

Page: 1 / 44 Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Kapture Door Sensor
Brand Name	Pamex
Model No.	KP1-DS
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Hong

Dally Hong Sr. Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 44 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	January 20, 2022	Initial Issue	ALL	Doris Chu

Page: 3 / 44 Rev.: 00

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	EUT CHANNEL INFORMATION	. 5
1.3	ANTENNA INFORMATION	. 5
1.4	MEASUREMENT UNCERTAINTY	. 6
1.5	FACILITIES AND TEST LOCATION	.7
1.6	INSTRUMENT CALIBRATION	.7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	. 9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	. 9
2.	TEST SUMMARY	10
3.	DESCRIPTION OF TEST MODES	11
3.1	THE WORST MODE OF OPERATING CONDITION	11
3.2	THE WORST MODE OF MEASUREMENT	12
3.3	EUT DUTY CYCLE	13
4.	TEST RESULT	14
4.1	AC POWER LINE CONDUCTED EMISSION	14
4.2	OUTPUT POWER MEASUREMENT	19
4.3	POWER SPECTRAL DENSITY	22
4.4	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	25
4.5	RADIATION BANDEDGE AND SPURIOUS EMISSION	29
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

Page: 4 / 44 Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Pamex Inc. 4680 Vinita Court, Chino, CA, 91710, United States
Manufacturer	ALZK Co., Ltd. 9F., No. 36, Sec. 3, Bade Rd., Songshan Dist., Taipei City, Taiwan
Equipment	Kapture Door Sensor
Model No.	KP1-DS
Model Discrepancy	N/A
Trade Name	Pamex
Received Date	December 22, 2021
Date of Test	January 7 ~ 11, 2022
Power Supply	Power from Battery. (DC 3V)
HW Version	V0.0.4
SW Version	00.00.01

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Page: 5 / 44 Rev.: 00

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE 1 Mbps
Number of channels	40 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Type	☐ FPC ⊠ PCB ☐ Dipole ☐ Coils
Antenna Gain	Gain :5.3 dBi

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

Page: 6 / 44 Rev.: 00

Report No.: TMWK2112001576KR

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 6dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30 MHz ~1 GHz (Horizontally)	+/- 3.91
3M Semi Anechoic Chamber / 30 MHz ~1 GHz (Vertically)	+/- 4.57
3M Semi Anechoic Chamber / 1 GHz ~ 6 GHz	+/- 5.20
3M Semi Anechoic Chamber / 6 GHz ~ 18 GHz	+/- 5.18
3M Semi Anechoic Chamber / 18 GHz ~ 40 GHz	+/- 3.68

Remark:

1.This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 44 Rev.: 00

Report No.: TMWK2112001576KR

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Ray Li	-
RF Conducted	Jack Chen	-

Remark: The lab has been recognized as the FCC accredited lad under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	05/25/2021	05/24/2022
Power Meter	Anritsu	ML2496A	2136002	12/06/2021	12/05/2022
Power Seneor	Anritsu	MA2411B	1911387	08/19/2021	08/18/2022
Power Seneor	Anritsu	MA2411B	1911386	08/19/2021	08/18/2022
DC Power Supplies	GW Instek	SPS-3610	GPE880163	12/21/2021	12/20/2022
Software	Radio Test Software Ver. 21				

	Conducted Emission Room					
Name of Equipment Manufacturer Model Serial Number Calibration Calibrat Date Due						
N/A						

Page: 8 / 44 Rev.: 00

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	112	11/23/2021	11/22/2022	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/19/2021	07/18/2022	
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/24/2021	02/23/2022	
Coaxial Cable	EMCI	EMC105	190914+1111	09/17/2021	09/16/2022	
Coaxial Cable	Woken	J-1099	201709090004	12/21/2021	12/20/2022	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	12/28/2021	12/27/2022	
Horn Antenna	ETS LINDGREN	3116	00026370	11/30/2021	11/29/2022	
Horn Antenna	ETS LINDGREN	3117	00055165	07/29/2021	07/28/2022	
Loop Ant	COM-POWER	AL-130	121051	04/07/2021	04/06/2022	
Pre-Amplifier	EMEC	EM330	060609	02/24/2021	02/23/2022	
Pre-Amplifier	HP	8449B	3008A00965	12/24/2021	12/23/2022	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	12/06/2021	12/05/2022	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	Software e3 6.11-20180413					

Remark: Each piece of equipment is scheduled for calibration once a year.

.

