

TEST REPORT

Report Number: 103632772MPK-001 Project Number: G103632772 September 14, 2018

Testing performed on Modular Card Reader with Proximity Sense Model: 1494712-00004 FCC ID: 2AQ8B-1494712 IC: 24390-1494712

to

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15, Subpart B Industry Canada ICES-003

For

Scientific Games, Inc.

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA

Test Authorized by: Scientific Games, Inc. 6601 S. Bermuda Road Las Vegas, NV 89119 USA

Prepared by:	Minh Ly	Date:	September 14, 2018
Reviewed by:	Krishna K Vemuri	Date:	September 14, 2018

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Report No. 103632772MPK-001

Equipment Under Test:	Modular Card Reader with Proximity Sense
Trade Name	Scientific Games Inc

Model Number: 1494712-00004

Applicant: Scientific Games, Inc.

Contact: Steve Moore

Address: Scientific Games, Inc.

6601 S. Bermuda Road Las Vegas, NV 89119

Country USA

Tel. Number: (510) 952-2668

Email: Steve.moore@scientificgames.com

Applicable Regulation: FCC Part 15 Subpart C (15.247)

Industry Canada RSS-247 Issue 2

FCC Part 15, Subpart B

Industry Canada ICES-003 Issue 6

Date of Test: August 23 - 29, 2018

We attest to the accuracy of this report:

Minh Ly

Project Engineer

Krishna K Vemuri Engineering Team Lead

TABLE OF CONTENTS

1.0	Sumi	mary of T	Tests	5
2.0	Gene	ral Infor	mation	6
	2.1	Produc	ct Description	6
	2.2		ed Submittal(s) Grants	
	2.3		acility	
	2.4		Methodology	
	2.5		rement Uncertainty	
3.0	Syste	m Test C	Configuration	8
	3.1	Suppo	ort Equipment	8
	3.2	Block	Diagram of Test Setup	8
	3.3	Justific	cation	9
	3.4		are Exercise Program	
	3.5	Mode	of Operation during Test	9
	3.5		ications Required for Compliance	
	3.6		ions, Deviations and Exclusions from Standards	
4.0	Meas	surement	t Results	10
	4.1		Bandwidth and 99% Occupied Bandwidth	
		4.1.1	Requirement	
		4.1.2	Procedure	
		4.1.3	Test Result	
	4.2	Maxin	num Peak Conducted Output Power at Antenna Terminals	
		4.2.1	Requirement	
		4.2.2	Procedure	
		4.3.3	Test Result	17
	4.3	Maxin	num Power Spectral Density	21
		4.3.1	Requirement	21
		4.3.2	Procedure	21
		4.3.3	Test Result	21
	4.4	Unwar	nted Conducted Emissions	25
		4.4.1	Requirement	25
		4.4.2	Procedure	25
		4.4.3	Test Result	25
	4.5	Transr	mitter Radiated Emissions	28
		4.5.1	Requirement	28
		4.5.2	Procedure	28
		4.5.3	Field Strength Calculation	29
		4.5.4	Test Results	30
		4.5.8	Test setup photographs	41
	4.6	Radiat	ted Emissions	42
		4.6.1	Requirement	42
		4.6.2	Procedures	43
		4.6.3	Test Results	44
		4.6.4	Test Configuration Photographs	47
	4.7	AC Li	ne Conducted Emission	
		4.7.1	Requirement	48
		4.7.2	Procedure	48
		4.7.3	Test Results	49

5.0	List of Test Equipment	53
6.0	Document History	54

1.0 Summary of Tests

Test	Reference	Reference	Result
	FCC	Industry Canada	
RF Output Power	15.247(b)(3)	RSS-247, 5.4.4	Complies
6 dB Bandwidth	15.247(a)(2)	RSS-247, 5.2.1	Complies
Power Density	15.247(e)	RSS-247, 5.2.2	Complies
Out of Band Antenna Conducted Emission	15.247(d)	RSS-247, 5.5	Complies
Transmitter Radiated Emissions	15.247(d), 15.209, 15.205	RSS-247, 5.5	Complies
AC Line Conducted Emission	15.207	RSS-GEN	Complies
Antenna Requirement	15.203	RSS-GEN	Complies (Internal Antenna)
Radiated Emissions	15.109	ICES-003	Complies
AC Line Conducted Emission	15.107	ICES-003	Complies

EUT receive date: August 23, 2018

EUT receive condition: The pre-production version of the EUT was received in good condition

with no apparent damage. As declared by the Applicant, it is identical to

the production units.

Test start date: August 23, 2018 **Test completion date:** August 29, 2018

The test results in this report pertain only to the item tested.

2.0 General Information

2.1 Product Description

Scientific Games, Inc. supplied the following description of the EUT:

The 1494712-00004 will enable players close in proximity to the gaming device to connect through Bluetooth and perform accounting operations.

For more information, see user's manual provided by the manufacturer.

Information about the Bluetooth (BLE) radio is presented below:

For more information, refer to the following product specification, declared by the manufacturer.

Information about the 2.4 GHz radio is presented below:

Applicant	Scientific Games, Inc.	
Model No. 1494712-00004		
FCC Identifier	2AQ8B-1494712	
IC Identifier	24390-1494712	
Type of transmission	Digital Transmission System (DTS)	
Rated RF Output	4.50 dBm	
Antenna(s) & Gain	Internal Antenna, Gain: -1.8 dBi	
Frequency Range 2402 – 2480 MHz		
Type of modulation GFSK		
Number of Channel(s) 40, Channel 0-39		
Applicant Name & Scientific Games, Inc.		
Address	6601 S. Bermuda Road	
	Las Vegas, NV 89119	
USA		

2.2 Related Submittal(s) Grants

None.

2.3 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

2.4 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidance for Performing Compliance Measurement on Digital Transmission Systems (DTS) Operating under §15.247" (KDB 558074 D01 DTS Meas Guidance v05), RSS-247 Issue 2, ANSI C63.10: 2013 and RSS-GEN Issue 5.

Radiated emissions and AC mains conducted emissions measurements were performed according to the procedures in ANSI C63.10: 2013 & ANSI C63.4-2014. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this report.

