

Report No.: EED32M00045501 Page 1 of 57

TEST REPORT

Product Food Temperature Probe

Trade mark V-MARK

VRKRTS03WREG01 Model/Type reference

Serial Number N/A

Report Number : EED32M00045501

FCC ID 2AQ7V-VMHTPWREG01

Date of Issue May 21, 2020

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

V-MARK Enterprises Ltd. 400-601 West Broadway, Vancouver, British Columbia, Canada

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Smile

Reviewed by:

Ware Xin

an (lucery

Date:

May 21, 2020

Sam Chuang

Smile Zhong

Check No.:3970381388

2 Version

Version No.	Date	Description
00	May 21, 2020	Original

Page 2 of 57

Page 3 of 57

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Duty Cycle	ANSI C63.10-2013	ANSI C63.10-2013	PASS

Remark:

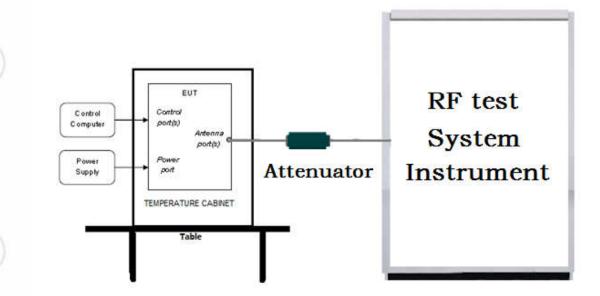
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

4 CONTENT......4 5 TEST REQUIREMENT......5 6.2 GENERAL DESCRIPTION OF EUT.......7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD......7 6.5 TEST LOCATION...... 8 6.6 DEVIATION FROM STANDARDS.......8 6.7 ABNORMALITIES FROM STANDARD CONDITIONS......8 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER......8 7 EQUIPMENT LIST.......9 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION......12 Appendix C): Band-edge for RF Conducted Emissions......21 Appendix G): Restricted bands around fundamental frequency (Radiated).......33 PHOTOGRAPHS OF TEST SETUP.......46 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS.......48

Page 4 of 57



5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

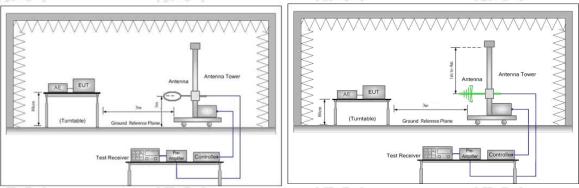


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 57

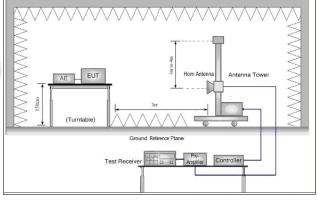


Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

N/A

5.2 Test Environment

Operating Environment:			
Temperature:	24.0 °C	- 0.00	
Humidity:	54 % RH		(28)
Atmospheric Pressure:	1010mbar	6	6.

Page 6 of 57

5.3 Test Condition

Test Mode	Tx	(3)	RF Channel		
Toot Mode	(6.50)	Low(L)	Middle(M)	High(H)	
OQPSK	K 2400MHz ~2485MHz	Channel 1	Channel 8	Channel 16	
5 Q. 5.1	210011112 210011112	2405MHz	2440MHz	2480MHz	

Page 7 of 57

6 General Information

6.1 Client Information

Applicant:	V-MARK Enterprises Ltd.
Address of Applicant:	400-601 West Broadway, Vancouver, British Columbia, Canada
Manufacturer:	Senpu Fishing Tackle Co.,Ltd.
Address of Manufacturer:	Floor 2 No 2 Building Fucheng Industrial Park, 82nd Shilian Iu, Shiji Town, Panyu District, GuangZhou

