

Report No.: EED32M00045601 Page 1 of 52

TEST REPORT

Product Zigbee Pro Temp tag

Trade mark V-MARK VTS04W02 Model/Type reference

Serial Number N/A

Report Number : EED32M00045601

FCC ID 2AQ7V-VTSCFGPROTT

Date of Issue Jun. 08, 2020

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

V-MARK Enterprises Ltd. 400-601 West Broadway, Vancouver, British Columbia, Canada

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Sunlight Sun

Sam Chuang

Reviewed by:

Ware Xin

haro Xm

an (lucy Date:

Jun. 08, 2020

Check No.:3970366270

(4)

Page 2 of 52

2 Version

Version No.	Date	Description
00	Jun. 08, 2020	Original
	0-	

Page 3 of 52

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Duty Cycle	ANSI C63.10-2013	ANSI C63.10-2013	PASS

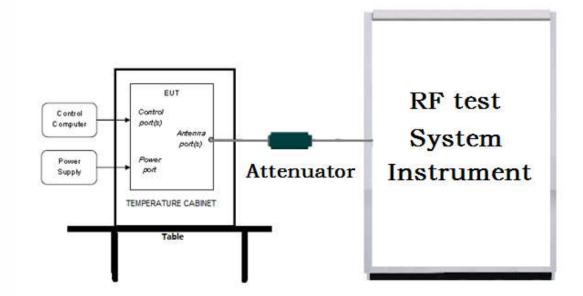
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Page 4 of 52

4 Content


1 COVER PAG	E		•••••	•••••		•••••	1
2 VERSION	•••••		•••••		•••••		2
3 TEST SUMM	IARY		•••••		•••••		3
4 CONTENT	•••••		•••••	•••••	•••••	•••••	4
5 TEST REQU	IREMENT	•••••		•••••			5
5.1.1 For 5.1.2 For 5.1.3 For 5.2 TEST EN	TUP Conducted test Radiated Emiss Conducted Emi VIRONMENT	setup sions test setu ssions test se	ptup				5 6 6
6 GENERAL II	NFORMATION		•••••				7
6.2 GENERAL 6.3 PRODUC 6.4 DESCRIP 6.5 TEST LO 6.6 DEVIATIO 6.7 ABNORM 6.8 OTHER II	NFORMATION L DESCRIPTION OF T SPECIFICATION TION OF SUPPOR CATION DN FROM STANDA ALITIES FROM ST NFORMATION REC EMENT UNCERTA	F EUTSUBJECTIVE TO SUBJECTIVE TO TO UNITSRDS.	O THIS STANDA	RD			
	LIST						
	HNICAL REQUI						
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	Y CYCLE	ed Bandwidth Peak Output for RF Condu ted Spurious I ctral Density quirement pands around	Power cted Emission Emissions fundamental f	s requency (Ra	diated)		14 20 22 26 28
120	HS OF TEST SI						42
PHOTOGRAP	HS OF EUT CO	NSTRUCTIO	NAL DETAILS	S		•••••	44

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

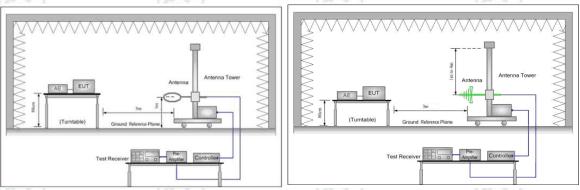


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 52

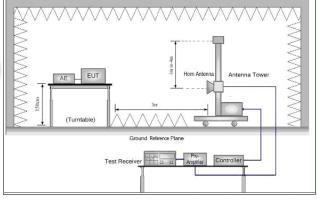


Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

N/A

5.2 Test Environment

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	53 % RH		(3)
Atmospheric Pressure:	1010mbar	6.	6.

Page 6 of 52

5.3 Test Condition

Test Mode	Tx	RF Channel		
7 657 111646	(2)	Low(L)	Middle(M)	High(H)
OQPSK	2405MHz ~2480MHz	Channel 1	Channel 8	Channel 16
5 Q , 5 , 1	210011112 2100111112	2405MHz	2440MHz	2480MHz

Page 7 of 52

6 General Information

6.1 Client Information

Applicant:	V-MARK Enterprises Ltd.
Address of Applicant:	400-601 West Broadway, Vancouver, British Columbia, Canada
Manufacturer:	Senpu Fishing Tackle Co., Ltd.
Address of Manufacturer:	Floor 2 No 2 Building Fucheng Industrial Park, 82nd Shilian Iu, Shiji Town, Panyu District, GuangZhou

6.2 General Description of EUT

Product Name:	Zigbee Pro Temp tag
Model No.(EUT):	VTS04W02
Trade Mark:	V-MARK
EUT Supports Radios application:	2405-2480MHz (2405MHz/2440MHz/2480MHz)
Power Supply:	Battery ER14335 3.6V 1600mAh
Sample Received Date:	Mar. 16, 2020
Sample tested Date:	Mar. 16, 2020 to May 28, 2020

6.3 Product Specification subjective to this standard

Operation Frequency:	2405MHz to 2480MHz			
Channel Numbers:	16		(3)	
Type of Modulation:	OQPSK	(67)	(6)	
Test Power Grade:	Default			
Test Software of EUT:	Default			
Antenna Type and Gain:	Type: PCB Antenna			7:5
(65)	Gain:2dBi			
Test Voltage:	DC 3.6V			

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency
(1)	2405	7	2435	13	2465
2	2410	8	2440	14	2470
3	2415	9	2445	15	2475
4	2420	10	2450	16	2480
5	2425	11	2455	(67)	(6,0)
6	2430	12	2460		

