		SUD						
	FCC- TEST REPORT							
Report Number :	64.790.20.05491.01	Date of Issue: January 7, 2021						
Model	: TREKC1							
Product Type	: Temperature Data logger							
Applicant	: Parsyl Inc.							
Manufacturer	: Parsyl Inc.							
Address	: 2825 Larimer Street, Den	ver CO 80205 USA						
Test Result :	■ Positive	ive						
Total pages including Appendices :	29							

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Report Number: 64.790.20.05491.01

Page 1 of 29

SUD

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.	1 Conducted Emission	10
9.	2 Conducted peak output power	11
9.	3 6dB bandwidth and 99% Occupied Bandwidth	13
9.	4 Power spectral density	17
9.	5 Spurious RF conducted emissions	19
9.	6 Band edge	23
9.	7 Spurious radiated emissions for transmitter	25
10	Test Equipment List	28
11	System Measurement Uncertainty	29

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China
FCC Registration Number:	514049
IC Registration Number:	10320A
Telephone: Fax:	86 755 8828 6998 86 755 828 5299

Report Number: 64.790.20.05491.01

Page 3 of 29

3 Description of the Equipment under Test

Product: Temperature Data logger

Model no.: TREKC1

FCC ID: 2AQ8LTREKC1

Battery type: 3V, CR2032

Operating Frequency Range: 2402~2480MHz

Modulation: GFSK

Antenna Type: PCB Antenna

Antenna Gain: 2.23dBi

Description of the EUT: EUT is a Temperature Data logger, 2.4GHz Bluetooth technology was used for communicating.

Report Number: 64.790.20.05491.01

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES		
10-1-2020 Edition	Subpart C - Intentional Radiators		

All the test methods were according to KDB558074 D01 v05r02 and ANSI C63.10 (2013).

Report Number: 64.790.20.05491.01

Page 5 of 29

5 Summary of Test Results

	Technical Requirements			
FCC Part 15 Subpart C				
Test Condition		Pages	Test Result	Test Site
§15.207	Conducted emission AC power port	10	N/A	N/A
§15.247(b)(1)	Conducted peak output power	11-12	Pass	Site 1
§15.247(e)	Power spectral density	17-18	Pass	Site 1
§15.247(a)(2)	6dB bandwidth and 99% occupied bandwidth	13-16	Pass	Site 1
§15.247(d)	Spurious RF conducted emissions	19-22	Pass	Site 1
§15.247(d)	Band edge	23-24	Pass	Site 1
§15.247(d) & §15.209 & §15.205	Spurious radiated emissions for transmitter	25-27	Pass	Site 1
§15.203	Antenna requirement	See note 1	Pass	

Note 1: The EUT uses an PCB Antenna, which gain is 2.23dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

Report Number: 64.790.20.05491.01

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AQ8LTREKC1 complies with Section 15.247,15.209, 15.205 and 15.203 of the FCC Part 15, Subpart C. This report is for the BLE part.

SUMMARY:

All tests according to the regulations cited on page 5 were

Performed

- Not Performed

The Equipment under Test

■ - Fulfills the general approval requirements.

□ - **Does not** fulfill the general approval requirements.

Sample Received Date: November 9, 2020

Testing Start Date: November 27, 2020

Testing End Date:

December 15, 2020

- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -

Reviewed by:

Prepared by:

Tested by:

ete-J

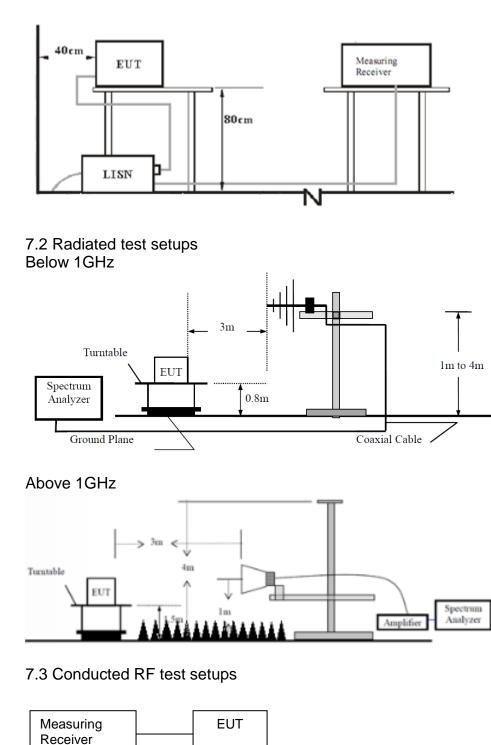
Matt zhang

m > kun

Peter Jia

Matt Zhang

Tree Zhan


Report Number: 64.790.20.05491.01

Page 7 of 29

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

Report Number: 64.790.20.05491.01

Page 8 of 29

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Laptop	Lenovo	X240	L34015282

Report Number: 64.790.20.05491.01

Page 9 of 29

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

* Decreasing linear

Test result: Not Performed

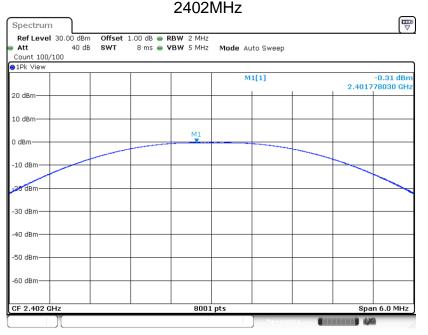
Report Number: 64.790.20.05491.01

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.

High channel 2480MHz

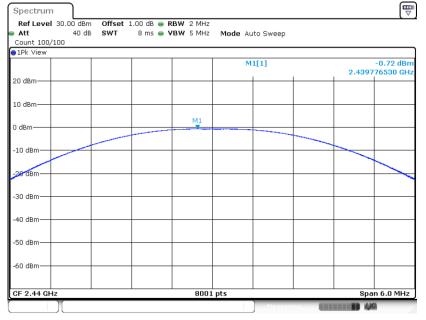

3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

	Frequency Range	Limit	Limit	
	MHz	W	dBm	
	2400-2483.5	≤1	≤30	
Test result as belo	ow table			
		Conducted Peak		
	Frequency	Output Power	Result	
	MHz	dBm		
L	ow channel 2402MHz	-0.31	Pass	
Mie	ddle channel 2440MHz	-0.72	Pass	

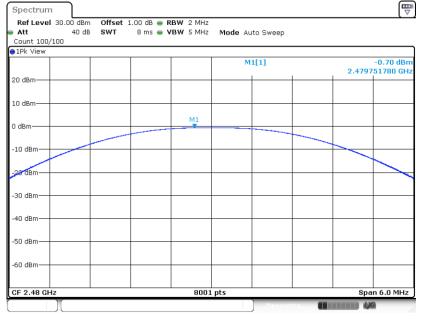
-0.7

Pass



Date: 30.NOV.2020 13:52:40

Report Number: 64.790.20.05491.01


Page 11 of 29

Date: 30.NOV.2020 13:54:39

2480MHz

Date: 30.NOV.2020 13:56:35

Report Number: 64.790.20.05491.01

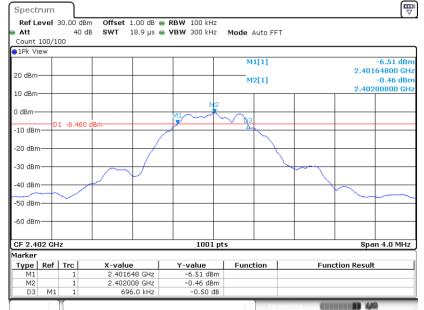
Page 12 of 29

9.3 6dB bandwidth and 99% Occupied Bandwidth

Test Method

- 1. Use the following spectrum analyzer settings:
- RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be
- employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit


Limit [kHz]