6.2 General Description of EUT

Product Name:	Food Tempera	Food Temperature Probe				
Model No.(EUT):	VRKRTS03W	REG01				
Trade Mark:	V-MARK	V-MARK				
EUT Supports Radios application:	2405-2480MH	2405-2480MHz (2405MHz/2440MHz/2480MHz)				
Power Supply:	Battery	AAA 1.5V*2				
Sample Received Date:	Mar. 16, 2020		-0			
Sample tested Date:	Mar. 16, 2020	to Apr. 13, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	2405MHz to 2480MHz			
Channel Numbers:	16	(3)		
Type of Modulation:	OQPSK	(67)	(67)	
Test Power Grade:	Default			
Test Software of EUT:	Default			
Antenna Type and Gain:	Type: PCB Antenna			100
	Gain:2dBi			
Test Voltage:	DC 3V			(0)

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency
(1)	2405	7	2435	13	2465
2	2410	8	2440	14	2470
3	2415	9	2445	15	2475
4	2420	10	2450	16	2480
5	2425	11	2455		(6,2)
6	2430	12	2460		

Report No. : EED32M00045501 Page 8 of 57

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
(1)	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 57

7 **Equipment List**

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	((T)
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

Page	10	of 57
1 agc		01 01

Cal. Due date

	Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
	3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
2	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	13
S	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
	Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
	Multi device Controller	maturo	NCD/070/107 11112				
	Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
	Cable line	Fulai(7M)	SF106	5219/6A		67	
	Cable line Cable line	Fulai(6M) Fulai(3M)	SF106 SF106	5220/6A 5216/6A			
L	Cable line	Fulai(3M)	SF106	5217/6A			-0-

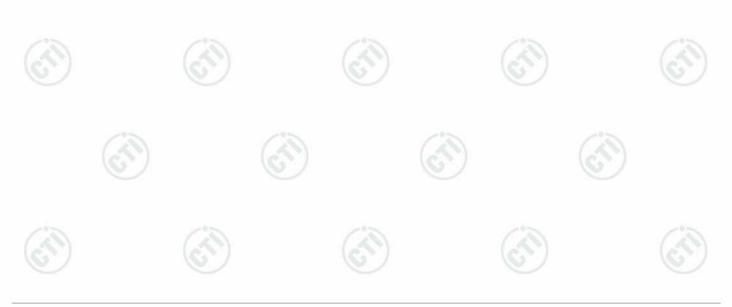
3M Semi/full-anechoic Chamber

Serial

Cal. date

Page	11	of 5	7

Equipment	Manufacturer	Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(A)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		(C.)
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	(E)	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		(A)

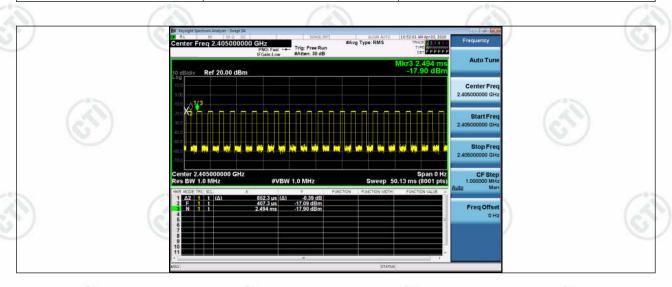

8 Radio Technical Requirements Specification

Reference documents for testing:

Ν	lo.	Identity	Document Title
	1	FCC Part15C (2015)	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI 63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI 63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix H)


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 13 of 57

EUT DUTY CYCLE

(67)	Duty Cycle	
TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
0.8523	2.0867	40.84%

Report No. : EED32M00045501 Page 14 of 57

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

Les Les
Shall be at least 500kHz

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth .
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

