huda Mustapha

Page 2 of 49

TABLE OF CONTENTS

RE	POR	I REVISION HISTORY	2
ΤΑ	BLE	OF CONTENTS	3
1.	AT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
4	1.1.	MEASURING INSTRUMENT CALIBRATION	7
4	4.2.	SAMPLE CALCULATION	7
4	1.3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
5	5.1.	EUT DESCRIPTION	8
5	5.2.	MAXIMUM OUTPUT POWER	8
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5	5.4.	SOFTWARE AND FIRMWARE	8
5	5.5.	WORST-CASE CONFIGURATION AND MODE	8
5	5.6.	DESCRIPTION OF TEST SETUP	9
5 6.	5.6. TE	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT	9 12
6. 7.	5. <i>6.</i> TE: ME	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS	9 12 13
6. 7. 8.	5. <i>6.</i> TE: ME AN	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS	9 12 13 14
6. 7. 8.	5.6. TES ME AN 3.1.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	9 12 13 14 14
6. 7. 8. 8.	5.6. TES ME AN 3.1. 3.2.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH	9 12 13 14 14 15
6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.6. TES ME AN 3.1. 3.2. 3.3.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION	9 12 13 14 14 15 17
6. 7. 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.6. TES ME AN 3.1. 3.2. 3.3. 3.4.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS	9 12 13 14 14 15 17 18
6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.6. TES ME AN 3.1. 3.2. 3.3. 3.4. 3.5.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY	9 12 13 14 14 15 17 18 19
6. 7. 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.6. TES ME AN 3.1. 3.2. 3.2. 3.3. 3.4. 3.5. 3.6.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY OUTPUT POWER	9 12 13 14 14 15 17 18 19 21
6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.6. TES ME AN 3.1. 3.2. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS	9 12 13 13 14 15 17 18 19 21 23
6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.6. TES ME AN 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. RA	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS DIATED TEST RESULTS	9 12 13 14 14 15 17 18 19 21 23 23
6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.6. TES ME AN 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. RA 9.1.	DESCRIPTION OF TEST SETUP ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS DIATED TEST RESULTS TRANSMITTER ABOVE 1 GHz	9 12 13 14 14 15 17 17 19 21 23 28

Page 3 of 49

9.	3. W(9.3.1.	/ORST CASE BELOW 30 MHz SPURIOUS EMISSIONS 9 kHz TO 30 MHz (WORST-CASE CC 44	44 NFIGURATION)
10.	AC P	POWER LINE CONDUCTED EMISSIONS	45
11.	SETU	UP PHOTOS	48

Page 4 of 49

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	NDUSTRIES LLC				
EUT DESCRIPTION: UHF RFID Reader					
MODEL: SPSDEVR1-8					
SERIAL NUMBER: Q41					
DATE TESTED:	AUGUST 30 - OCTOBER 4, 2018				
APPLICABLE STANDARDS					
ST	ANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart C		Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Prepared By:

RayL

Huda Mustapha

Huda Mustapha CONSUMER TECHNOLOGY DIVISION Lead Project Engineer UL Verification Services Inc. Ray Li CONSUMER TECHNOLOGY DIVISION Test Engineer UL Verification Services Inc.

Page 5 of 49

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
☑ Chamber A (IC:2324B-1)	Chamber D (IC:22541-1)	Chamber I (IC: 2324A-5)
□ Chamber B (IC:2324B-2)	Chamber E (IC:22541-2)	□ Chamber J (IC: 2324A-6)
Chamber C (IC:2324B-3)	Chamber F (IC:22541-3)	□ Chamber K (IC: 2324A-1)
	Chamber G (IC:22541-4)	□ Chamber L (IC: 2324A-3)
	Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

Page 6 of 49

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 49

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a control node transmitter module that operates in the 902-928 MHz band. Device uses hopping technology and is categorized as a Frequency Hopping System(FHS).

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
902-928	Normal	28.10	645.51

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole antenna, with a maximum gain of 1.8 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 0x280818.