Report No. : EED32M00045601 Page 8 of 52

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

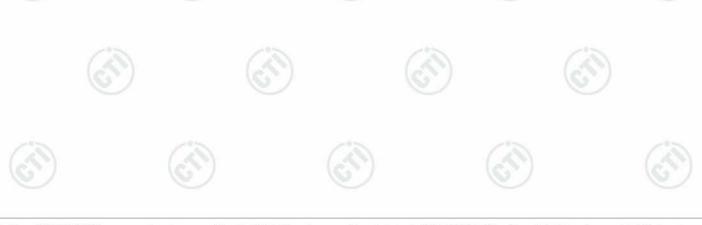
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions


None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
(1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted 0.55dB (1GHz-18GHz) 4.3dB (30MHz-1GHz) 4.5dB (1GHz-12.75GHz)	
3	Padiated Sourious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 52

7 Equipment List

	RF test system				
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	((T)
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

Report No.: EED32M00045601

Page	10	of 52	
i agc	10	01 02	

	3M	Semi/full-anecho	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date	
3M Chamber & Accessory Equipment	TDK	SAC-3		(mm-dd-yyyy) 05-24-2019	(mm-dd-yyyy) 05-23-2022	
TRILOG Broadban Antenna	d Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	-0
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	(0)
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
Multi device Controller	maturo	NCD/070/107 11112				1
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	1
Cable line	Fulai(7M)	SF106	5219/6A		6	1
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A			+
Cable IIIIe	T didi(OM)	0.100	02117071	(3)	<u>I</u>	10

3M Semi/full-anechoic Chamber

Page 11 of 52

		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG	(60)	100	/	(0,7)	
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	05-21-2020 05-19-2021
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
i reampliller	LIVIOI	LIVICOU 1330		04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019 04-27-2020	04-29-2020 04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		(2)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(C.)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	73	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(4)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(3)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

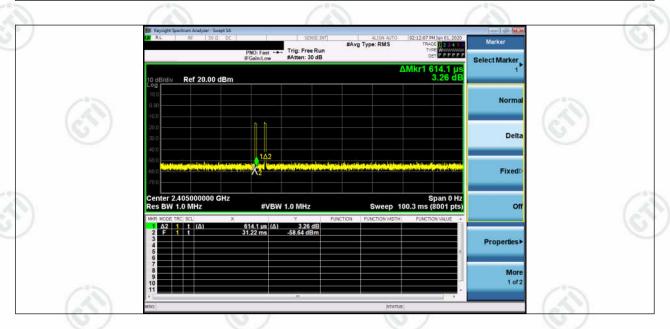
8 Radio Technical Requirements Specification

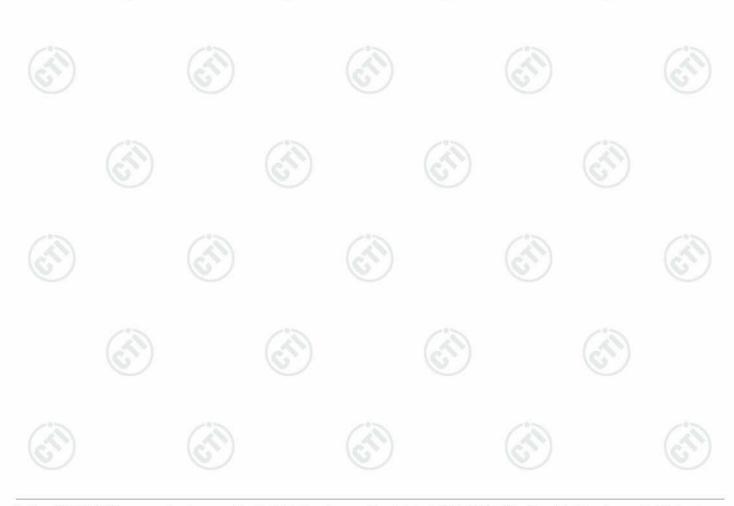
Reference documents for testing:

1	No.	Identity	Document Title
	1	FCC Part15C (2015)	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI 63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI 63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix H)





Page 13 of 52

EUT DUTY CYCLE

(6,1)	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
OQPSK	1.23	100	1.23%

Report No. : EED32M00045601 Page 14 of 52

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

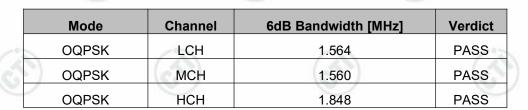
1	1		
	Limit	Shall be at least 500kHz	

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.