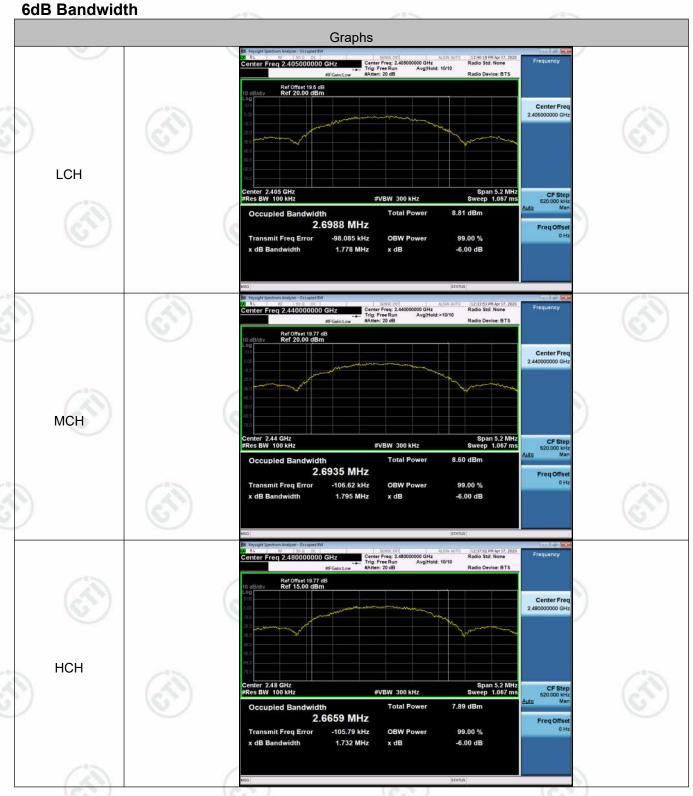
6dB Bandwidth

Channel	6dB Bandwidth [MHz]	Verdict
LCH	1.778	PASS
MCH	1.795	PASS
НСН	1.732	PASS

Page 15 of 57

99%**OBW**

Channel	99% OBW[MHz]	Verdict
LCH	2.6074	PASS
MCH	2.6104	PASS
НСН	2.5823	PASS



Test Graphs

99%OBW

Report No. : EED32M00045501 Page 18 of 57

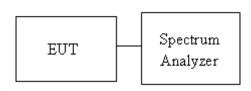
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


Limit		C
Limit	☐ Antenna with DG greater than 6 dBi[Limit = 30 – (DG – 6)]☐ Point-to-point operation	6

Test Procedure

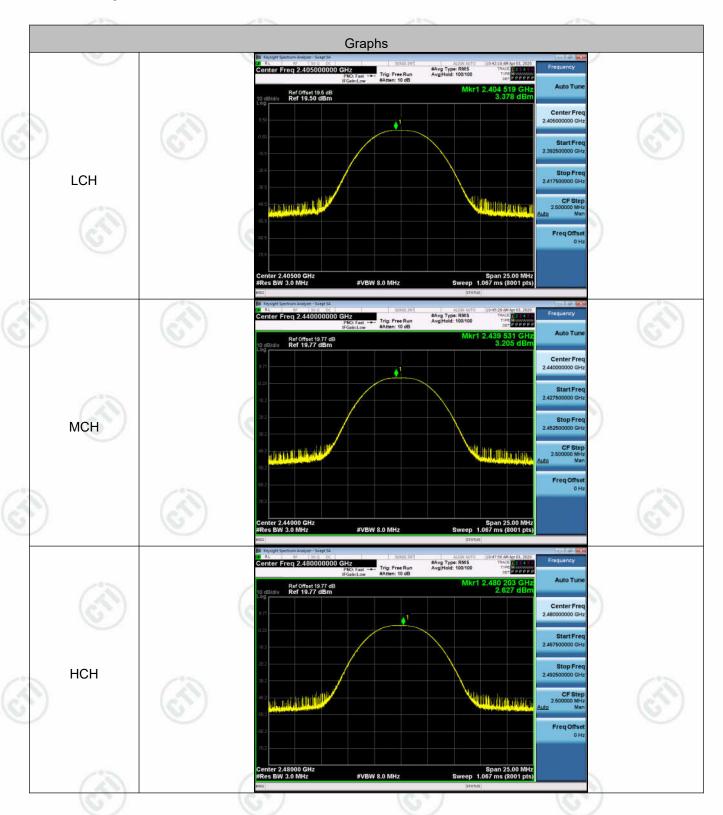
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

Channel	Conduct Peak Power[dBm]	Verdict
LCH	3.378	PASS
MCH	3.205	PASS
HCH	2.627	PASS