2.5 Measurement Uncertainty

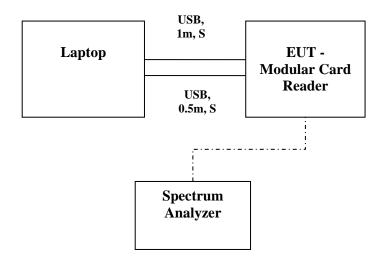
Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

Estimated Measurement Uncertainty

Measurement	Expanded Uncertainty (k=2)		
	0.15 MHz – 1 GHz	1 GHz – 2.5 GHz	> 2.5 GHz
RF Power and Power Density – antenna conducted	-	0.7 dB	-
Unwanted emissions - antenna conducted	1.1 dB	1.3 dB	1.9 dB
Bandwidth – antenna conducted	-	30 Hz	-

Measurement	Expanded Uncertainty (k=2)			
	0.15 MHz – 30MHz	30 – 200 MHz	200 MHz – 1 GHz	1 GHz – 18 GHz
Radiated emissions	-	4.7	4.6	5.1 dB
AC mains conducted emissions	2.1 dB	-	-	-

3.0 System Test Configuration


3.1 Support Equipment

Description	Manufacturer	Model Number	
Laptop	HP	EliteBook 8470p	

3.2 Block Diagram of Test Setup

Equipment Under Test						
Description Manufacturer Model Number Serial Number						
Modular Card Reader Bally 1494712-00004 1832105595902962B						

Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.

S = Shielded	F = With Ferrite
U = Unshielded	m = Length in Meters

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. Different orientation of the EUT were tested and only the worse-case emissions were reported.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was provided by Scientific Games, Inc.

3.5 Mode of Operation during Test

During transmitter testing, the transmitter was setup to transmit at maximum RF power on low, middle and high channel.

3.5 Modifications Required for Compliance

No modifications were made by the manufacturer or Intertek to the EUT in order to bring the EUT into compliance.

3.6 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.

4.0 Measurement Results

4.1 6-dB Bandwidth and 99% Occupied Bandwidth FCC Rule: 15.247(a)(2); RSS-247 A8.2 and RSS-GEN;

4.1.1 Requirement

The minimum 6-dB bandwidth shall be at least 500 kHz

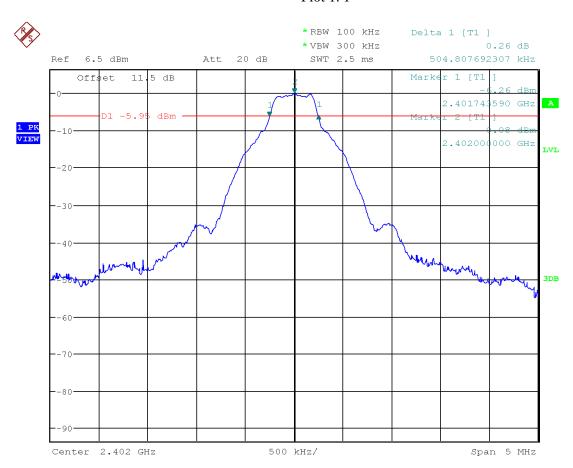
4.1.2 Procedure

A spectrum analyzer was connected to the antenna port of the transmitter.

For FCC 6dB Channel Bandwidth the Procedure described in the FCC Publication 558074 D01 DTS Meas Guidance v05 was used to determine the DTS occupied bandwidth. Section 11.8.1 Option 1 of ANSI 63.10 was used.

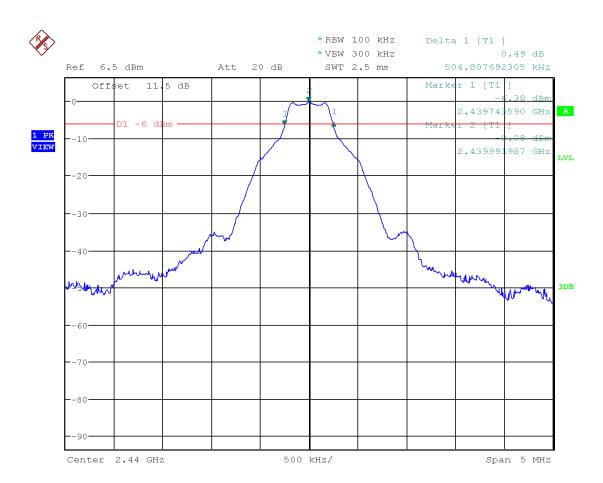
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer. The resolution bandwidth is set to 1% of the selected span as is without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

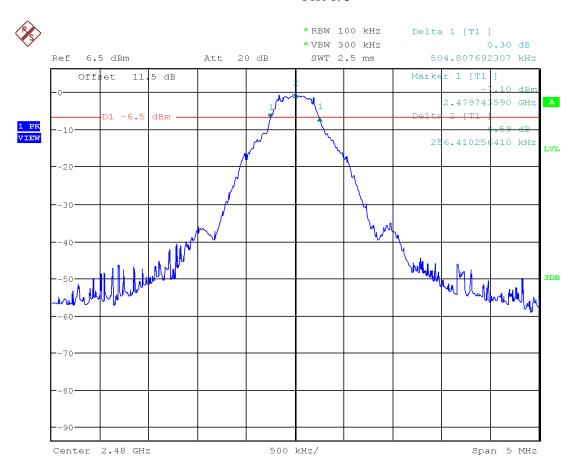

4.1.3 Test Result

Frequency (MHz)	6-dB bandwidth FCC 15.247 & RSS-GEN, kHz	Occupied bandwidth, RSS-GEN, kHz	Plot
2402	504.8	1	1.1
2402		905.4	1.4
2440	504.8	1	1.2
2440		945.5	1.5
2400	504.8	1	1.3
2480		913.4	1.6

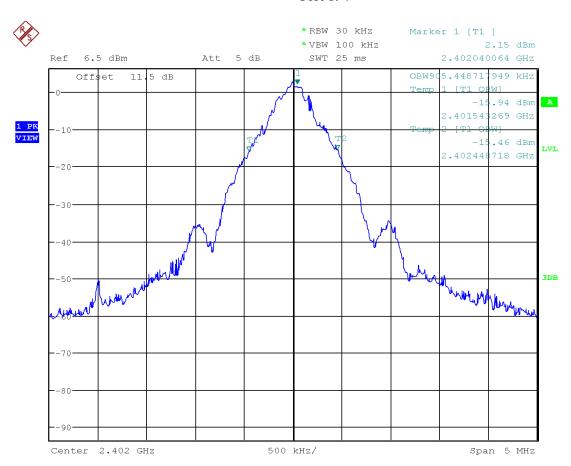
Date of Test:	August 23, 2018
Results	Complies