Test Setup

Test Result

6dB Bandwidth

99%OBW

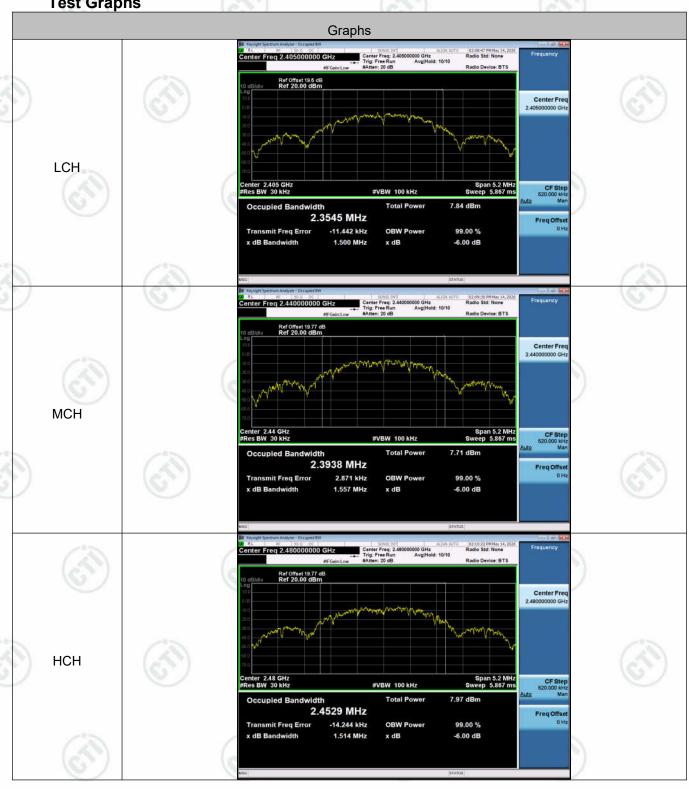
		A 10. 1	
Mode	Channel	99% OBW[MHz]	Verdict
OQPSK	LCH	2.3545	PASS
OQPSK	МСН	2.3938	PASS
OQPSK	НСН	2.4529	PASS

Page 15 of 52

Page 16 of 52

6dB Bandwidth

Test Graphs



Page 17 of 52

99%OBW

Test Graphs

Report No. : EED32M00045601 Page 18 of 52

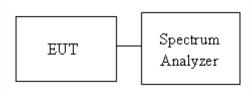
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

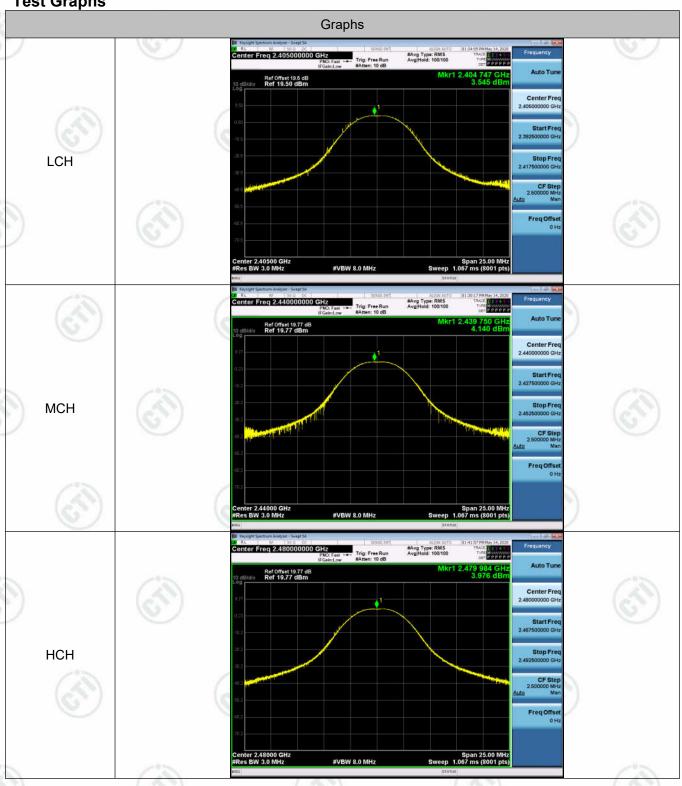

6		⊠ Antenna not exceed 6 dBi ∶ 30dBm	
Limit	(C)	☐ Antenna with DG greater than 6 dBi[Limit = 30 – (DG – 6)]☐ Point-to-point operation	0

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup



Page 19 of 52

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
OQPSK	LCH	3.545	PASS
OQPSK	MCH	4.14	PASS
OQPSK	HCH	3.976	PASS

Test Graphs

Report No. : EED32M00045601 Page 20 of 52

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 21 of 52

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
OQPSK	LCH	-1.655	-56.934	-21.66	PASS
OQPSK	HCH	-1.855	-36.562	-21.86	PASS

Test Graphs

Report No.: EED32M00045601 Page 22 of 52

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

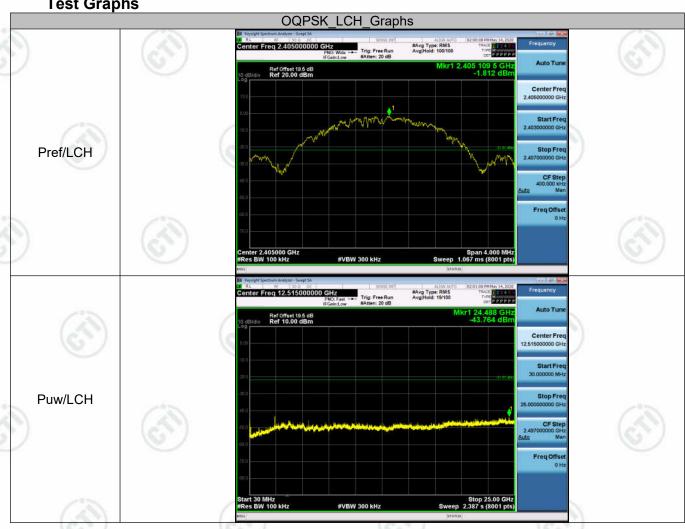
In any 100 kHz bandwidth outside the authorized frequency band,