Software installed during test was as follows:

RestApi Version:	restAPI ver2.6
ReaderApi Version:	readerAPI ver2.6
GuiApp Version:	guiAPP ver2.3

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 30MHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emissions from 30MHz to 1GHz were performed with the EUT set to transmit at low middle and high channels.

Band edge and radiated emissions between 30MHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The EUT can only be setup in desktop orientation, therefor all radiated testing was performed with the EUT in desktop orientation.

Preliminary testing (power measurement and radiated spurious and harmonics) was performed on the 8 antenna ports and port 4 was found to be worst case. Therefore, all testing was done using port 4.

Page 8 of 49

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	Lenovo	TYPE 4243-5UU	R9-PKF4Z	-			
Laptop Adapter	Lenovo	42T4438	36200150	-			
4-Port Broadband Router	TRENDnet	TW100-S4W1CA/A	RA1737S401032	-			
Switching Adapter	DVE	DSA-6PFG-05	-	-			

I/O CABLES

I/O Cable List							
Cable	CablePort# of identical		Connector	Cable Type	Cable	Remarks	
No		ports	Туре		Length (m)		
1	Ethernet	1	Ethernet	Unshielded	>3		
2	DC	1	DC	Shielded	1		
3	Ethernet	1	Ethernet	Shielded	1		

TEST SETUP

The EUT is connected to a 4-port broadband router during the tests. The customer provided test software to exercise the EUT during test.

Page 9 of 49

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 10 of 49

SETUP DIAGRAM FOR RADIATED TESTS

Page 11 of 49

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal	
EMI Test Receiver	Rohde&Schwarz	ESR	1436	02/23/2019	02/23/2018	
Transient Limiter	COM-POWER	LIT-930	1457	03/01/2019	03/01/2018	
L.I.S.N	FCC INC.	FCC LISN 50/250	24	03/06/2019	03/06/2018	
EMI Test Receiver	Rohde&Schwarz	ESR	1436	02/23/2019	02/23/2018	
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T130	10/14/2018	10/14/2017	
Amplifier, 9KHz to 1GHz, 32dB	Agilent (keysight) Technologies	8447D	T15	08/15/2019	08/15/2018	
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1466	04/16/2019	04/16/2018	
Antenna Horn 1-18GHz	ETS-Lindgren	3117	T862	05/24/2019	05/24/2018	
RF Amplifier, 1-18GHz	MITEQ	AFS42- 00101800-25- S-42	T1165	6/12/2019	6/12/2018	
Filter, HPF 3.0GHz	MICRO-TRONICS	HPM17543	T486	6/12/2019	6/12/2018	
Filter, BRF 902 to 928MHz	MICRO-TRONICS	BRC50722	T1847	8/16/2019	8/16/2018	
Filter, Highpass 1.2GHz	MICRO-TRONICS	HPM50108	T1737	4/17/2019	4/17/2018	
Antenna, Active Loop 9KHz to 30MHz	MICRO-TRONICS	AL-130R	PRE0165308	12/13/2018	12/13/2019	

Test Software List					
Description	Manufacturer	Model	Version		
Radiated Software	UL	UL EMC	Ver 9.5, December 1, 2016		
Antenna Port Software	UL	UL RF	Ver 9.1, January 25, 2018		

Page 12 of 49

7. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3 and 6.5

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3 and 6.6

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Page 13 of 49

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

ON TIME AND DUTY CYCLE RESULTS

one Period	On Time 1	On Time 2	On Time 3	On Time 4	Duty Cycle	20*Log Duty Cycle	Duty Cycle
(ms)	(ms)	(ms)	(ms)	(ms)	(%)	(dB)	Correction Factor(dB)
0.394	0.049	0.025	0.023	0.032	32.741	30.302	4.85

DUTY CYCLE PLOTS

Page 14 of 49

8.2. 20 dB AND 99% BANDWIDTH

LIMITS

FCC §15.247 (a) (1)(i)

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

Page 15 of 49

RESULTS

Channel	Frequency	99% Bandwidth	20dB Bandwidth	20dB Bandwidth Limit
	(MHz)	(kHz)	(kHz)	(kHz)
Low	902.75	107.30	115.8	500
Mid	915.25	106.86	115.3	500
High	927.25	107.54	116.4	500