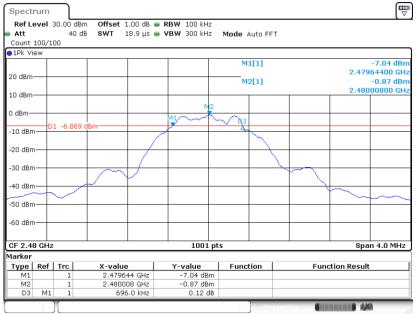
≥500

Test result

TestMode	Channel [MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Verdict
	2402	0.696	2401.648	2402.344	PASS
BLE	2440	0.696	2439.644	2440.340	PASS
	2480	0.696	2479.644	2480.340	PASS

Date: 30.NOV.2020 13:52:22

Report Number: 64.790.20.05491.01


Page 13 of 29

Ref Le Att	vel	30.00 dB 40 c			RBW 100 kH VBW 300 kH		Auto FFT			
Count :	100/1		0 311	10.9 µ5 🖶	1011 300 KH	i moue	auto FFT			
∋1Pk Vie	9W									
						M	1[1]			-7.04 dBn
20 dBm-	+					<u> </u>	0141		2.439	964400 GH
						M	2[1]		2 44	-0.88 dBn 300800 GH:
10 dBm-	+								2.77	
0 dBm—					N	2				
U UBIII-					M1/~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-10 dBm		1 -6.883	dBm-			<u> </u>				
-20 dBm	+				+					
-30 dBm										
-50 0011			\square	\mathcal{V}				\sim		
-40 dBm	+		\checkmark					$ \rightarrow $	\sim	
~	-	\checkmark								\vdash
-50 dBm	+		+							
-60 dBm										
00 0011										
CF 2.44	CHZ				1001	nts				n 4.0 MHz
Marker	GHZ				1001	. pcs			эрс	11 1.0 0112
Type	Ref	Trc	X-valu	e	Y-value	Func	tion	Fund	tion Resul	t
M1		1	2.4396	44 GHz	-7.04 dB	im				
M2		1		08 GHz	-0.88 dB					
D3	M1	1	69	5.0 kHz	0.11 (dB				

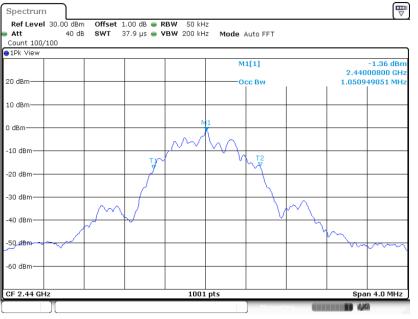
Date: 30.NOV.2020 13:54:21

2480MHz



Date: 30.NOV.2020 13:56:18

Report Number: 64.790.20.05491.01



TestMode	Channel [MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	2402	1.051	2401.489	2402.539	PASS
BLE	2440	1.051	2439.489	2440.539	PASS
	2480	1.051	2479.489	2480.539	PASS

Date: 30.NOV.2020 13:52:33

2440MHz

Date: 30.NOV.2020 13:54:32

Report Number: 64.790.20.05491.01

Page 15 of 29

Date: 30.NOV.2020 13:56:29

Report Number: 64.790.20.05491.01

Page 16 of 29

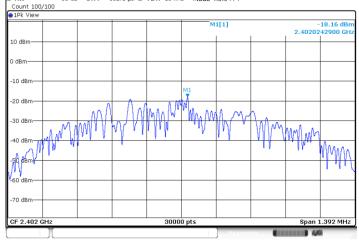
9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

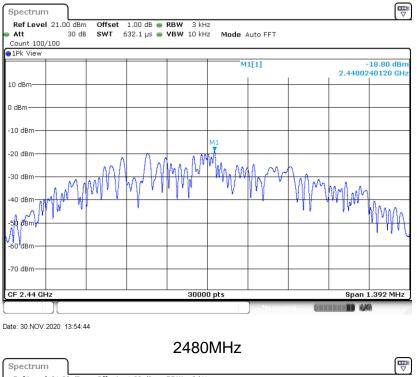
Limit

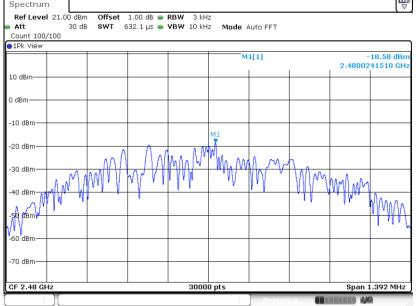

Limit [dBm/3KHz]