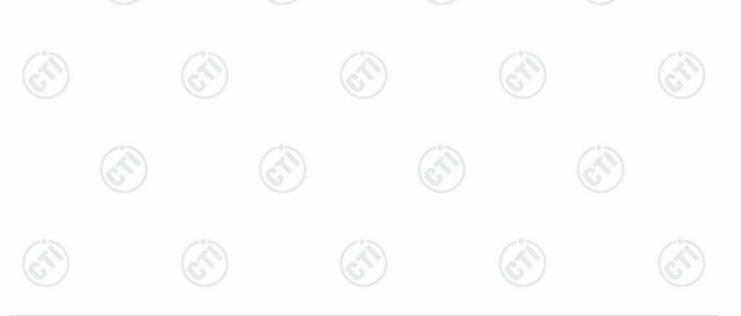
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

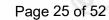



Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
OQPSK	LCH	-1.812	<limit< td=""><td>PASS</td></limit<>	PASS
OQPSK	MCH	-1.188	<limit< td=""><td>PASS</td></limit<>	PASS
OQPSK	HCH	-1.823	<limit< td=""><td>PASS</td></limit<>	PASS

Page 23 of 52

Test Graphs



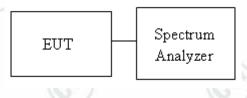
Page 26 of 52

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

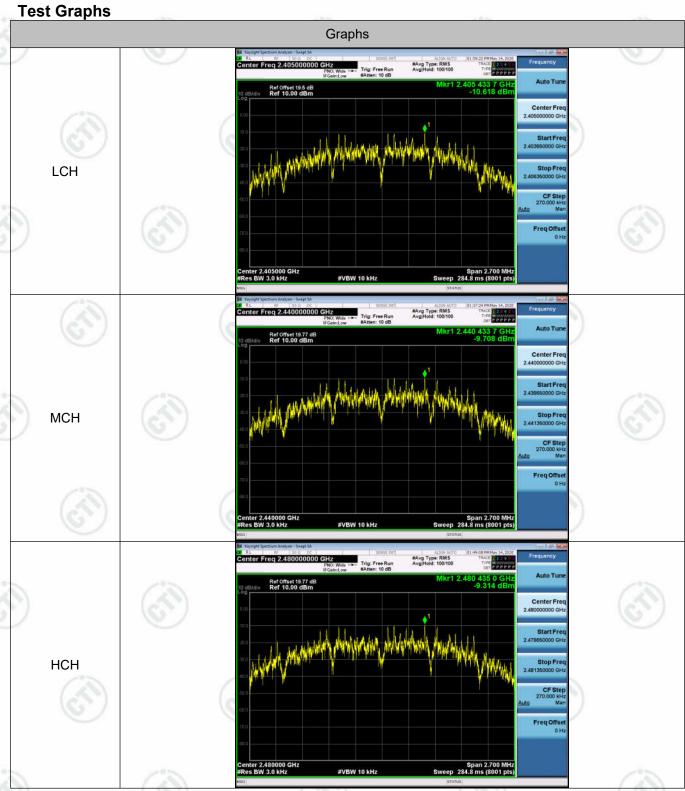

Limit		☐ Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)]
(3)	(6)	☐ Point-to-point operation :

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup



Page 27 of 52

Result Table

Mode	Channel	PSD [dBm]	Verdict
OQPSK	LCH	-10.618	PASS
OQPSK	MCH	-9.708	PASS
OQPSK	HCH	-9.314	PASS

Report No. : EED32M00045601 Page 28 of 52

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

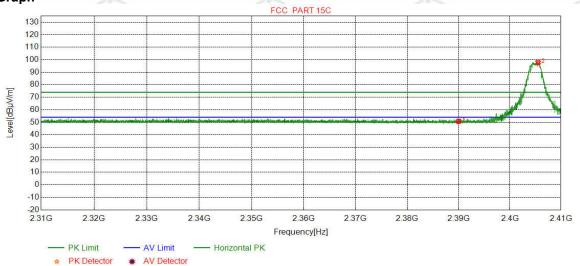
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2 dBi.