Page 16 of 49

8.3. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

HOPPING FREQUENCY SEPARATION

Page 17 of 49

8.4. NUMBER OF HOPPING CHANNELS

LIMITS

FCC §15.247 (a) (1) (i)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 50 Channels observed.

eysight Spectrum Analyzer - AP	7.4.1(102017),10629, Chamber 4	4			
L RF 50 Ω	DC DC Wide (SENSE:INT	#Avg Type: RMS AvalHold:>100/100	03:33:09 AM Sep 11, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWW	Frequency
dB/div Ref 0.00 dl	IFGain:Low	#Atten: 10 dB	M	kr2 927.25 MHz -20.545 dBm	Auto Tune
					Center Freq 915.000000 MHz
					Start Freq 900.000000 MHz
0.0					Stop Freq 930.000000 MHz
tart 900.00 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep 1	Stop 930.00 MHz .133 ms (1001 pts)	CF Step 3.000000 MHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 4 5	902.75 MHz 927.25 MHz	-23.941 dBm -20.545 dBm		E	Freq Offset 0 Hz
6 7 8					Scale Type
0					Log <u>Lin</u>

Page 18 of 49

8.5. AVERAGE TIME OF OCCUPANCY

<u>LIMITS</u>

FCC §15.247 (a) (1) (i)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

Page 19 of 49

RESULTS

DH Packet	Pulse 1 Width (msec)	Pulse 2 Width (msec)	Pulse 3 Width (msec)	Number of Pulses in 20 seconds	Average Time of Occupancy in 20 seconds (sec)
Normal	110.8	135.4	66.96	3	0.3132

Page 20 of 49

8.6. OUTPUT POWER

<u>LIMITS</u>

§15.247 (b) (2)

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels as permitted under paragraph (a)(1)(i) of this section.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1 MHz, and the VBW is set to 3 MHz. The detector is peak and max hold.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for a peak reading of power.

<u>RESULTS</u>

Tested By:	39004
Date:	9/12/2018

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	902.72	28.099	30	-1.901
Middle	912.72	28.046	30	-1.954
High	927.20	27.812	30	-2.188

Page 21 of 49

Page 22 of 49

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 902MHz and 928MHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

Page 23 of 49

SPURIOUS EMISSIONS, NON-HOPPING

Page 24 of 49

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 49

9. RADIATED TEST RESULTS

<u>LIMITS</u>

FCC §15.205 and §15.209

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 26 of 49

KDB 414788 OATS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 27 of 49

9.1. TRANSMITTER ABOVE 1 GHz

HARMONICS AND SPURIOUS EMISSIONS LOW CHANNEL RESULTS

Page 28 of 49

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
6	* 2.847	37.15	Pk	32.1	-20.6	-	48.65	54	-5.35	74	-25.35	333	245	Н
5	* 2.708	38.22	Pk	32.5	-21.3	-	49.42	54	-4.58	74	-24.58	206	103	V
1	1.805	41.81	Pk	30.3	-22	-	50.11	-	-	-	-	0-360	102	Н
4	1.805	40.65	Pk	30.3	-22	-	48.95	-	-	-	-	0-360	101	V
2	1.882	32.96	Pk	31	-21.9	-	42.06	-	-	-	-	0-360	102	Н
3	2.186	32.67	Pk	31.1	-22.2	-	41.57	-	-	-	-	0-360	102	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Peak measurements meet the average limit. Therefore, average readings were not necessary to measure.

Page 29 of 49

MID CHANNEL RESULTS

Page 30 of 49

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
6	* 2.661	38.01	Pk	32.5	-21.4	-	49.11	54	-4.89	74	-24.89	248	263	V
5	* 2.746	39.46	Pk	32.3	-21.1	-	50.66	54	-3.34	74	-23.34	210	104	V
1	1.748	32.66	Pk	29.7	-22	-	40.36	-	-	-	-	0-360	101	Н
2	1.83	40.05	Pk	30.6	-22	-	48.65	-	-	-	-	0-360	199	Н
3	1.83	40.65	Pk	30.6	-22	-	49.25	-	-	-	-	0-360	200	V
4	1.882	33.85	Pk	31	-21.9	-	42.95	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Peak measurements meet the average limit. Therefore, average readings were not necessary to measure.