Report No.: TMWK2112001576KR

Page: 9 / 44 Rev.: 00

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
	N/A					

	Support Equipment						
No.	No. Equipment Brand Model Series No. FCC ID IC					IC	
1	NB(L)	Toshiba	PORTEGE R30-A	N/A	PD97260H	1000M-7260H	

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247 and FCC KDB 558074.

Page: 10 / 44 Rev.: 00

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	N/A
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Spurious Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 11 / 44 Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BLE Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2442MHz 3.Highest Channel : 2480MHz

Remark:

Г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 12 / 44 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

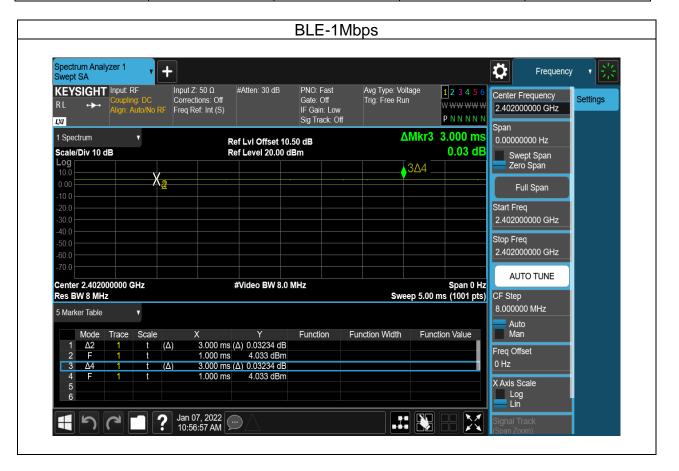
Radiated Emission Measurement Above 1G			
Test Condition Radiated Emission Above 1G			
Power supply Mode Mode 1: EUT power by Battery			
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4		
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 		

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Power supply Mode Mode 1: EUT power by Battery				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report



Page: 13 / 44 Rev.: 00

3.3 EUT DUTY CYCLE

Temperature:	20.6 ℃	Humidity:	53% RH
Tested by:	Jack Chen	Test date:	January 7, 2022

Duty Cycle					
Configuration	Duty Cycle (%)	Duty Factor (dB)	1/T (kHz)	VBW Setting (kHz)	
BLE-1Mbps	100.00	0.00	0.33	0.01	

Page: 14 / 44 Rev.: 00

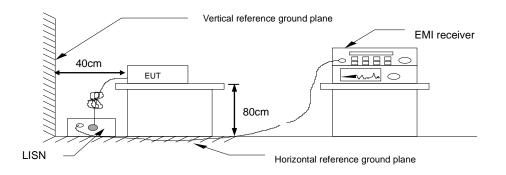
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

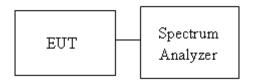
Not applicable, because EUT doesn't connect to AC Main Source direct.

4.1.5 Test Limit

According to \$15.247(a)(2)

6 dB Bandwidth :

Limit	Shall be at least 500kHz
-------	--------------------------


Occupied Bandwidth(99%) : For reporting purposes only.

4.1.6 Test Procedure

Test method Refer as ANSI C63.10: 2013,

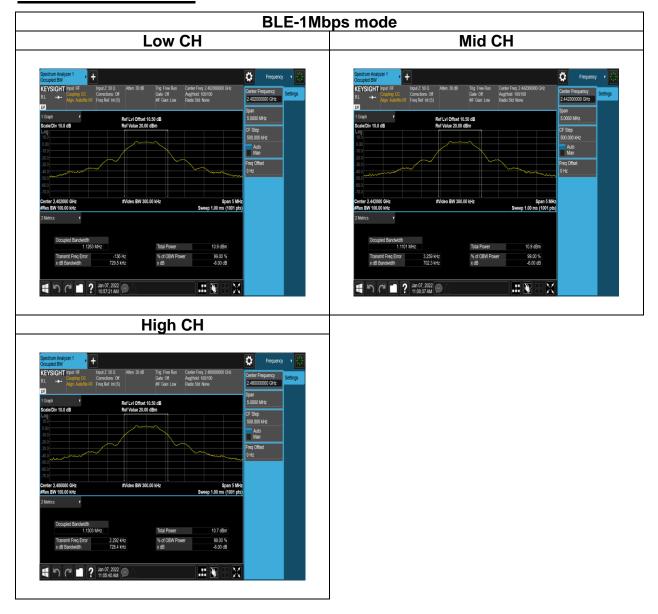
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.1.7 Test Setup