Plot 1. 1

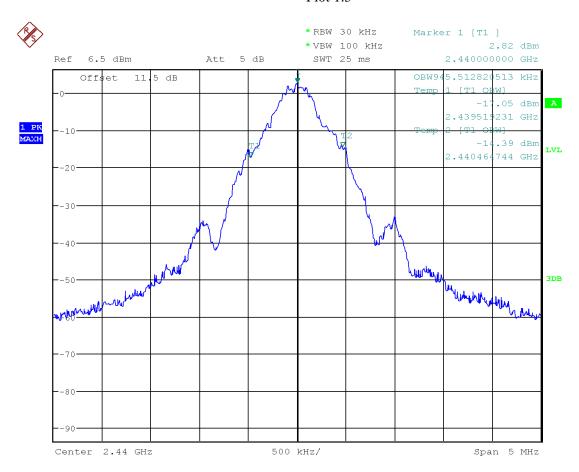
Date: 23.AUG.2018 14:34:40


Plot 1. 2

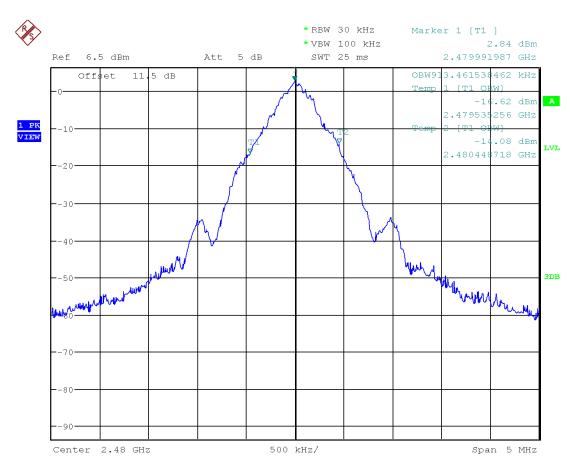
Date: 23.AUG.2018 14:38:20


Plot 1. 3

Date: 23.AUG.2018 14:40:36


Plot 1.4

Date: 23.AUG.2018 15:12:27


Plot 1.5

Date: 23.AUG.2018 15:12:02

Plot 1.6

Date: 23.AUG.2018 15:11:15

4.2 Maximum Peak Conducted Output Power at Antenna Terminals FCC Rule: 15.247(b)(3); RSS-247 A8.4;

4.2.1 Requirement

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt or 30 dBm. For antennas with gains greater than 6 dBi, transmitter output level must be decreased appropriately, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2.2 Procedure

The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v05 was used. Specifically, section 11.9.1.1 RBW ≥ DTS Bandwidth of ANSI 63.10 was utilized as the spectrum analyzer's resolution bandwidth was greater than the DTS bandwidth.

- 1. Set the RBW ≥ DTS Bandwidth
- 2. Set the VBW \geq 3 x RBW
- 3. Set the span \geq 3 x RBW
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max Hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

A spectrum analyzer was connected to the antenna port of the transmitter.

4.3.3 Test Result


Refer to the following plots 2.1 - 2.3 for the test details.

Frequency, MHz	Conducted Power (peak), dBm	Conducted Power (peak), mW	Plot
2402	4.45	2.793	2.1
2440	4.39	2.754	2.2
2480	4.50	2.825	2.3

Date of Test:	August 23, 2018
Results	Complies

Plot 2. 1

Date: 23.AUG.2018 15:13:27

Plot 2. 2

Date: 23.AUG.2018 15:09:27

Plot 2. 3

Date: 23.AUG.2018 15:10:01

4.3 Maximum Power Spectral Density FCC: 15.247 (e); RSS-247 A8.2b;

4.3.1 Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna should not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

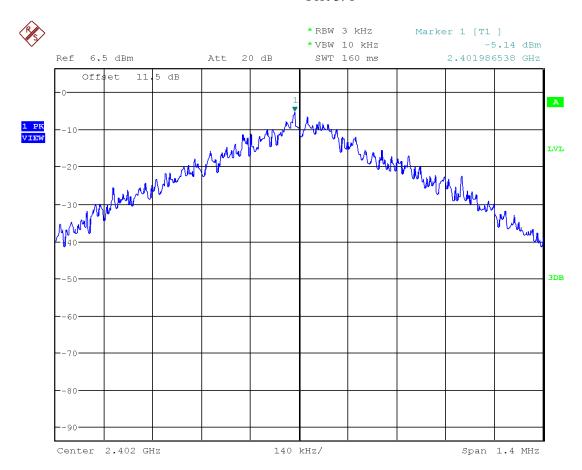
4.3.2 Procedure

A spectrum analyzer was connected to the antenna port of the transmitter.

The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v05, specifically section 11.10.2 Method PKPSD (peak PSD) of ANSI 63.10.

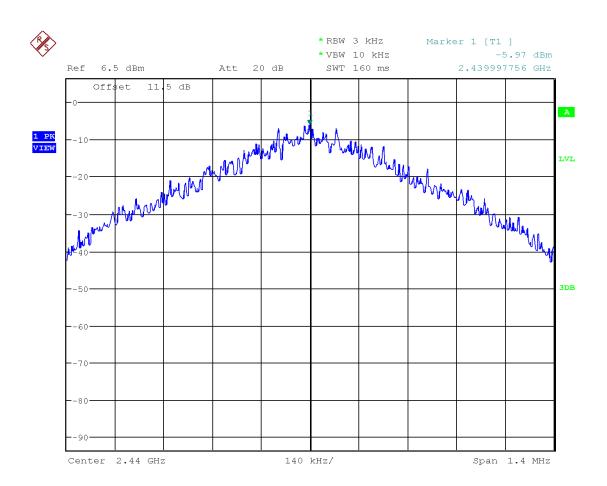
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the *DTS bandwidth*.
- 3. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.3.3 Test Result