Page 19 of 57

Test Graphs

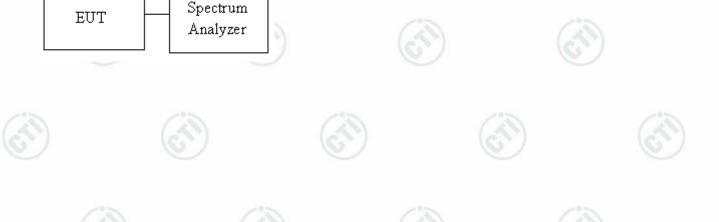
Report No. : EED32M00045501 Page 21 of 57

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

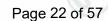
According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

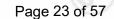
Test method Refer as KDB 558074 D01, Section 11.


- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

1100ait 10				
Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
LCH	-0.887	-59.928	-20.89	PASS
HCH	-1.858	-50.170	-21.86	PASS



Test Graphs

Page 24 of 57

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Channel	Pref [dBm]	Puw[dBm]	Verdict
LCH	-1.409	<limit< th=""><th>PASS</th></limit<>	PASS
MCH	-0.579	<limit< th=""><th>PASS</th></limit<>	PASS
нсн	-1.606	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

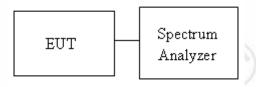
Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

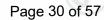
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Page 29 of 57


1 : :4	☐ Antenna with DG greater than 6 dBi	
Limit	[Limit = $8 - (DG - 6)$]	
(6,	☐ Point-to-point operation :	

Test Procedure

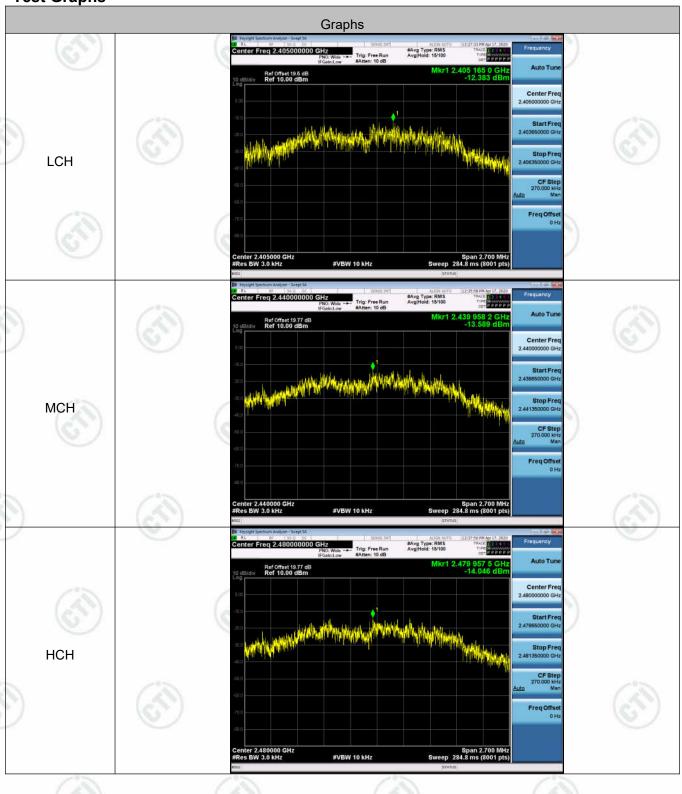
Test method Refer as KDB 558074 D01, Section 10.2


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Channel	PSD [dBm]	Verdict
LCH	-12.383	PASS
MCH	-13.589	PASS
НСН	-14.046	PASS