Page 29 of 52

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A 1011	Peak	1MHz	3MHz	Peak	13
•)	Above 1GHz	Peak	1MHz	10Hz	Average	(0)
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximular polarizations of the antenna was tuned turned from 0 degrees e. The test-receiver systems and with the systems and with the maximular from 0 degrees e. The test-receiver systems and with the maximular from the systems and with the systems and with the systems are supported to the systems and with the systems are supported to the systems are systems as a system of the sys	ure as below: on the top of a rot choic camber. The of the highest ra eters away from to op of a variable-hoveried from one of m value of the field tenna are set to remission, the EUT If to heights from to 360 degrees to em was set to Pere	tating table tating table diation. the interfer eight anter meter to fo eld strength make the n was arran 1 meter to to find the ak Detect	e 0.8 meter as rotated 3 ence-recei ana tower. aur meters a. Both hor neasurement ged to its way 4 meters a maximum Function a	rs above the gases to ving antenna, above the grozizontal and veent. worst case an and the rotata reading. nd Specified	which bund to ertical d then ble was
	f. Place a marker at the to show compliance. A the spectrum analyzer	lso measure any	emissions	in the res	tricted bands.	Save
	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceded g. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and	plot. Repeat for ure as below: we is the test site of the	each power, change from table to is 1.5 me e Highest ormed in X, is positioni	om Semion Semion Semion Semion Semion Semion O.8 meter Seter). Channel Y, Z axis programs y discharged in the control of the c	tricted bands. Italian for low Anechoic Cha to 1.5 meter(positioning for t is worse cas	Save vest and amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure.	ure as below: we is the test site ber and change 1 meter and tabl west channel, the ments are perfor d found the X axi ures until all frequence	each power , change fr form table e is 1.5 me e Highest or med in X, is positioni	om Semion Semion Semion Semion Semion Semion O.8 meter Seter). Channel Y, Z axis programs which it seasured was seried was seried was seried was seried was seried	Anechoic Cha to 1.5 meter(positioning for t is worse cas as complete.	Save vest an amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure.	ure as below: we is the test site aber and change 1 meter and table west channel, the ments are perfored found the X axines until all frequency.	each power, change from table is 1.5 me Highest or med in X, is positioniuencies me m @3m)	rom Semi- 0.8 meter eter). channel Y, Z axis p ng which i	Anechoic Charto 1.5 meter(Save vest an amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is higher than the EUT in the low in the radiation measure and the Transmitting mode, and in the Repeat above procedure. Frequency 30MHz-88MHz	ure as below: ve is the test site ber and change 1 meter and tabl west channel , the ments are perfor d found the X ax ures until all frequency Limit (dBµV//	each powers, change from table is 1.5 me e Highest comed in X, is positioniuencies me @3m)	om Semi- 0.8 meter eter). channel Y, Z axis p ng which ir easured wa	Anechoic Charto 1.5 meter(cositioning for t is worse cases complete. mark eak Value	Save vest an amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	ure as below: ve is the test site ber and change 1 meter and tabl vest channel , the ments are perfor d found the X axi ures until all frequence Limit (dBµV/ 40.0	each power cach power, change from table e is 1.5 me e Highest cache med in X, is positioning the median (a) and (a) a	rom Semi- 0.8 meter eter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe	Anechoic Charto 1.5 meter(cositioning for tis worse cases complete. compared to the complete	Save vest an amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is higher than the EUT in the low in the radiation measure and the Transmitting mode, and in the requency and the Transmitting mode in the requency and the Transmitting mode in the Repeat above procedures and the Transmitting mode in the Repeat above procedures and the Transmitting mode in the Repeat above procedures and the Transmitting mode in the Transmitting mode in the Repeat above procedures and the Transmitting mode in the Trans	ure as below: ve is the test site ber and change 1 meter and tabl west channel , the ments are perfor d found the X ax ures until all freque Limit (dBµV/ 40.0 43.5	each power actions each power, change from table e is 1.5 me e Highest or med in X, is positioniuencies me @3m)	rom Semi- 0.8 meter eter). channel Y, Z axis p ng which ir easured wa Rer Quasi-pe Quasi-pe	Anechoic Charto 1.5 meter(cositioning for t is worse cases complete. mark eak Value eak Value	Save vest an amber Above
Limit:	to show compliance. A the spectrum analyzer highest channel Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	ure as below: ve is the test site ber and change 1 meter and tabl vest channel , the ments are perfor d found the X axi ures until all frequence Limit (dBµV/ 40.0	each power cach power	rom Semi- 0.8 meter eter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Charto 1.5 meter(cositioning for tis worse cases complete. compared to the complete	Save vest an amber Above



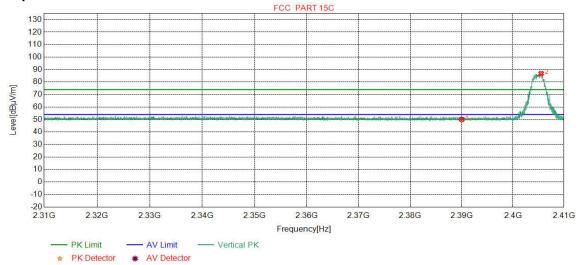
Page 30 of 52

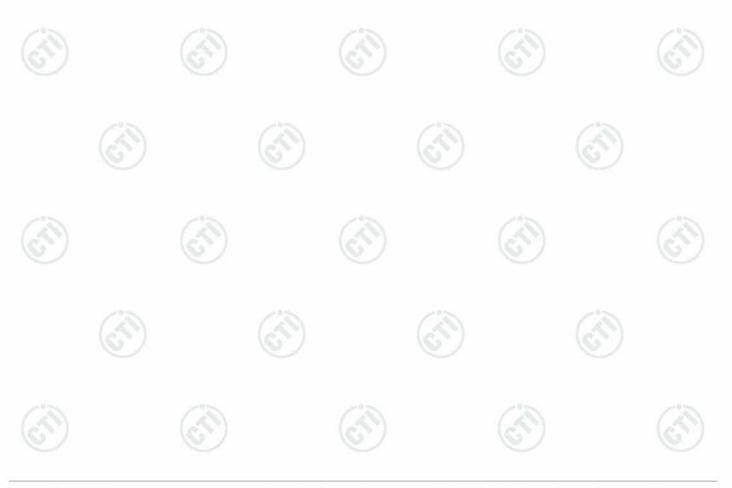

Test plot as follows:

Mode:	OQPSK	Channel:	2405
Remark:	PK		

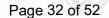
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.23	50.73	74.00	23.27	Pass	Horizontal
2	2405.5130	32.27	13.33	-43.13	95.30	97.77	74.00	-23.77	Pass	Horizontal