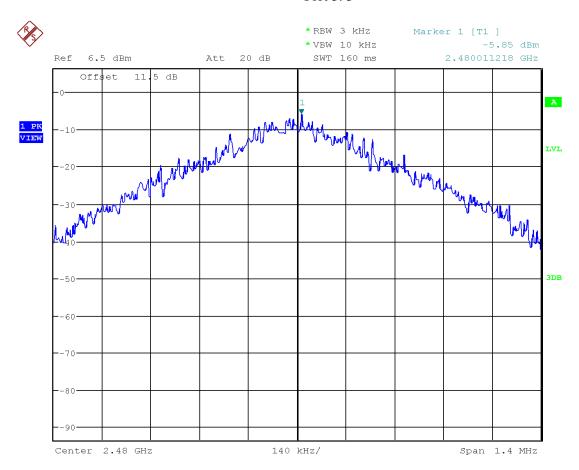

Refer to the following plots for the test result

Frequency,	Maximum Power Spectral Density,	Maximum Power Spectral Density Limit,	Margin,	Plot
MHz	dBm	dBm	dB	
2402	-5.14	8.0	-13.14	3.1
2440	-5.97	8.0	-13.97	3.2
2480	-5.85	8.0	-13.85	3.3

Date of Test:	August 23, 2018
Results	Complies


Plot 3. 1

Date: 23.AUG.2018 15:15:33


Plot 3. 2

Date: 23.AUG.2018 15:16:09

Plot 3. 3

Date: 23.AUG.2018 15:16:41

4.4 Unwanted Conducted Emissions FCC: 15.247(d); RSS-247 A8.5;

4.4.1 Requirement

In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be below the maximum in-band 100 kHz emissions by at least 20 dB (if peak power of in-band emission is measured) or 30 dB (if average power of in-band emission is measured).

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

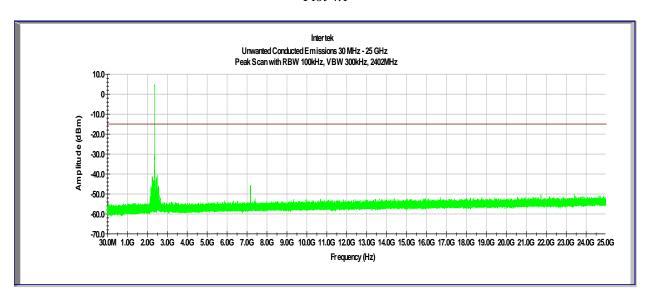
4.4.2 Procedure

The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v05, specifically section 11.11 DTS Emissions in non-restricted frequency bands of ANSI 63.10.

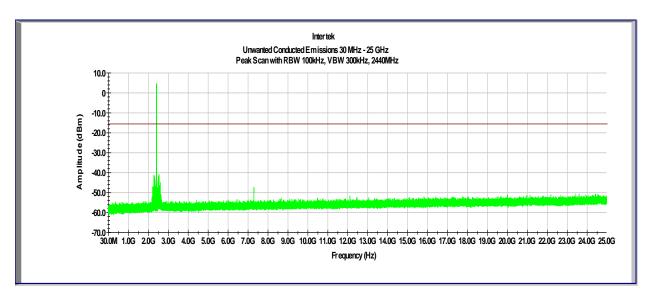
A spectrum analyzer was connected to the antenna port of the transmitter.

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 3 x RBW.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

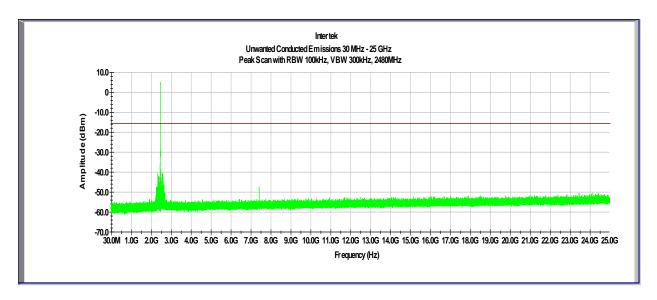
The unwanted emissions were measured from 30 MHz to 25 GHz. Plots below are corrected for cable loss and then compared to the limits.


4.4.3 Test Result

Refer to the following plots 4.1 - 4.3 for unwanted conducted emissions. The plot shows -20dB attenuation limit line.


Date of Test:	September 29, 2018
Results	Complies

Tx @ Low Channel, 2402 MHz 30MHz -25GHz Conducted Spurious Plot 4.1



Tx @ Mid Channel, 2440 MHz 30MHz -25GHz Conducted Spurious Plot 4.2

Tx @ High Channel, 2480 MHz 30MHz -25GHz Conducted Spurious Plot 4.3

4.5 Transmitter Radiated Emissions

FCC Rules: 15.247(d), 15.209, 15.205; RSS-247;

4.5.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 25 GHz according to the procedure described in ANSI C63.10: 2013. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 1 GHz to 18GHz had a 2.4-2.5GHz notch filter in place. A preamp was used from 30MHz to 26GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 26GHz.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where $FS = Field Strength in dB(\mu V/m)$

 $RA = Receiver Amplitude (including preamplifier) in dB(<math>\mu V$); AF = Antenna Factor in dB(1/m)

CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB(\mu V)$

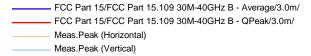
AF = 7.4 dB(1/m)

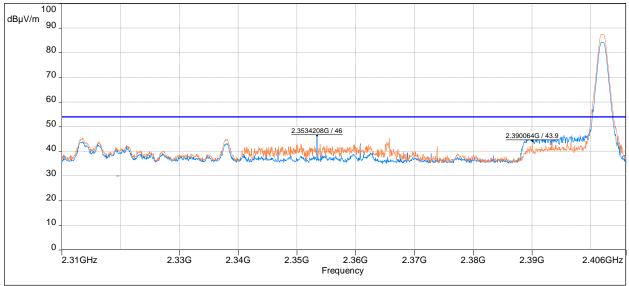
CF = 1.6 dB

AG = 29.0 dB

 $FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 dB(\mu V/m)$.

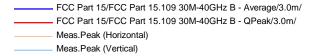
Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$.