Page: 15 / 44 Rev.: 00

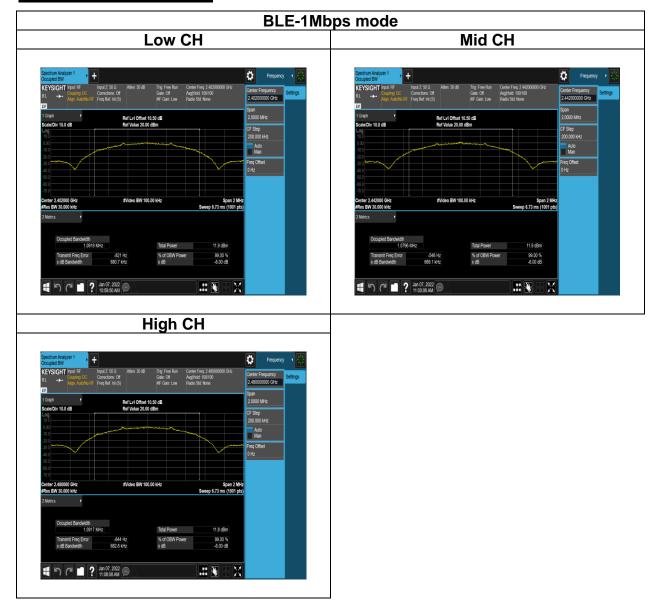
Page: 16 / 44 Rev.: 00

4.1.8 Test Result


Temperature:	20.6 ℃	Humidity:	53% RH
Tested by:	Jack Chen	Test date:	January 7, 2022

Test mode: BLE-1Mbps mode / 2402-2480 MHz						
Channel	Frequency (MHz)	OBW (99%) (MHz)	6dB BW (MHz)	6dB limit (kHz)		
Low	2402	1.0918	0.7295			
Mid	2442	1.0796	0.7023	≥500		
High	2480	1.0917	0.7284			

Page: 17 / 44 Rev.: 00


Test Data 6dB BANDWIDTH

Page: 18 / 44 Rev.: 00

Test Data BANDWIDTH (99%)

Page: 19 / 44 Rev.: 00

4.2 OUTPUT POWER MEASUREMENT

4.2.1 Test Limit

According to §15.247(b)(3)

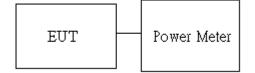
Peak output power :

FCC

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement,

Limit \square Antenna not exceed 6 dBi : 30dBm \square Antenna with DG greater than 6 dBi [Limit = 30 - (DG - 6)] \square Point-to-point operation	
---	--

Average output power : For reporting purposes only.


Page: 20 / 44 Rev.: 00

4.2.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.2.3 Test Setup

Page: 21 / 44 Rev.: 00

Report No.: TMWK2112001576KR

4.2.4 Test Result

Temperature:	20.6 ℃	Humidity:	53% RH
Tested by:	Jack Chen	Test date:	January 7, 2022

Peak output power :

BLE 1M mode:

СН	Frequency (MHz)	Power set	Peak Power Output (dBm)	Required Limit (dBm)
Low	2402	5	4.44	30
Mid	2442	5	4.36	30
High	2480	5	4.19	30

Average output power :

BLE 1M mode:

СН	Frequency (MHz)	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Required Limit (dBm)
Low	2402	5	4.37	30
Mid	2442	5	4.29	30
High	2480	5	4.12	30

Page: 22 / 44 Rev.: 00

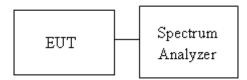
4.3 POWER SPECTRAL DENSITY

4.3.1 Test Limit

According to §15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

4.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

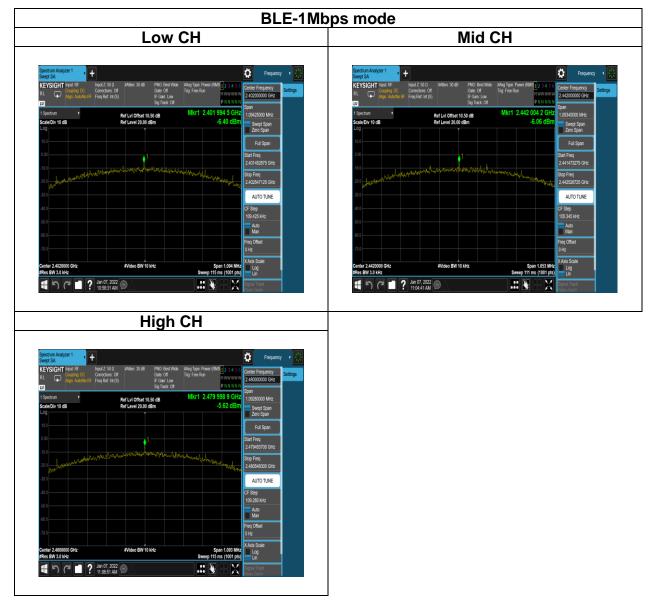
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.3.3 Test Setup