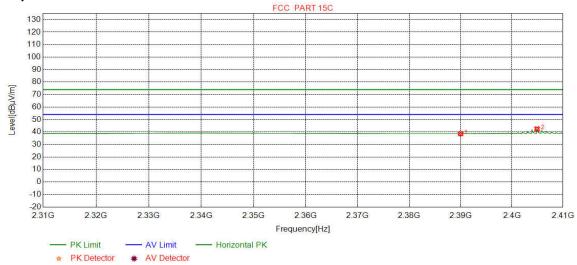


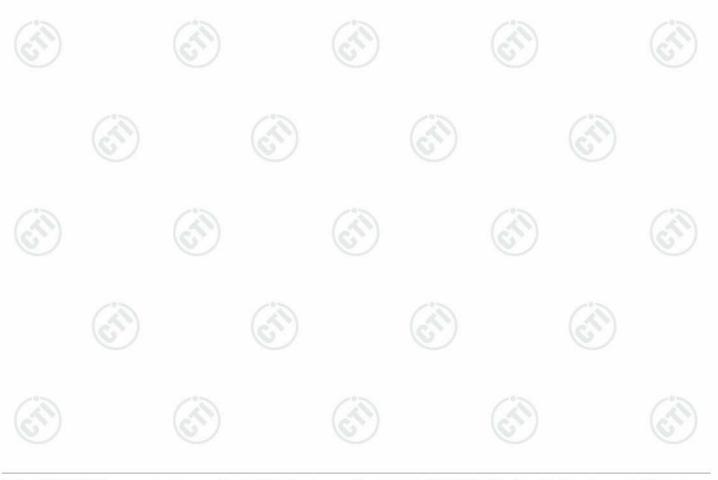


Mode:	OQPSK	Channel:	2405
Remark:	PK	(62.)	(67)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.59	50.09	74.00	23.91	Pass	Vertical
2	2405.5330	32.27	13.33	-43.13	84.36	86.83	74.00	-12.83	Pass	Vertical

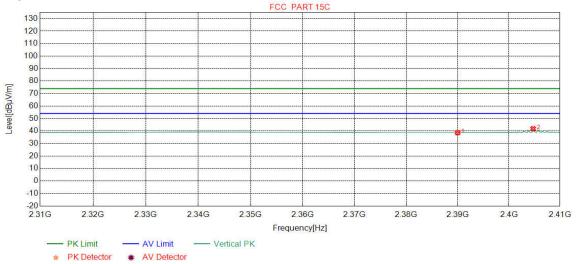


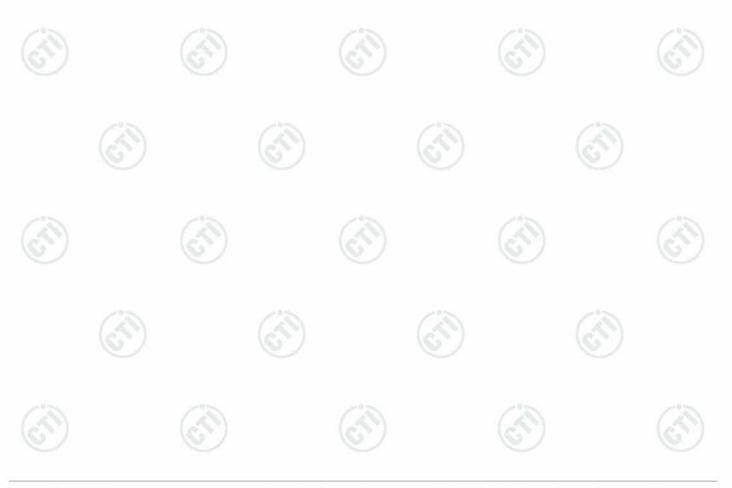


Mode:	OQPSK	Channel:	2405
Remark:	AV		(6.77)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Horizontal
2	2404.9330	32.27	13.32	-43.12	40.04	42.51	54.00	11.49	Pass	Horizontal

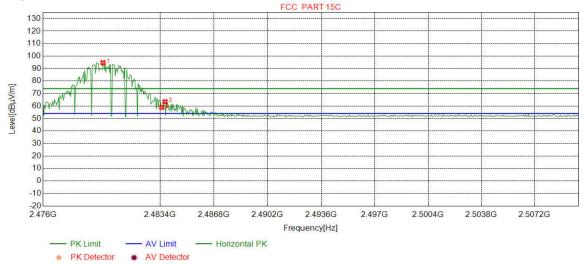




Mode:	OQPSK	Channel:	2405
Remark:	AV	(67)	(67)

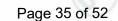
Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Vertical
Ī	2	2404.7463	32.27	13.32	-43.12	39.34	41.81	54.00	12.19	Pass	Vertical

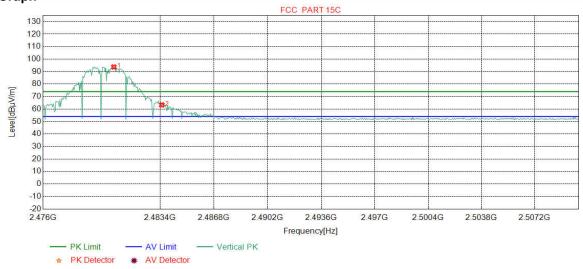


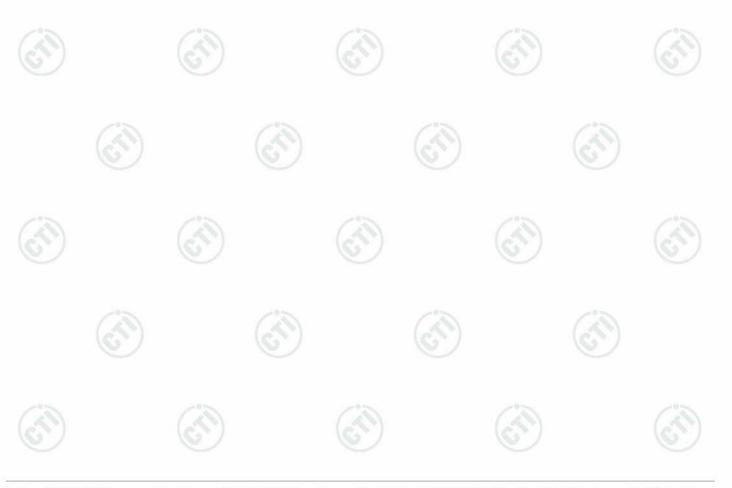
Page	34	of 52
------	----	-------

Mode:	OQPSK	Channel:	2480
Remark:	PK	(62)	(67)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	92.05	94.71	74.00	-20.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	56.24	58.89	74.00	15.11	Pass	Horizontal
3	2483.7021	32.38	13.37	-43.10	60.78	63.43	74.00	10.57	Pass	Horizontal