4.5.4 Test Results


The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Date of Test:	August 27-28, 2018
Results	Complies

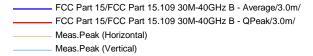
Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2310–2390 MHz, Peak Scan with Average Limit EUT in Horizontal Position

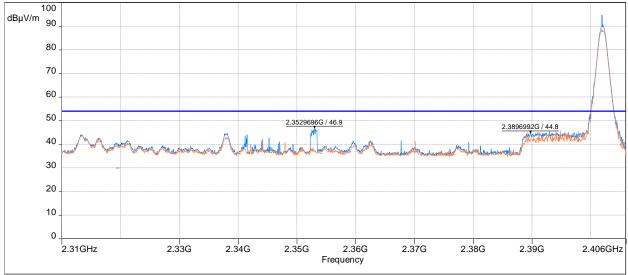


Model: ; Client: ; Comments: ; Test Date: 08/28/2018 15:56

Frequency	Peak	Ave Limit	Margin	Angle	Height	Polarity	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Folarity	(dBuV)	(dB)
2353.4	46.1	54.0	-8.0	0	1.5	Vertical	60.5	-14.4
2390.0	43.9	54.0	-10.1	238	1.5	Vertical	58.3	-14.4

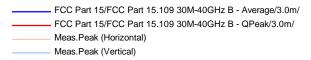
Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2483.5–2500 MHz, Peak Scan with Average Limit EUT in Horizontal Position

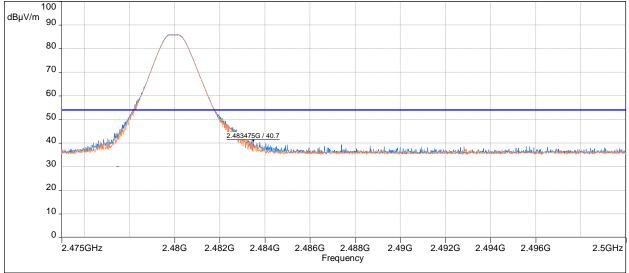



Model: ; Client: ; Comments: ; Test Date: 08/28/2018 16:31

Frequency	Q-Peak	Limit	Margin	Angle	Height	Polarity	Raw	Correction
(MHz)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(°)	(m)	Folarity	(dBuV)	(dB)
2483.5	40.5	54.0	-13.5	244.3	2.5	Vertical	54.6	-14.1

Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2310–2390 MHz, Peak Scan with Average Limit EUT in Vertical Position




Model: ; Client: ; Comments: ; Test Date: 08/28/2018 17:14

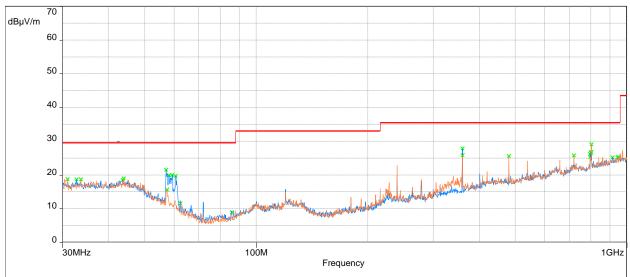
Frequency	Q-Peak	Limit	Margin	Angle	Height	Polarity	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
2352.9	46.9	54.0	-7.1	0.3	2.5	Vertical	61.3	-14.4
2390.0	44.8	54.0	-9.2	319.5	1.5	Vertical	59.2	-14.4

Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2483.5–2500 MHz, Peak Scan with Average Limit EUT in Vertical Position

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 16:53

Frequency	FS	Ave Limit	Margin	Angle	Height	Dolomitu	Raw	Correction
(MHz)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
2483.5	40.7	54.0	-13.3	133.3	1.5	Vertical	54.8	-14.1

Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz


Radiated Spurious Emissions 30 MHz - 1000 MHz

FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/10.0m/
Meas.Peak (Horizontal)

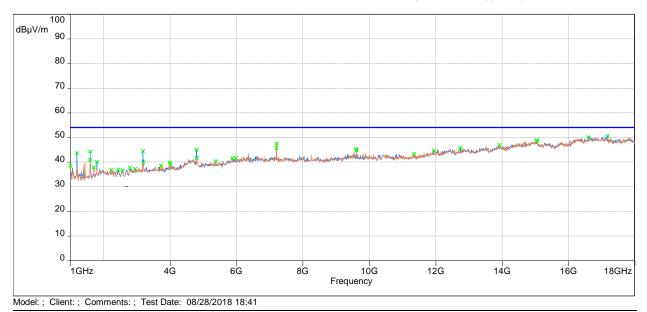
Meas.Peak (Vertical)

Peak (Peak /Lim. QPeak) (Horizontal)

× Peak (Peak /Lim. QPeak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/27/2018 20:11

Frequency	Q-Peak	Limit	Margin	Angle	Height	Dolomitro	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
360.000	27.86	35.5	-7.64	199	1.0	Vertical	38.9	-11.0


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Average Limit

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)

Meas.Peak (Vertical)

× Peak (Peak /Lim. Peak) (Horizontal)

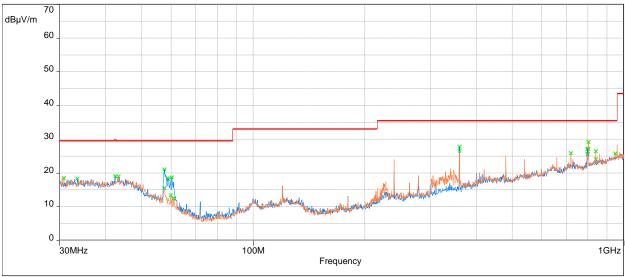
Peak (Peak /Lim. Peak) (Vertical)

Frequency Average Limit FS@3m Margin Angle Height Raw Correction **Polarity** (MHz) $(dB\mu V/m)$ (°) (dBuV) $(dB\mu V/m)$ (dB) (dB) (m) 7206.7 183 2.5 52.4 -5.0 47.3 54 -6.7 Horizontal

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + Correction

Correction = AF + CF - Preamp


Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440MHz

Radiated Spurious Emissions 30 MHz - 1000 MHz

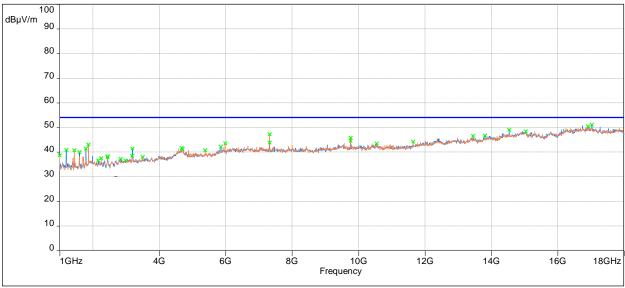
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/10.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

× Peak (Peak /Lim. QPeak) (Horizontal)

× Peak (Peak /Lim. QPeak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/27/2018 20:22

Frequency	Q-Peak	Limit	Margin	Angle	Height	Dolority	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
360.000	27.8	35.5	-7.7	200	1.0	Vertical	38.8	-11.0