Page 31 of 49

HIGH CHANNEL RESULTS

Page 32 of 49

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5	* 2.782	39.49	Pk	32.3	-20.9	-	50.89	54	-3.11	74	-23.11	275	168	Н
3	* 2.782	41.13	Pk	32.3	-20.9	-	52.53	54	-1.47	74	-21.47	209	117	V
4	1.854	49.4	Pk	30.9	-21.9	-	58.4	-	-	-	-	0-360	199	Н
1	1.854	50.93	Pk	30.9	-21.9	-	59.93	-	-	-	-	0-360	101	V
2	1.882	35.22	Pk	31	-21.9	-	44.32	-	-	-	-	0-360	200	V
6	16.577	26.33	Pk	41.4	-14.9	-	52.83	-	-	-	-	0-360	199	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Peak measurements meet the average limit. Therefore, average readings were not necessary to measure.

Page 33 of 49

9.2. TRANSMITTER BELOW 1 GHz

9.2.1. -20 dBc BANDEDGE WITHOUT NOTCH FILTER AND PRE-AMPLIFIER

LOW CHANNEL

HORIZONTAL RESULT

	4 Sep 11, 2018	02:58:18 A	ALIGN AUTO		SENSE:INT			DC	50 Ω	RF	L
Frequency	E 1 2 3 4 5 6 E M WWWW T P N N N N N	TRAC TYP DE	e: RMS :>100/100	#Avg T Avg Ho	Trig: Free Run Atten: 10 dB	Fast 😱 :Low	PNO: I IFGain				
Auto Tu	3.2 MHz 08 dBm	lkr5 928 -82.1	Ν					3m	0.00 dE	Ref	B/div
Center Fr					() ¹						
900.000000 M											
	DL1 -32.71 dBm										
Start Fr											\vdash
800.000000 M											
Stop Fr				5	(<mark>)</mark> 2						
1.00000000 G	marinanghanasia	ومدور المرجع معرفة المتعالم المحاج	Carllon Strategy and	monte and hard	warmen to William	Mannond	-	اردا سويول معادر	مديد اورونا را ا هم		discon belle
CF Ste	000 GHz	Stop 1.0	6		00 kU-	40 (D14)			lz	000 G	t 0.8
<u>Auto</u> M	1001 pts)	400 ms (sweep 7		JU KHZ	#VBW			HZ	100	S BI
	JN VALUE	FUNCTION		NCTION	2.708 dBm	Hz	02.8 M	×		1 f	N
Freq Offs					9.459 dBm 2.285 dBm	Hz Hz	02.0 M			1 f 1 f	N N
0	=				9.833 dBm 2 108 dBm	Hz Hz	01.8 M	9		1 f 1 f	N N
Scale Ty											
Log <u>l</u>											
					III						
			K STATUS								

Keysight Spectrum Analyzer - APv7.4.1(102017),10629, Chamber A 50 Ω 02:52:13 AM Sep 11, 2018 RF DC SENSE: INT ALIGN AUTO TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N Frequency #Avg Type: RMS Trig: Free Run Avg|Hold:>100/100 PNO: Fast 😱 #Atten: 10 dB IFGain:Low Auto Tune Mkr5 928.2 MHz -82.226 dBm 10 dB/div Log Ref 0.00 dBm ()<mark>1</mark> -10.0 **Center Freq** 900.000000 MHz -20.0 -30.0 DL1 -35.22 dE -40.0 Start Freq -50.0 800.000000 MHz -60.0 -70 O **⊘**⁵ Stop Freq -80.0 1.00000000 GHz -90 N Start 0.8000 GHz Stop 1.0000 GHz CF Step #Res BW 100 kHz #VBW 300 kHz Sweep 7.400 ms (1001 pts) 20.000000 MHz Man <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION VALUE MKR MODE TRC SCL Y -15.216 dBm -76.664 dBm 902.8 MHz Ν 1 2 3 4 N N 902.0 MHz Freq Offset 928.0 MHz -82.420 dBm Ν 901.8 MHz -79.191 dBm 0 Hz 5 Ν f 928.2 MHz -82.226 dBm 6 7 8 9 10 Scale Type Log Lin Þ 🚺 STATUS MSG