Page: 23 / 44 Rev.: 00

4.3.4 Test Result

Temperature:	20.6 ℃	Humidity:	53% RH
Tested by:	Jack Chen	Test date:	January 7, 2022


BLE 1M mode

Frequency (MHz)	RF Power Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2402	-6.40	8	PASS
2442	-6.06	8	PASS
2480	-5.62	8	PASS

Page: 24 / 44 Rev.: 00

Test Data

Page: 25 / 44 Rev.: 00

4.4 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

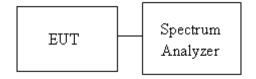
4.4.1 Test Limit

According to §15.247(d)

FCC: In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.4.2 Test Procedure


Test method Refer as ANSI C63.10:2013.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

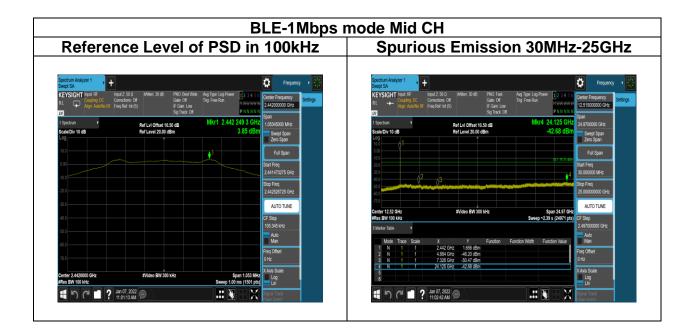
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3 Test Setup

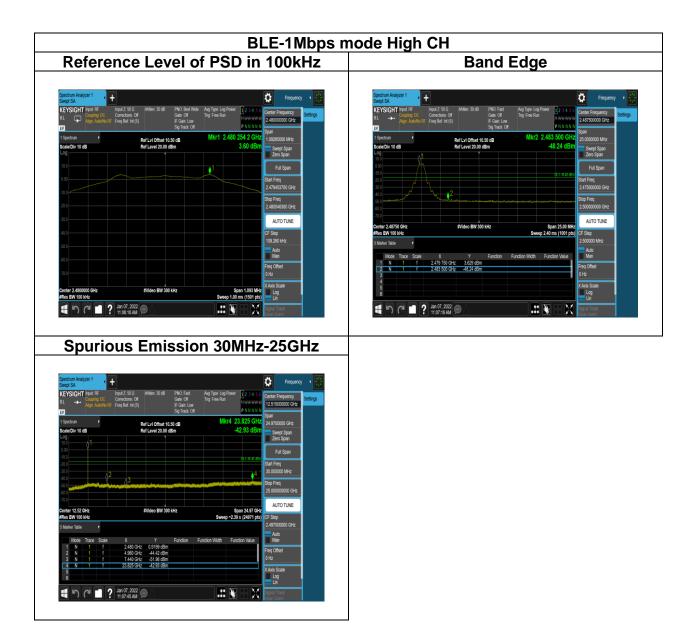
Page: 26 / 44 Rev.: 00

4.4.4 Test Result


Test Data

Temperature:	20.6 °C	Humidity:	53% RH
Tested by:	Jack Chen	Test date:	January 7, 2022

BLE-1Mbps I	mode Low CH
Reference Level of PSD in 100kHz	Band Edge
<figure><figure></figure></figure>	Image: Angle of the second



Page: 27 / 44 Rev.: 00

Page: 28 / 44 Rev.: 00

Page: 29 / 44 Rev.: 00

4.5 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Stre microvolts/m at 3 metr	
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 30 / 44 Rev.: 00