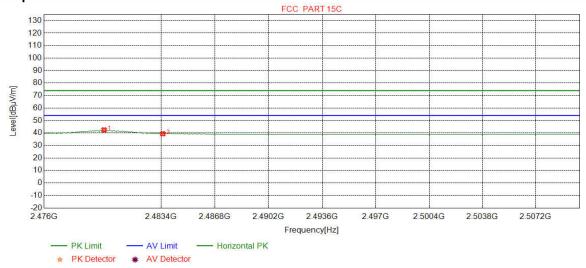




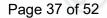
13	Mode:	OQPSK	Channel:	2480
(6)	Remark:	PK	(62)	(6,7)

Test Graph

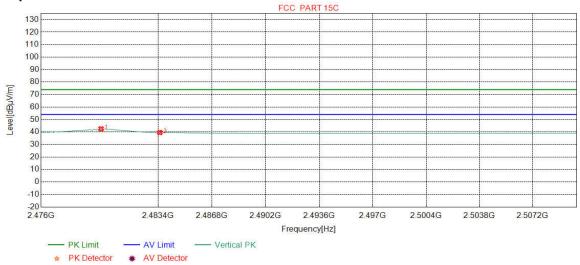
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.4681	32.37	13.39	-43.10	91.01	93.67	74.00	-19.67	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	60.64	63.29	74.00	10.71	Pass	Vertical



Mode:	OQPSK	Channel:	2480
Remark:	AV		(6.27)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	39.83	42.49	54.00	11.51	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.78	39.43	54.00	14.57	Pass	Horizontal



1	Mode:	OQPSK	Channel:	2480
(c	Remark:	AV	(6,2)	(67)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	39.89	42.55	54.00	11.45	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.96	39.61	54.00	14.39	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00045601 Page 38 of 52

Appendix H): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 21/2 401 l=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

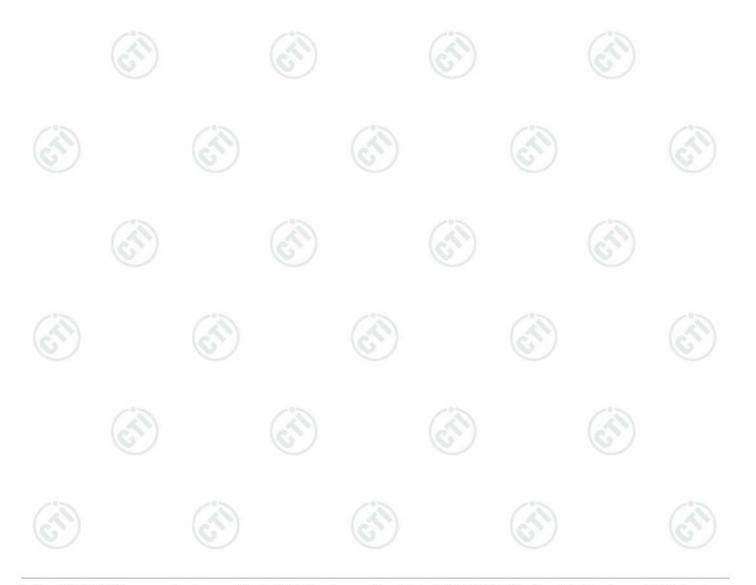
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).;
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

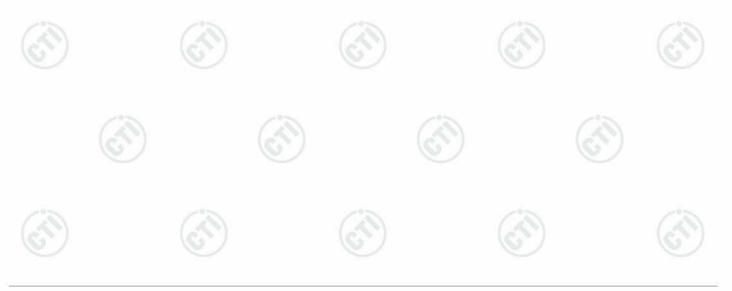
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-0-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 39 of 52

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	:		OQPSK					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	41.35	21.85	40.00	18.15	Pass	Н	PK
2	71.2291	8.77	0.96	-32.03	34.03	11.73	40.00	28.27	Pass	Н	PK
3	195.0135	10.43	1.64	-31.94	41.25	21.38	43.50	22.12	Pass	Н	PK
4	360.0270	14.52	2.27	-31.84	40.89	25.84	46.00	20.16	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	44.42	34.85	46.00	11.15	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	40.65	33.77	46.00	12.23	Pass	Н	PK
7	150.0010	7.55	1.45	-32.01	48.03	25.02	43.50	18.48	Pass	V	PK
8	195.0135	10.43	1.64	-31.94	44.80	24.93	43.50	18.57	Pass	V	PK
9	304.0524	13.29	2.07	-31.60	41.37	25.13	46.00	20.87	Pass	V	PK
10	433.2693	15.93	2.46	-31.84	39.43	25.98	46.00	20.02	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	43.66	34.09	46.00	11.91	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	41.55	34.67	46.00	11.33	Pass	V	PK