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Average Limit

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)

Meas.Peak (Vertical)

× Peak (Peak /Lim. Peak) (Horizontal)

Peak (Peak /Lim. Peak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 19:09

Frequency	FS@3m	Average Limit	Margin	Angle	Height	Polarity	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
7318.9	47.2	54	-6.8	176	2.52	Horizontal	52.2	-5.0

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + Correction

Correction = AF + CF - Preamp



Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz

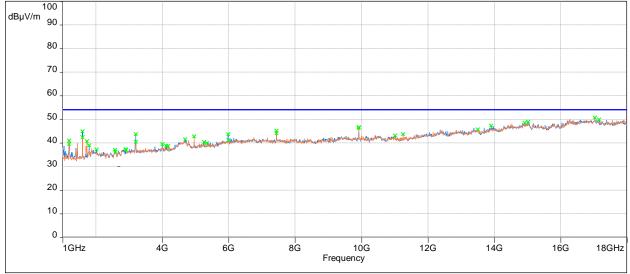
Radiated Spurious Emissions 30 MHz - 1000 MHz

FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/10.0m/ Meas.Peak (Horizontal) Meas.Peak (Vertical) Peak (Peak /Lim. QPeak) (Horizontal)

- Peak (Peak /Lim. QPeak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/27/2018 20:30

Frequency (MHz)	Q-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Angle (°)	Height (m)	Polarity	Raw (dBuV)	Correction (dB)
360.000	27.8	35.5	-7.7	218	1.0	Vertical	38.8	-11.0



Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Average Limit

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)

Meas.Peak (Vertical)

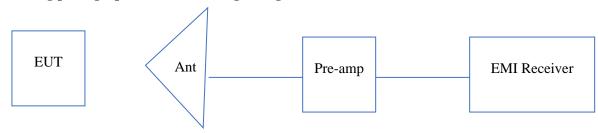
- Peak (Peak /Lim. Peak) (Horizontal)
- × Peak (Peak /Lim. Peak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 19:22

Frequency	FS@3m	Average Limit	Margin	Angle	Height	Polarity	Raw	Correction
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(°)	(m)	Polarity	(dBuV)	(dB)
9921.6	46.6	54	-7.4	360	3.48	Horizontal	48.9	-2.3

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + Correction


Correction = AF + CF - Preamp

Result: Complies by 6.7 dB

4.5.8 Test setup photographs

The following photographs show the testing configurations used.

4.6 Radiated Emissions

FCC Ref: 15.109, ICES 003

4.6.1 Requirement

Limits for Electromagnetic Radiated Emissions FCC Section 15.109(b), ICES 003*, RSS GEN

Frequency (MHz)	Class A at 10m dB(µV/m)	Class B at 3m dB(μV/m)
30-88	39	40.0
88-216	43.5	43.5
216-960	46.4	46.0
Above 960	49.5	54.0

^{*} According to FCC Part 15.109(g) an alternative to the radiated emission limits shown above, digital devices may be shown to comply with the limit of CISPR Pub. 22

4.6.2 Procedures

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

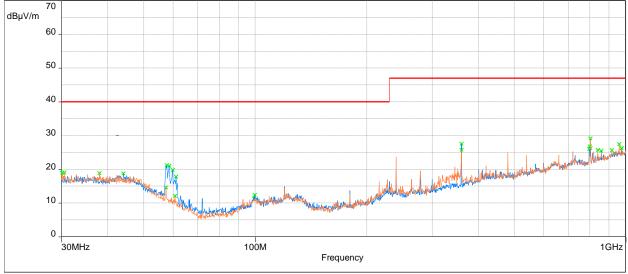
The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4.


4.6.3 Test Results

Date of Test:	August 27, 2018
Results	Complies

Test Results: Radiated Emissions 30 MHz – 1000 MHz

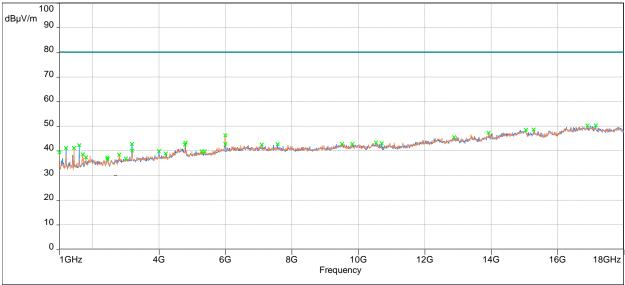
CISPR Limit/CISPR Limit 30M-1GHz QP A - QPeak/10.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

- × Peak (Peak /Lim. QPeak) (Horizontal)
- × Peak (Peak /Lim. QPeak) (Vertical)

Model: ; Client: ; Comments: ; Test Date: 08/27/2018 20:00

Frequency	Quasi Pk FS	Limit	Margin	Azimuth	Height	Polarity	Raw	Correction
MHz	dB(uV/m)	dB(uV/m)	dB	deg	cm		dB(uV/m)	dB
44.097	18.8	40.0	-21.3	201.0	1.0	Vertical	28.3	-9.5
57.710	21.2	40.0	-18.8	64.8	4.0	Vertical	36.7	-15.5
359.994	25.7	47.0	-21.3	327.3	3.0	Horizontal	36.8	-11.1
359.994	27.5	47.0	-19.5	201.0	1.0	Vertical	38.6	-11.1
801.829	29.2	47.0	-17.8	11.3	4.0	Horizontal	32.7	-3.5
960.036	27.4	47.0	-19.6	28.5	1.0	Horizontal	27.9	-0.4

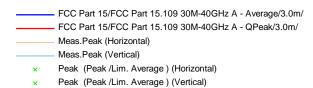
4.6.3 Test Results (Continued)

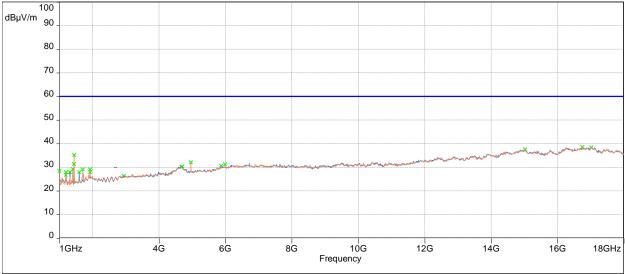

Radiated Emissions 1GHz – 18GHz, Peak.