4.5.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

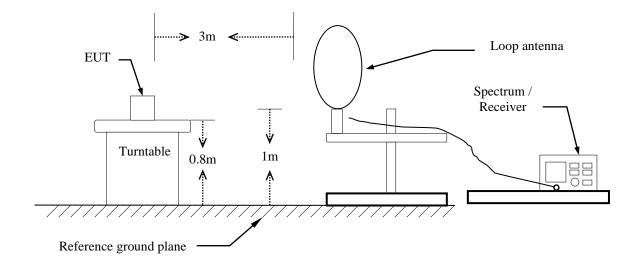
 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 3. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G :
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

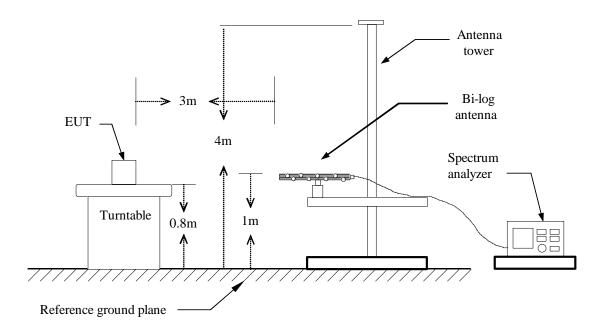
If Duty Cycle \geq 98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW=1/T.

4. Data result

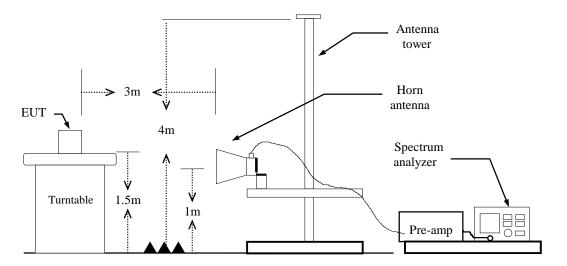

Actual FS=Spectrum Reading Level+Factor

Margin=Actual FS- Limit



Page: 31 / 44 Rev.: 00

4.5.3 Test Setup <u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page: 32 / 44 Rev.: 00

Above 1 GHz

Page: 33 / 44 Rev.: 00

-14.59

54.00

4.5.4 Test Result

Band Edge Test Data

2487.65

Average

26.19

Test Mo	de:	BLE-1Mbps Low CH		Temp/Hum		20.4(°C	20.4(°∁)/ 53%RH	
Test Ite	em	Band Edge		Test Date		Januar	January 11, 2022	
Polariz	ze		Vertical		Tes	t Engineer	R	ay Li
Detect	or	Pe	ak / Average					
120 Level (dBu	IV/m)							
110								
				3				
90					+ 	·		
70								
			1	- 11				-
50v-v~m4~~~~	had a sure of the second states and the second stat	try and the second	non haddening and an one	we have	monten	and an and a second of	hhap have the state of the second second	and the second
			2					P
30								
10								1 1 1
0 2310	234	10	2386.		24	24.	2462.	2500
2510	2.34	+0.		equency		24.	2402.	2500
Freq.	Detecto	or	Spectrum	Fa	ctor	Actual	Limit	Margin
	Mode		eading Level			FS	@3m	
MHz	PK/QP/	٩V	dBµV	-	IB	dBµV/m	dBµV/m	dB
2385.05	Peak		39.97	12	.56	52.53	74.00	-21.47
2385.05	Averag	е	26.64	12	.56	39.20	54.00	-14.80
2402.00	Peak		81.59	12	.65	94.24	-	-
2402.00	Averag	е	80.61	12	.65	93.26	-	-
2487.65	Peak		38.30	13	.22	51.52	74.00	-22.48

13.22

39.41

Page: 34 / 44 Rev.: 00

Test Mo	de:	BLE-1Mbps Low (CH T	emp/Hum	20.4(°C)/ 53%RH
Test Ite	em	Band Edge	-	Test Date	January 11, 2022	
Polariz	ze	Horizontal	Te	st Engineer	R	ay Li
Detect	or	Peak / Average				
120	IV/m)					
110						
			3			
90						
70						
50	and stock for the sole statistics	Marchan and March Marchan	W how when ment	ManneshrennssanderMannes	al a such such descent such that the start of	5
301100000	and all the owner. An all the s	2		1		6
30						
10						
0 <mark>2310</mark>	2348.	2386.		424.	2462.	2500
		FD	equency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
•	Mode	Reading Level		FS	@3m	Ū
MHz	PK/QP/A	′ dBμV	dB	dBµV/m	dBµV/m	dB
2389.80	Peak	40.14	12.59	52.73	74.00	-21.27
2389.80	Average	27.52	12.59	40.11	54.00	-13.89
0.400 00	Peak	87.03	12.65	99.68	-	-
2402.00	A	85.97	12.65	98.62	-	-
2402.00	Average	00.01				
	Average Peak	38.00	13.27	51.27	74.00	-22.73