≤8

Test result

	Power spectral	
Frequency	density	Result
MHz	dBm/3KHz	
Top channel 2402MHz	-18.16	Pass
Middle channel 2440MHz	-18.8	Pass
Bottom channel 2480MHz	-18.58	Pass


Date: 30.NOV.2020 13:52:46


Ref Level 21.00 dBm Att 30 dB

Report Number: 64.790.20.05491.01

Page 17 of 29

Date: 30.NOV.2020 13:56:41

Report Number: 64.790.20.05491.01

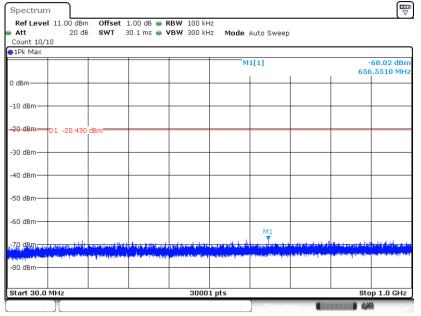
Page 18 of 29

9.5 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

Report Number: 64.790.20.05491.01

SUD

Spurious RF conducted emissions

2402MHz

Date: 30.NOV.2020 13:53:07

Att Count 9/10 IPk Max	30 dB SWT	255 ms 👄 '	VBW 300 kH	z Mode	Auto Sweep			
				м	1[1]			-51.92 dBn 999100 GH:
10 dBm								
) dBm								
10 dBm								
20-d6m01 .	20.430 dBm							
30 dBm								
40 dBm								
50 d y m					1	ر م مانا م مانا م		
60.d	الأبصحية الأفالة المراهيدان	والمتلقل المحصور أساله	lle en portalisation Altre en portalisation	and the second second		¹ 	a a construction de la construcción de la construcción de la construcción de la construcción de la construcción A la construcción de la construcción	and the second secon
and the seal post of	al da de la companye		1.4 × 4× × ×			1		
A later to the lat		1	1					

Date: 30.NOV.2020 13:53:15

Report Number: 64.790.20.05491.01

Page 20 of 29

	00 dB ● RBW 100 kHz 0.1 ms ● VBW 300 kHz Mode Auto Swee	р
)1Pk Max	M1[1]	-67.74 dBn 948.4460 MH
) dBm		
10 dBm		
20.dBm D1 -20.940 dBm		
30 dBm		
40 dBm		
50 dBm		
50 dBm		M1
	la se a la segura de la se a presenta se se a ser a la segura de la segura de la segura de la segura de la seg A se a la segura de l	and the state of the
30 dBm	a na an	
tart 30.0 MHz	30001 pts	Stop 1.0 GHz

Date: 30.NOV.2020 13:54:56

Ref Level 20.0		1.00 dB 👄 🖡						
Att Count 9/10	30 dB SWT	255 ms 👄 \	/BW 300 kH	z Mode	Auto Sweep			
1Pk Max								
				M	1[1]			-49.89 dBr
LO dBm							2.3	811550 GH
o ubiii								
) dBm								
10 dBm								
20. dBmD1 -2	0.940 dBm							
30 dBm								
30 uBm								
40 dBm								
MI								
50 d <mark>8</mark> m								
	الانطبية أكانسانه ملاسيات	فمقاسلة رقيت ورارا	متر الان عدريه والإلا		hild and the second			ور المعد المعال
60.d	Internet and the second states	فيواطله ومراجعا ومع	and the second	A COLORADOR	Andreas, A. Assa I	يىر مى <mark>قىرىيىتى</mark> ا	Torrest Street, Street	(in the second
70 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz

Date: 30.NOV.2020 13:55:04

Report Number: 64.790.20.05491.01

Ref Level 11.00 dBm Offse Att 20 dB SWT	t 1.00 dB	le Auto Sweep	
Count 10/10			
1Pk Max			
		M1[1]	-67.84 dBn 919.8000 MH
) dBm			J19.0000 mm
10 dBm			
20.dBm D1 -20.810 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
			M1
at a contraction of the second s	na tra parte parte parte parte de la p	In the state of th	
tart 30.0 MHz	30001 pts		Stop 1.0 GHz
	00001 pts		

Date: 30.NOV.2020 13:57:02

Spectrum				∇
Ref Level 20.00 dBm Offs Att 30 dB SW	set 1.00 dB 👄 RBW 100 k T 255 ms 👄 VBW 300 k			
Count 9/10			, 	
1Pk Max				
		M1[1]		-48.67 dBm 2.351500 GHz
10 dBm			+ +	
) dBm				
-10 dBm				
20.dBm 20.910 dBm				
20.dBm D1 -20.810 dBm				
30 dBm				
40 dBm				
M				
-50 dBm				
and the second sec	والمحمل فتعلق ومنفق فعرافات والروار والمت	ورا معامل ومعامل المعامل المعامل المائل المائل من التي الم المحمد المحمد معامل المعامل المعامل المائل المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم	n hit son fried fij bloke, wet gener in solitier I	altida, atta, della pud cost
60 di Nerina manananan ana ika	in a de la participa de la contra de la participa de la contra de la contra de la contra de la contra de la con			- and a second second
70 dBm				
Start 1.0 GHz	200	01 pts	e	Stop 26.5 GHz
	300	or hes	a	100 20.3 GHZ

Date: 30.NOV.2020 13:57:10

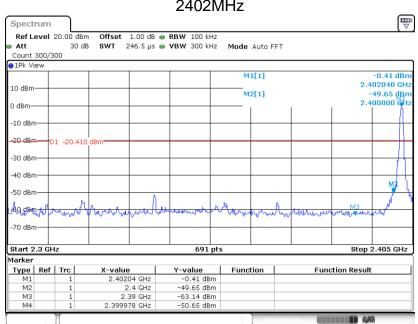
Report Number: 64.790.20.05491.01

Page 22 of 29

9.6 Band edge

Test Method

Use the following spectrum analyzer settings: 1


Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

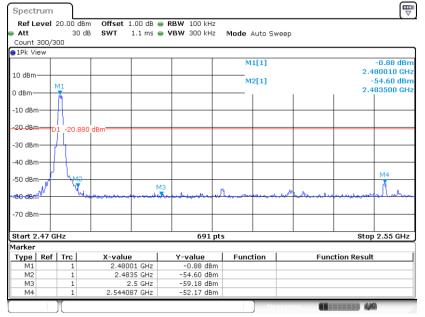
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- The level displayed must comply with the limit specified in this Section. 3

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Test result

Date: 30.NOV.2020 13:52:55


Report Number: 64.790.20.05491.01

Page 23 of 29

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch 5F,Communication Building,163 Pingyun Rd, Huangpu Ave. West Guangzhou, P.R.China TEL: +86 20 3832 0668 FAX: +86 20 3832 0478

2402MHz

Date: 30.NOV.2020 13:56:50

Report Number: 64.790.20.05491.01

Page 24 of 29

9.7 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1 MHz.

b) VBW $\ [3 \times RBW]$.

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.) e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