FCC Part 15/FCC Part 15.109 Peak 1GHz to 40GHz A - Peak/3.0m/
Meas.Peak (Horizontal)

Meas.Peak (Vertical)

Peak (Peak /Lim. Peak) (Horizontal)

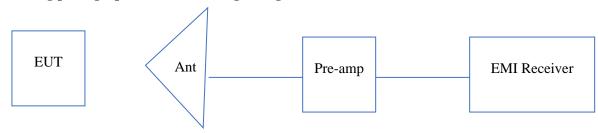

Peak (Peak /Lim. Peak) (Vertical)



Model: ; Client: ; Comments: ; Test Date: 08/28/2018 20:03

Radiated Emissions 1GHz – 18GHz, Average.

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 19:45


Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz.

Result: Complies by 17.8 dB

4.6.4 Test Configuration Photographs

The following photographs show the testing configurations used.

4.7 AC Line Conducted Emission FCC: 15.107, 15.207; RSS-GEN;

4.7.1 Requirement

Frequency Band	Class B Lin	nit dB(μV)	Class A Limit dB(µV)		
MHz	Quasi-Peak	Average	Quasi-Peak	Average	
0.15-0.50	66 to 56 *	56 to 46 *	79	66	
0.50-5.00	56	46	73	60	
5.00-30.00	60	50	73	60	

Note: *Decreases linearly with the logarithm of the frequency. At the transition frequency the lower limit applies.

4.7.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

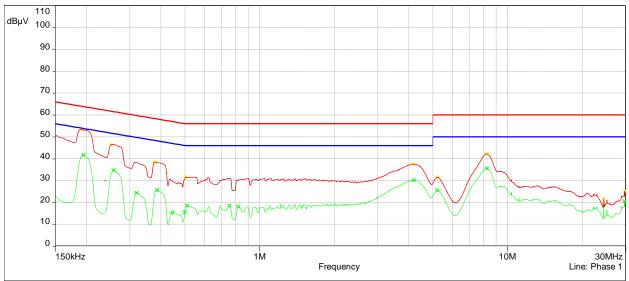
Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

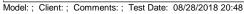
The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.4:2014 and ANSI C63.10-2013

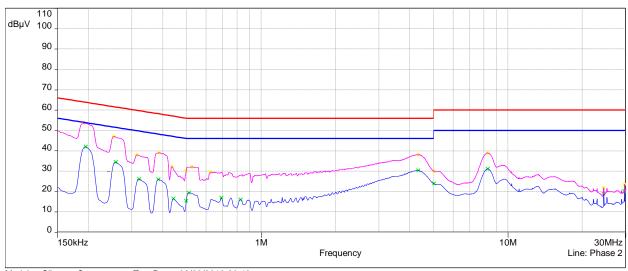
Tested By:	Minh Ly
Test Date:	August 28, 2018


4.7.3 Test Results


FCC Part 15.207 Conducted Disturbances, 120V 60Hz

Sub-range 1 FCC Part 15/FCC Part 15/FCC Part 15.107 B - Average/
Frequencies: 150 kHz - 30 MHz (Mode: - Step: 2.25 kHz) FCC Part 15/FCC Part 15.107 B - QPeak/
Settings: RBW: 9kHz, VBW: 30kHz, Sweep time: 1e+03 ms, Attenuation: 10 dB, Sweep count 3, Preamp: Qfeat Qreak Preselector: On
Line: Phase 1

FCC Part 15/FCC Part 15.107 B - Average/
FCC Part 15/FCC Part 15/FCC Part 15.107 B - QPeak/
Mes. CISPR AVG (Phase 1)


- QPeak (QPeak /Lim. QPeak) (Phase 1)
- CISPR AVG (CISPR AVG /Lim. Average) (Phase 1)

Sub-range 2
Frequencies: 150 kHz - 30 MHz (Mode: - Step: 2.25 kHz)
FCC Part 15/FCC Part 15.107 B - Average/
FCC Part 15/FCC Part 15.107 B - QPeak/
Settings: RBW: 9kHz, VBW: 30kHz, Sweep time: 1e+03 ms, Attenuation: 10 dB, Sweep count 1, Preample Aff (Ph.B. (Pmps Off))
FCC Part 15/FCC Part 15.107 B - QPeak/
FCC Part 15/FCC Part 15.107 B - QPeak/
FCC Part 15/FCC Part 15.107 B - Average/
FCC Part 15.107 B

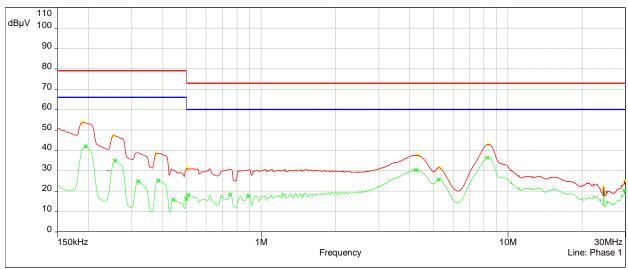
CISPR AVG (CISPR AVG /Lim. Average) (Phase 2)

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 20:48

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	Margin (dB)	Line	Correction (dB)
0.191	53.4	64.0	-10.6	Phase 1	11.5
0.254	46.5	61.6	-15.1	Phase 1	11.6
0.377	38.5	58.3	-19.8	Phase 1	11.6
0.503	31.6	56.0	-24.4	Phase 1	11.6
4.191	37.6	56.0	-18.4	Phase 1	11.8
8.241	42.2	60.0	-17.8	Phase 1	11.8
0.193	53.4	63.9	-10.5	Phase 2	11.5
0.254	47.1	61.6	-14.6	Phase 2	11.6
0.386	39.1	58.1	-19.1	Phase 2	11.6
0.526	32.1	56.0	-23.9	Phase 2	11.6
4.333	38.1	56.0	-17.9	Phase 2	11.8
8.286	39.0	60.0	-21.0	Phase 2	11.8