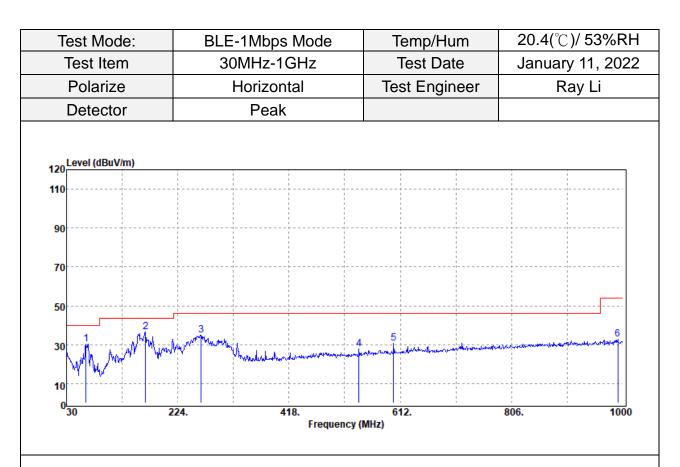
Page: 35 / 44 Rev.: 00

Test Mo	de: B	LE-1Mbps High (CH T	emp/Hum	20.4(°℃)/ 53%RF
Test Ite	em	Band Edge	٦	Fest Date	January	y 11, 2022
Polariz	ze	Vertical	Tes	st Engineer	Ra	ay Li
Detect	or	Peak / Average				
120 Level (dBu	IV/m)					
110						
90						
70						
50 Mbmcmaa.Mt	1 within which was shown as	and a state of the	and and a house marked the server	turka manana maska maka mila mi		- Southerway
	2					6
30						1
	1			1		
10						
10 0 2310	2348.	2386. Fre		424.	2462.	2500
	2348.		24 Equency (MHz)	424.	2462.	2500
	2348.			424.	2462. Limit	2500 Margin
0 2310 Freq.	Detector Mode	Free Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
02310 Freq. MHz	Detector	Free Spectrum Reading Level dBµV	Factor dB	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB
02310 Freq. MHz 2346.10	Detector Mode PK/QP/AV Peak	Free Spectrum Reading Level dBµV 39.30	Factor dB 12.35	Actual FS dBµV/m 51.65	Limit @3m dBµV/m 74.00	Margin dB -22.35
02310 Freq. MHz	Detector Mode PK/QP/AV	Free Spectrum Reading Level dBµV	Factor dB	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB
02310 Freq. MHz 2346.10	Detector Mode PK/QP/AV Peak	Free Spectrum Reading Level dBµV 39.30	Factor dB 12.35	Actual FS dBµV/m 51.65	Limit @3m dBµV/m 74.00	Margin dB -22.35
02310 Freq. MHz 2346.10 2346.10	Detector Mode PK/QP/AV Peak Average	Free Spectrum Reading Level dBµV 39.30 27.14	Factor dB 12.35 12.35	Actual FS dBμV/m 51.65 39.49	Limit @3m dBµV/m 74.00	Margin dB -22.35
02310 Freq. MHz 2346.10 2346.10 2480.00	Detector Mode PK/QP/AV Peak Average Peak	Free Spectrum Reading Level dBµV 39.30 27.14 78.76	Factor dB 12.35 12.35 13.16	Actual FS dBμV/m 51.65 39.49 91.92	Limit @3m dBµV/m 74.00 54.00 -	Margin dB -22.35 -14.51 -

Page: 36 / 44 Rev.: 00

Test Mo	de:	BLE-1Mbps High (CH T	emp/Hum	20.4(℃)/ 53%RH
Test Ite	em	Band Edge	7	Fest Date	Januar	y 11, 2022
Polariz	ze	Horizontal	Tes	st Engineer	R	ay Li
Detect	or	Peak / Average				
120	IV/m)					
110						
				I I I I I I I I I I I I I I I I I I I	2	
90						
70						
50 Manuar		alonality paparely carette according to the second	methodalana	and and the second states and the second	wannamen and	5
		2				6
30						· · · · · · · · · · · · · · · · · · ·
10						I
0 <mark></mark> 2310	2348.	2386. Er	24 equency (MHz)	424.	2462.	2500
			squency (mnz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
-	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	′ dBμV	dB	dBµV/m	dBµV/m	dB
2382.39	Peak	39.38	12.55	51.93	74.00	-22.07
2382.39	Average	27.42	12.55	39.97	54.00	-14.03
2480.00	Peak	84.37	13.16	97.53	-	-
2100.00	Average	83.33	13.16	96.49	-	-
2480.00	Average					
	Peak	40.67	13.20	53.87	74.00	-20.13