VERTICAL RESULT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 35 of 49

HIGH CHANNEL

HORIZONTAL RESULT

RL RF 50 Ω	DC	SENSE:INT	ALIGN AUTO	02:38:55 AM Sep 11, 2018	_
	PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	Frequency
dB/div Ref 0.00 dl	3m		Ν	/kr5 928.2 MHz -77.928 dBm	Auto Tur
9			1		Contor Er
					CenterFr
					900.000000 M
.0				DE1 -31.06 dBm	
.0					Start Fr
.0					800.000000 M
.0					
.0			5		
.0					Stop Fr
			and a second		1.000000000 G
art 0.8000 GHz				Stop 1.0000 GHz	CF St
es BW 100 kHz	#VB	W 300 kHz	Sweep 7	.400 ms (1001 pts)	20.000000 M
R MODE TRC SCL	Х	Y F	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
N 1 f	927.2 MHz	-11.062 dBm -82 277 dBm			
N 1 f	928.0 MHz	-76.334 dBm			Freq Offs
N 1 f	901.8 MHz 928.2 MHz	-81.963 dBm -77.928 dBm		=	0
					Scale Ty
					Log

Page 36 of 49

Keysight Spectrum Analyzer - APv7.4.1(102017),10629, Chamber A 50 Ω 02:43:40 AM Sep 11, 2018 RF DC SENSE: INT ALIGN AUTO TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N Frequency #Avg Type: RMS Trig: Free Run Avg|Hold:>100/100 PNO: Fast 😱 #Atten: 10 dB IFGain:Low Auto Tune Mkr5 929.2 MHz -80.211 dBm 10 dB/div Log Ref 0.00 dBm -10.0 9 **Center Freq** 900.000000 MHz -20.0 -30.0 DL1 -36.53 dBn -40.0 Start Freq -50.0 800.000000 MHz -60.0 -70 O **5** $\langle \rangle^2$ Stop Freq -80.0 1.00000000 GHz -90 N Start 0.8000 GHz Stop 1.0000 GHz CF Step #Res BW 100 kHz #VBW 300 kHz Sweep 7.400 ms (1001 pts) 20.000000 MHz Man <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION VALUE MKR MODE TRC SCL Y 927.2 MHz 902.0 MHz -16.529 dBm Ν 1 2 3 4 N N -82.594 dBm Freq Offset -79.546 dBm -81.374 dBm 928.0 MHz Ν 901.2 MHz 0 Hz 5 Ν f 929.2 MHz -80.211 dBm 6 7 8 9 10 Scale Type Log Lin Þ 🚺 STATUS MSG

VERTICAL RESULT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 37 of 49

9.2.2. HARMONICS AND SPURIOUS EMISSIONS WITH A NOTCH FILTER

LOW CHANNEL RESULTS

Page 38 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	rrected QPk Limit (dBuV/m) eading 3uV/m)		Azimuth (Degs)	Height (cm)	Polarity
1	30.6147	34.87	Qp	24.8	-26.7	32.97	40	-7.03	65	104	V
5	190.6491	45.31	Pk	15.4	-24.8	35.91	43.52	-7.61	0-360	100	V
2	239.9957	51.12	Qp	15.5	-24.3	42.32	46.02	-3.7	242	107	Н
3	356.0037	45.95	Qp	18.5	-24.2	40.25	46.02	-5.77	128	110	Н
4	874.0317	39.31	Qp	25.9	-22.6	42.61	46.02	-3.41	208	110	Н
6	952.2627	34.28	Qp	26.7	-22.1	38.88	46.02	-7.14	293	101	V
**7	902.7914	59.59	Pk	26.6	-22.4	63.79	-	-	0-360	100	Н
**8	902.7914	56.2	Pk	26.6	-22.4	60.4	-	-	0-360	100	V