Frequency (MHz)	Ave Level (dBuV)	Ave Limit (dBuV)	Margin (dB)	Line	Correction (dB)
0.195	41.6	53.8	-12.2	Phase 1	11.5
0.258	34.7	51.5	-16.8	Phase 1	11.6
0.510	18.5	46.0	-27.5	Phase 1	11.6
0.755	18.5	46.0	-27.5	Phase 1	11.6
4.191	30.1	46.0	-15.9	Phase 1	11.8
8.275	35.6	50.0	-14.4	Phase 1	11.8
0.195	41.9	53.8	-11.9	Phase 2	11.5
0.258	34.4	51.5	-17.1	Phase 2	11.6
0.384	25.9	48.2	-22.3	Phase 2	11.6
0.510	19.3	46.0	-26.7	Phase 2	11.6
4.331	30.3	46.0	-15.7	Phase 2	11.8
8.279	31.1	50.0	-18.9	Phase 2	11.8

Results: Complies by 12.2 dB at 120V 60Hz

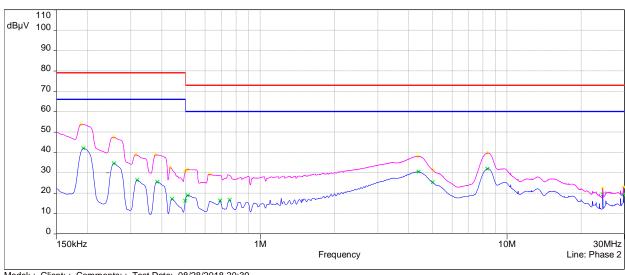


4.7.3 Test Results (Continued)

FCC Part 15.107 Conducted Disturbances, 120V 60Hz

Sub-range 1
FCC Part 15/FCC Part 15.107 A - Average/
Frequencies: 150 kHz - 30 MHz (Mode: - Step: 2.25 kHz)
FCC Part 15/FCC Part 15.107 A - QPeak/
Settings: RBW: 9kHz, VBW: 30kHz, Sweep time: 1e+03 ms, Attenuation: 10 dB, Sweep count 3, Preample of the Republic of the

- QPeak (QPeak /Lim. QPeak) (Phase 1)
- CISPR AVG (CISPR AVG /Lim. Average) (Phase 1)



Model: ; Client: ; Comments: ; Test Date: 08/28/2018 20:39

Sub-range 2 FCC Part 15/FCC Part 15.107 A - Average/
Frequencies: 150 kHz - 30 MHz (Mode: - Step: 2.25 kHz) FCC Part 15/FCC Part 15.107 A - QPeak/
Settings: RBW: 9kHz, VBW: 30kHz, Sweep time: 1e+03 ms, Attenuation: 10 dB, Sweep count 1, Preampic of the property of the

QPeak (QPeak /Lim. QPeak) (Phase 2)

- QPeak (QPeak /Lim. QPeak) (Phase 2)
- CISPR AVG (CISPR AVG /Lim. Average) (Phase 2)

Model: ; Client: ; Comments: ; Test Date: 08/28/2018 20:39

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	Margin (dB)	Line	Correction (dB)
0.191	53.6	79.0	-25.4	Phase 1	11.5
0.254	47.1	79.0	-31.9	Phase 1	11.6
4.322	37.6	73.0	-35.4	Phase 1	11.8
8.340	42.9	73.0	-30.1	Phase 1	11.8
24.455	21.9	73.0	-51.1	Phase 1	12.0
29.643	24.9	73.0	-48.1	Phase 1	12.0
0.188	53.7	79.0	-25.3	Phase 2	11.5
0.256	47.4	79.0	-31.6	Phase 2	11.6
0.314	38.8	79.0	-40.3	Phase 2	11.6
0.377	38.8	79.0	-40.2	Phase 2	11.6
5.006	31.6	73.0	-41.4	Phase 2	11.8
8.347	39.7	73.0	-33.3	Phase 2	11.8

Frequency (MHz)	Ave Level (dBuV)	Ave Limit (dBuV)	Margin (dB)	Line	Correction (dB)
0.195	41.8	66.0	-24.2	Phase 1	11.5
0.256	34.9	66.0	-31.1	Phase 1	11.6
0.508	17.9	60.0	-42.1	Phase 1	11.6
4.250	30.4	60.0	-29.6	Phase 1	11.8
5.255	25.7	60.0	-34.3	Phase 1	11.8
8.268	36.4	60.0	-23.6	Phase 1	11.8
0.193	42.0	66.0	-24.1	Phase 2	11.5
0.256	34.6	66.0	-31.4	Phase 2	11.6
0.319	26.4	66.0	-39.6	Phase 2	11.6
4.382	30.5	60.0	-29.5	Phase 2	11.8
5.006	25.3	60.0	-34.7	Phase 2	11.8
8.342	31.9	60.0	-28.1	Phase 2	11.8

Results: Complies by 24.1 dB at 120V 60Hz

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	01/24/19
Pyramidal Horn Antenna	EMCO	3160-09	ITS 00571	#	#
Pre-Amplifier (18-40GHz)	Miteq	TTA1840-35-S-M	ITS 01393	12	01/19/19
Active Horn Antenna	ETS-Lindgren	3117-PA	ITS 01325	12	01/25/19
EMI Receiver	Rohde and Schwarz	ESR7	ITS 01607	12	10/09/18
BI-Log Antenna	Antenna Research	LPB-2513	ITS 00355	12	02/21/19
Pre-Amplifier	Sonoma Instrument	310N	ITS 01493	12	10/20/18
Notch Filter	Micro-Tronics	BRM50702	ITS 01166	12	03/10/19
10 dB Attenuator	Mini Circuits	BW-S10W5+	ITS 01582	12	08/31/18
Notch Filter	MICRO-TRONICS	BRM50702	ITS 01166	12	12/08/18
Attenuator	Narda	FSCM99899	ITS 01583	12	08/31/18
RF Cable	Megaphase	EMC1-K1K1-236	ITS 01538	12	06/25/19
RF Cable	Megaphase	TM40-K1K1-59	ITS 01657	12	06/26/19
RF Cable	TRU Corporation	TRU CORE 300	ITS 01330	12	11/29/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	08/16/19
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	08/16/19
Transient Limiter	COM-POWER	LIT-153A	ITS 01452	12	06/21/19
LISN	FCC	FCC-LISN-50-50-M-H	ITS 00552	12	11/14/18

[#] No Calibration required

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
Tile	Quantum Change	3.4.K.22	Conducted Spurious_30M-26GHz
BAT-EMC	Nexio	3.16.0.64	103632772_Bally.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G103632772	ML	KV	September 14, 2018	Original document
2.0 / G103632772	ML	KV	February 11, 2019	Per manufacturer request, name and address are changed from Bally Technologies, Inc to Scientific Games, Inc.