Page: 37 / 44 Rev.: 00


Test Mo	ode:	BLE-1Mbps Mo	de	Temp/Hum	20.4(°C	c)/ 53%RF
Test Ite	em	30MHz-1GHz		Test Date	Januar	y 11, 2022
Polariz	ze	Vertical	Т	est Engineer	R	ay Li
Detect	tor	Peak		_		-
			· · · · ·			
120 Level (dB	uV/m)					
110						
90						
70						
50						
~ <u>+</u> -						
30	2	3	4		5	the man the start
i Mw	When when we	and prover all all and all all all all all all all all all al	Alex - Protocol Protocol - Trans.			
10						
0 <mark></mark> 30	224.	418.	requency (MHz)	612.	806.	1000
		'	requency (Mirz)			
					1	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
MHz 63.95	Mode PK/QP/AV Peak	Reading Level dBµV 54.01	dB -15.58	FS dBµV/m 38.43	@3m dBµV/m 40.00	dB -1.57
MHz 63.95 170.65	Mode PK/QP/AV Peak Peak	Reading Level dBµV 54.01 42.18	dB -15.58 -11.16	FS dBµV/m 38.43 31.02	@3m dBµV/m 40.00 43.50	dB -1.57 -12.48
MHz 63.95 170.65 305.48	Mode PK/QP/AV Peak Peak Peak	Reading Level dBµV 54.01 42.18 36.02	dB -15.58	FS dBµV/m 38.43	@3m dBµV/m 40.00 43.50 46.00	dB -1.57 -12.48 -18.61
MHz 63.95 170.65	Mode PK/QP/AV Peak Peak	Reading Level dBµV 54.01 42.18	dB -15.58 -11.16	FS dBµV/m 38.43 31.02	@3m dBµV/m 40.00 43.50	dB -1.57 -12.48
MHz 63.95 170.65 305.48	Mode PK/QP/AV Peak Peak Peak	Reading Level dBµV 54.01 42.18 36.02	dB -15.58 -11.16 -8.63	FS dBμV/m 38.43 31.02 27.39	@3m dBµV/m 40.00 43.50 46.00	dB -1.57 -12.48 -18.61

Bolow 1G Tost Data

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 38 / 44 Rev.: 00

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
63.95	Peak	45.89	-15.58	30.31	40.00	-9.69
167.74	Peak	47.42	-10.99	36.43	43.50	-7.07
264.74	Peak	44.33	-9.33	35.00	46.00	-11.00
540.22	Peak	30.62	-2.71	27.91	46.00	-18.09
600.36	Peak	33.03	-2.24	30.79	46.00	-15.21
991.27	Peak	28.18	4.43	32.61	54.00	-21.39

Page: 39 / 44 Rev.: 00

Above 1G Test Data

Test Mo	de: E	LE-1Mbps Low	CH	Temp/Hum	20.4(°C)/ 53%RF
Test Ite	em	Harmonic		Test Date	Januar	y 11, 2022
Polariz	ze	Vertical	Т	est Engineer	R	ay Li
Detect	or	Peak & Averag	je			
120 Level (dBu	IV/m)					
110						
90						
70			 		 	
50		}			 	
	2	•				
30			 1 1 1 1			
10						
0 1000	6100.	11200.		16300.	21400.	26500
		F	requency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.00	Peak	39.12	9.47	48.59	74.00	-25.41
4804.00	Average	27.20	9.47	36.67	54.00	-17.33
7206.00	Peak	32.28	13.41	45.69	74.00	-28.31
7200.00			40.44	34.40	54.00	-19.60
7206.00	Average	20.99	13.41	34.40	54.00	15.00

Remark:

Page: 40 / 44 Rev.: 00

		Free	quency (MHz)			
0 <mark></mark>	6100.	11200.	16300.	214	00. 2	6500
10		· · · · · · · · · · · · · · · · · · ·			·	
30						
	4					
50	13-					
70					· · · · · · · · · · · · · · · · · · ·	
90	 					
110						·
120 Level (dBuV/	m)					
Delecto		T eak & Average				
Detecto		Peak & Average		<u>gii 1001</u>		
Polarize	9	Horizontal	Test Eng		Ray Li	
Test Iter	n	Harmonic	Test D	ate	January 11, 2	.02
Test Mod	ie: B	LE-1Mbps Low (CH Temp/I	Hum	20.4(°C)/ 53%	