Report Number: 64.790.20.05491.01

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

2402MHz (30	MHz – 1GHz)					
	Frequency	Emission Level	Polarization	Limit	Detector	Result
	MHz	dBuV/m		dBµV/m		
	654.84	31.63	Horizontal	46.00	QP	Pass
	598.04	30.98	Vertical	46.00	QP	Pass
2402MHz (Ab	ove 1GHz)					
Υ.	Frequency	Emission Level	Polarization	Limit	Detector	Result
	MHz	dBuV/m		dBµV/m		
	1020.00*	43.90	Horizontal	74.00	PK	Pass
	7206.50	47.85	Horizontal	74.00	PK	Pass
	2802.38	43.77	Vertical	74.00	PK	Pass
	10176.50	45.10	Vertical	74.00	PK	Pass
2440MHz (Ab	oove 1GHz)					
2440MHz (At	oove 1GHz) Frequency	Emission Level	Polarization	Limit	Detector	Result
2440MHz (At	,		Polarization	Limit dBµV/m		Result
2440MHz (At	Frequency	Level	Polarization Horizontal			Resul Pass
2440MHz (At	Frequency MHz	Level dBuV/m		dBµV/m	1	
2440MHz (At	Frequency MHz 2839.04	Level dBuV/m 44.67	Horizontal	dΒμV/m 74	PK	Pass
2440MHz (At	Frequency MHz 2839.04 16043.50*	Level dBuV/m 44.67 49.33	Horizontal Horizontal	dΒμV/m 74 74	PK PK	Pass Pass
2440MHz (Ab 2480MHz (Ab	Frequency MHz 2839.04 16043.50* 3996.50 7032.50	Level dBuV/m 44.67 49.33 40.75	Horizontal Horizontal Vertical	dBμV/m 74 74 74	PK PK PK	Pass Pass Pass
	Frequency MHz 2839.04 16043.50* 3996.50 7032.50	Level dBuV/m 44.67 49.33 40.75	Horizontal Horizontal Vertical	dBμV/m 74 74 74	PK PK PK	Pass Pass Pass
	Frequency MHz 2839.04 16043.50* 3996.50 7032.50	Level dBuV/m 44.67 49.33 40.75 41.13 Emission	Horizontal Horizontal Vertical Vertical	dΒµV/m 74 74 74 74	PK PK PK PK	Pass Pass Pass Pass
	Frequency MHz 2839.04 16043.50* 3996.50 7032.50 Dove 1GHz) Frequency	Level dBuV/m 44.67 49.33 40.75 41.13 Emission Level	Horizontal Horizontal Vertical Vertical	dBµV/m 74 74 74 74 Limit	PK PK PK PK	Pass Pass Pass Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

Report Number: 64.790.20.05491.01

Page 27 of 29

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

5F,Communication Building,163 Pingyun Rd, Huangpu Ave. West Guangzhou, P.R.China TEL: +86 20 3832 0668 FAX: +86 20 3832 0478

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
	EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2021-6-29
	LISN	Rohde & Schwarz	ENV4200	100249	2021-6-12
	LISN	Rohde & Schwarz	ENV216	100326	2021-6-12
	ISN	Rohde & Schwarz	ENY81	100177	2021-6-12
CE	ISN	Rohde & Schwarz	ENY81- CAT6	101664	2021-6-12
	High Voltage Proble	Rohde & Schwarz	TK9420(VT9 420)	9420-584	2021-6-23
	RF Current probe	Rohde & Schwarz	EZ-17	100816	2021-6-28
С	Signal Generator	Rohde & Schwarz	SMB100A	108272	2021-6-21
Ũ	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2021-6-21
	Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2021-6-22
	RF Switch Module	Rohde & Schwarz	OSP120/OS P-B157	101226/10085 1	2021-6-21
	EMI Test Receiver	Rohde & Schwarz	ESR 7	102176	2021-6-29
DE	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2021-8-4
RE	Horn Antenna	Rohde & Schwarz	HF907	102294	2021-7-4
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2021-6-21
	3m Semi-anechoic chamber	TDK	9X6X6		2022-10-28

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- Power spectral density
- Spurious RF conducted emissions
- Band edge
- Conducted emission AC power port

RE - Radiated RF tests

• Spurious radiated emissions for transmitter

Report Number: 64.790.20.05491.01

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Radiated Emission in 3m chamber 30MHz-	Horizontal: 5.12dB;				
1000MHz	Vertical: 5.10dB;				
Uncertainty for Radiated Emission in 3m chamber 1000MHz-	Horizontal: 5.01dB;				
25000MHz	Vertical: 5.00dB;				
Uncertainty for Conducted Emission 150KHz-30MHz	U=3.21dB				
Uncertainty for conducted power test	1.16dB				
Frequency test involved:	0.6×10 ⁻⁷				

Report Number: 64.790.20.05491.01