** - Fundamental Frequencies

Pk - Peak detector

Qp - Quasi-Peak detector

Page 39 of 49

MID CHANNEL RESULTS

Page 40 of 49

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected QPk Limit (dBuV/m) I Reading (dBuV/m)		Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	*240.0001	51.39	Qp	15.5	-24.3	42.59	46.02	-3.43	235	125	Н
1	30.5997	34.3	Qp	24.8	-26.7	32.4	40	-7.6	211	106	V
2	189.7563	46.17	Pk	15.3	-24.8	36.67	43.52	-6.85	0-360	100	V
4	356.0051	44	Qp	18.5	-24.2	38.3	46.02	-7.72	315	107	V
5	883.9574	40.46	Qp	26.1	-22.6	43.96	46.02	-2.06	211	101	Н
6	957.837	36.66	Qp	26.8	-22.1	41.36	46.02	-4.66	295	115	V
**8	915.243	52.61	Pk	26.5	-22.3	56.81	-	-	0-360	200	V
**7	915,293	53.56	Pk	26.5	-22.3	57.76	-	-	0-360	300	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - Fundamental Frequencies

Pk - Peak detector

Qp - Quasi-Peak detector

Page 41 of 49

95 UL Fremont,5m Chamber A 10 Sep 2018 15:20:29 Radiated Emissions - 3 Meters Project Number:12071505 Client:ON Semiconductor Config:EUT+Support Equipment Mode:1x_High_927.25MHz Tested by:10629 RL 85 75 65 8 55 45 QPk Limit (dBuV/m) (dBuU 35 Wallum 5 ър 100 1000 Frequency (MHz) Range (MHz) 2:30-200 RBM/VBN Ref/Attn Det/Avg Type Sweep 128k(-6d8)/1M 97/18 PEAK/LogPur-Video Auto Pts #Sups/Made Pasition Range (NHz) 4888 MAXH 8-368degs V 4:288-1888 RBU/VBU Ref/Attn Det/Avg Type Sweep 12Bk(-6dB)/1M 97/18 PEAk/LogPur-Video Auto Pts #Swps/Mode Position 8888 MAXH 8-368deps U *.TST 30915 15 Jul 2014 Rev 9.5 01 Dec 2016 VERTICAL

HIGH CHANNEL RESULTS

Page 42 of 49

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	77.2123	50.96	Qp	11.8	-26.1	36.66	40	-3.34	339	127	V
3	* 249.99	53.28	Qp	15.5	-24.2	44.58	46.02	-1.44	223	140	Н
2	190.4822	44.06	Qp	15.3	-24.8	34.56	43.52	-8.96	105	108	V
4	293.5402	45.28	Qp	17.2	-24	38.48	46.02	-7.54	108	143	Н
5	356.0033	44.72	Qp	18.5	-24.2	39.02	46.02	-7	90	116	Н
6	951.1422	38.7	Qp	26.7	-22.1	43.3	46.02	-2.72	153	168	Н
**7	927.2945	61.93	Pk	26.5	-22.2	66.23	-	-	0-360	101	H
**8	927 2945	56 36	Pk	26.5	-22.2	60.66	-		0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - Fundamental Frequencies