Report No. : EED32M00045601 **Transmitter Emission above 1GHz**

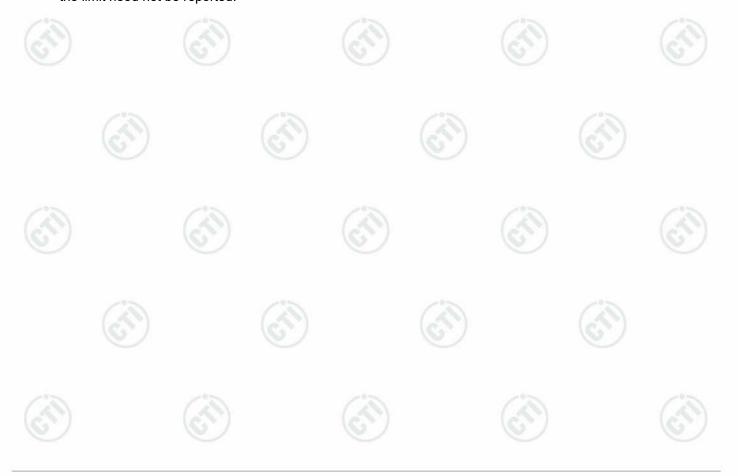
Page 40 of 52

Mode	:		OQPSK					Channel:		2405	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3204.0136	33.28	4.63	-43.09	50.71	45.53	74.00	28.47	Pass	Н	PK
2	3927.0618	33.74	4.34	-43.01	50.50	45.57	74.00	28.43	Pass	Н	PK
3	5011.1341	34.51	4.83	-42.79	50.74	47.29	74.00	26.71	Pass	Н	PK
4	5509.1673	35.01	5.16	-42.60	50.41	47.98	74.00	26.02	Pass	Н	PK
5	7442.2962	36.54	5.85	-42.11	49.40	49.68	74.00	24.32	Pass	Н	PK
6	9210.4140	37.66	6.47	-42.04	49.32	51.41	74.00	22.59	Pass	Н	PK
7	3208.0139	33.28	4.62	-43.10	50.20	45.00	74.00	29.00	Pass	V	PK
8	4070.0713	33.90	4.33	-42.98	49.80	45.05	74.00	28.95	Pass	V	PK
9	5076.1384	34.58	4.83	-42.78	51.41	48.04	74.00	25.96	Pass	V	PK
10	5880.1920	35.61	5.07	-42.60	49.28	47.36	74.00	26.64	Pass	V	PK
11	6898.2599	36.06	5.87	-42.27	49.62	49.28	74.00	24.72	Pass	V	PK
12	9698.4466	37.68	6.59	-42.10	49.24	51.41	74.00	22.59	Pass	V	PK

Mode:			OQPSK					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3752.0501	33.60	4.35	-43.05	49.63	44.53	74.00	29.47	Pass	Н	PK
2	4985.1323	34.50	4.82	-42.80	50.86	47.38	74.00	26.62	Pass	Н	PK
3	5934.1956	35.69	5.24	-42.60	49.55	47.88	74.00	26.12	Pass	Н	PK
4	7672.3115	36.53	6.20	-42.13	49.02	49.62	74.00	24.38	Pass	Н	PK
5	9295.4197	37.64	6.64	-42.06	49.91	52.13	74.00	21.87	Pass	Н	PK
6	10488.499	38.48	7.06	-42.00	49.39	52.93	74.00	21.07	Pass	Н	PK
7	2921.1921	33.07	4.39	-43.10	51.47	45.83	74.00	28.17	Pass	V	PK
8	3834.0556	33.67	4.36	-43.03	50.04	45.04	74.00	28.96	Pass	V	PK
9	4996.1331	34.50	4.82	-42.80	51.50	48.02	74.00	25.98	Pass	V	PK
10	6365.2243	35.87	5.41	-42.52	49.40	48.16	74.00	25.84	Pass	V	PK
11	7600.3067	36.56	6.10	-42.12	49.20	49.74	74.00	24.26	Pass	V	PK
12	9209.4140	37.66	6.47	-42.04	49.60	51.69	74.00	22.31	Pass	V	PK

Page 41 of 52

Mode:			OQPSK				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3469.0313	33.39	4.45	-43.10	50.22	44.96	74.00	29.04	Pass	Н	PK
2	4529.1019	34.50	4.70	-42.80	50.03	46.43	74.00	27.57	Pass	Н	PK
3	5021.1347	34.52	4.85	-42.80	51.05	47.62	74.00	26.38	Pass	Н	PK
4	6452.2301	35.89	5.52	-42.51	49.34	48.24	74.00	25.76	Pass	Н	PK
5	7444.2963	36.54	5.85	-42.11	49.19	49.47	74.00	24.53	Pass	Н	PK
6	9772.4515	37.71	6.67	-42.10	49.43	51.71	74.00	22.29	Pass	Н	PK
7	3925.0617	33.74	4.34	-43.01	49.97	45.04	74.00	28.96	Pass	V	PK
8	4635.1090	34.50	4.90	-42.80	50.11	46.71	74.00	27.29	Pass	V	PK
9	5532.1688	35.05	5.16	-42.60	50.45	48.06	74.00	25.94	Pass	V	PK
10	6614.2409	35.95	5.50	-42.43	49.08	48.10	74.00	25.90	Pass	V	PK
11	7503.3002	36.60	5.95	-42.10	49.09	49.54	74.00	24.46	Pass	V	PK
12	9190.4127	37.66	6.44	-42.03	49.94	52.01	74.00	21.99	Pass	V	PK


Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