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.00	Peak	38.55	9.47	48.02	74.00	-25.98
4804.00	Average	29.92	9.47	39.39	54.00	-14.61
7206.00	Peak	32.36	13.41	45.77	74.00	-28.23
7206.00	Average	20.45	13.41	33.86	54.00	-20.14
N/A						

Remark:

Page: 41 / 44 Rev.: 00

120 · · · · · · · · · · · · · · · · · · ·								
110								
		90						
120	<u> </u>	110				· · · · · · · · · · · · · · · · · · ·		
Level (dBuV/m)			_evel (dBuV/m)					
Detector Peak & Average			Polarize		Vertical	Test Engine		
PolarizeVerticalTest EngineerRay LiDetectorPeak & Average	Vertical Test Engineer Ray Li		Test Item		armonic	Test Date	January 1	1, 202
Detector Peak & Average				Н			Januar	'y 1

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4884.00	Peak	37.00	9.58	46.58	74.00	-27.42
4884.00	Average	25.46	9.58	35.04	54.00	-18.96
7326.00	Peak	32.72	13.17	45.89	74.00	-28.11
7326.00	Average	20.42	13.17	33.59	54.00	-20.41
N/A						

Remark:

Page: 42 / 44 Rev.: 00

		Freque	ency (MHz)		
0 <mark>1000</mark>	6100.	11200.	16300.	21400.	26500
10				-l	
30				· · · · · · · · · · · · · · · · · · ·	
	2 4				
50					
70					
90					
110					
	(11)				
120 Level (dBuV 110	/m)				
Delecio		eak & Average			
Detecto		eak & Average	Test Engin	eer	Ray Li
Polarize		Horizontal			-
Test Iter		Harmonic	Test Date		ary 11, 202
Test Mod	Ie: BLE	-1Mbps Mid CH	Temp/Hu	m 20.4(℃)/ 53%Rŀ

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4884.00	Peak	37.13	9.58	46.71	74.00	-27.29
4884.00	Average	28.43	9.58	38.01	54.00	-15.99
7326.00	Peak	32.93	13.17	46.10	74.00	-27.90
7326.00	Average	20.30	13.17	33.47	54.00	-20.53
N/A						

Remark:

Page: 43 / 44 Rev.: 00

1000	0100.		10300. icy (MHz)	21400.	20000
0 <mark></mark>	6100.	11200.	16300.	21400.	26500
10		 			
30		· · · · · · · · · · · · · · · · · · ·			
	2 4				
50	3				
10					
70					
90					1
110					
120 Level (dBuV/	m)			1	
Detector	r Pea	ak & Average			
Polarize		Vertical	Test Engine	er R	ay Li
Test Iten		Harmonic	Test Date		y 11, 2022
Test Mod		Mbps High CH	Temp/Hur)/ 53%RH

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	37.85	9.63	47.48	74.00	-26.52
4960.00	Average	28.42	9.63	38.05	54.00	-15.95
7440.00	Peak	33.37	13.42	46.79	74.00	-27.21
7440.00	Average	20.69	13.42	34.11	54.00	-19.89
N/A						

Remark:

Page: 44 / 44 Rev.: 00

1000 6100. 11200. 16300. 21400. Frequency (MHz)						
0 <mark></mark>	6400	44200	46200	24.400	26500	
10			· · · · · · · · · · · · · · · · · · ·		 - 	
30	4					
50	2	I				
	1 -					
70						
90					 	
110						
120 Level (dBuV/	m)					
Detecto	r Pea	Peak & Average				
Polarize	•	Horizontal		eer R	Ray Li	
Test Iten	า	Harmonic	Test Date	e Januar	January 11, 202	
Test Mod	e: BLE-	BLE-1Mbps High CH		n 20.4(°C	20.4(°C)/ 53%RI	

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	38.22	9.63	47.85	74.00	-26.15
4960.00	Average	30.01	9.63	39.64	54.00	-14.36
7440.00	Peak	33.35	13.42	46.77	74.00	-27.23
7440.00	Average	21.32	13.42	34.74	54.00	-19.26
N/A						

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

--End of Test Report--