Pk - Peak detector

Qp - Quasi-Peak detector

Page 43 of 49

9.3. WORST CASE BELOW 30 MHz

9.3.1. SPURIOUS EMISSIONS 9 kHz TO 30 MHz (WORST-CASE CONFIGURATION)

Below 30MHz Data

Trace Markers

Marker	Frequency	Meter	Det	Loop	Cbl	Dist	Corrected	Peak Limit	Margin	Avg Limit	Margin	QP Limit	Margin	Azimuth
	(MHz)	Reading		Antenna (dB/m)	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)
		(ubuv)		(uB/III)		30011	(ubuvoits)							
1	.00957	100.4	Pk	19.2	.1	-80	39.7	67.97	-28.27	47.97	-8.27	-	-	0-360
2	.02039	97.79	Pk	14.2	.1	-80	32.09	61.39	-29.3	41.39	-9.3	-	-	0-360
3	.04268	96.6	Pk	12.5	.1	-80	29.2	54.98	-25.78	34.98	-5.78	-	-	0-360
	.04231	95.37	Av	12.5	.1	-80	27.97	-	-	35.06	-7.09	-	-	159
4	.08552	76.61	Pk	11.5	.1	-80	8.21	48.94	-40.73	28.94	-20.73	-	-	0-360
5	.18023	85.01	Pk	11	.1	-80	16.11	42.5	-26.39	22.5	-6.39	-	-	0-360
6	.2399	80.28	Pk	11	.1	-80	11.38	40.01	-28.63	20.01	-8.63	-	-	0-360

Pk - Peak detector

Av - Average detection

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBµV)						
	Quasi-peak	Average					
0.15-0.5	66 to 56 *	56 to 46 *					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 45 of 49

LINE 1 RESULTS

Trace Markers

Range 1: Line-L1 .15 - 30MHz

rung		1.10 00									
Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			C1&C3	(dB)	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)					dBuV	Class B		Class B	
								QP		Avg	
1	.15225	47.49	Qp	.1	0	10.1	57.69	65.88	-8.19	-	-
2	.15225	33.36	Ca	.1	0	10.1	43.56	-	-	55.88	-12.32
3	.37725	26.97	Qp	0	0	10.1	37.07	58.34	-21.27	-	-
4	.38175	19.63	Ca	0	0	10.1	29.73	-	-	48.24	-18.51
5	.57412	33.52	Qp	0	0	10.1	43.62	56	-12.38	-	-
6	.57525	28.09	Ca	0	0	10.1	38.19	-	-	46	-7.81
7	.8115	21.35	Qp	0	0	10.1	31.45	56	-24.55	-	-
8	.80025	15.82	Ca	0	0	10.1	25.92	-	-	46	-20.08
9	15.00675	23.88	Qp	.1	.3	10.2	34.48	60	-25.52	-	-
10	15.00675	17.49	Ca	.1	.3	10.2	28.09	-	-	50	-21.91
11	16.64025	22.44	Qp	.1	.3	10.3	33.14	60	-26.86	-	-
12	16.602	16.1	Ca	.1	.3	10.3	26.8	-	-	50	-23.2

Qp - Quasi-Peak detector

Ca - CISPR average detection

LINE 2 RESULTS

Trace Markers

Range 2: Line-L2 .15 - 30MHz

i tang											
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	Margin (dB)	CFR 47 Part 15 Class B Avg	Margin (dB)
13	.15225	46.61	Qp	.1	0	10.1	56.81	65.88	-9.07	-	-
14	.15225	33.07	Ca	.1	0	10.1	43.27	-	-	55.88	-12.61
15	.37275	25.86	Qp	0	0	10.1	35.96	58.44	-22.48	-	-
16	.38625	18.68	Ca	0	0	10.1	28.78	-	-	48.14	-19.36
17	.573	33.25	Qp	0	0	10.1	43.35	56	-12.65	-	-
18	.5775	27.8	Ca	0	0	10.1	37.9	-	-	46	-8.1
19	.80925	21.37	Qp	0	0	10.1	31.47	56	-24.53	-	-
20	.80925	15.91	Ca	0	0	10.1	26.01	-	-	46	-19.99
21	14.955	23.58	Qp	.1	.3	10.2	34.18	60	-25.82	-	-
22	15.009	17.16	Ca	.1	.3	10.2	27.76	-	-	50	-22.24
23	16.65375	22.46	Qp	.1	.3	10.3	33.16	60	-26.84	-	-
24	16.656	16.05	Ċa	.1	.3	10.3	26.75	-	-	50	-23.25

Qp - Quasi-Peak detector

Ca - CISPR average detection