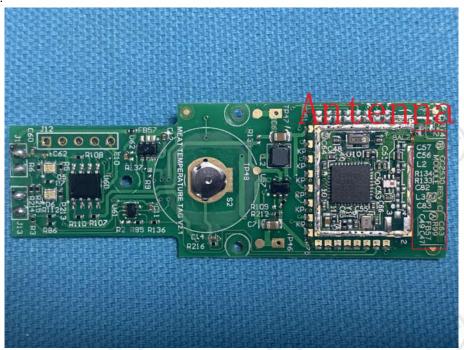
Page 31 of 57

Test Graphs

Report No. : EED32M00045501 Page 32 of 57

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

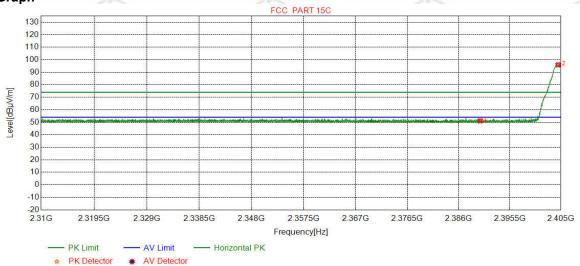
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

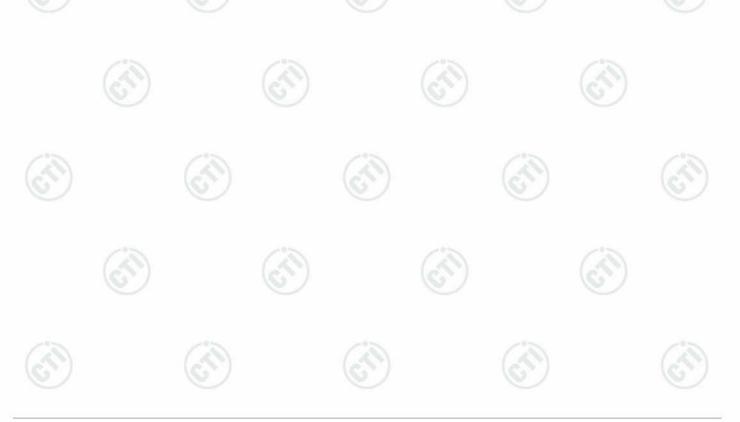
Page 33 of 57

Appendix G): Restricted bands around fundamental frequency (Radiated)

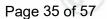
	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	1
	/ N	Peak	1MHz	3MHz	Peak	130
	Above 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	Below 1GHz test procedu	re as below:				
	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the toto. c. The antenna height is a determine the maximum polarizations of the antenna was tuned turned from 0 degrees. e. The test-receiver system Bandwidth with Maximum f. Place a marker at the etermine to show compliance. At the spectrum analyzer highest channel	choic camber. The of the highest raters away from the portion of a variable-houried from one in value of the field enna are set to rate to heights from to 360 degrees the modes of the restriction of the restriction of the restriction measure any	te table wardiation. he interfered eight anter to food strength make the nake arran 1 meter to food find the lak Detect of ted band of emissions	ence-receinna tower. ur meters n. Both horneasurement ged to its v 4 meters a maximum Function a losest to the	ving antenna, above the group izontal and verent. worst case and and the rotatal reading. and Specified the transmit frectricted bands.	which und to rtical d then ole was quency Save
	g. Different between above to fully Anechoic Cham	ve is the test site ber and change	-			ımber
	18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and i. Repeat above procedu	vest channel , the ments are perfor d found the X ax	e is 1.5 me e Highest o med in X, is positioni	channel Y, Z axis p ng which i	oositioning for t is worse case	Above
Limit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu	vest channel , the ments are perfor d found the X ax res until all frequ	e is 1.5 me e Highest of med in X, is positioni nencies me	channel Y, Z axis p ng which i easured wa	oositioning for t is worse case	Above
Limit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and	vest channel , the ments are perfor d found the X ax	e is 1.5 me e Highest of med in X, is positioni lencies me m @3m)	channel Y, Z axis p ng which i easured wa	positioning for t is worse case as complete. mark	Above
_imit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency	vest channel , the ments are perfor d found the X axines until all frequencial Limit (dBµV/	e is 1.5 me e Highest of med in X, is positioni dencies me m @3m)	channel Y, Z axis p ng which i easured wa Rer Quasi-pe	oositioning for t is worse case as complete. mark eak Value	Above
Limit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	vest channel , the ments are perfor d found the X axines until all frequ	e is 1.5 me e Highest of med in X, is positioni dencies me m @3m)	channel Y, Z axis p ng which i easured wa Rer Quasi-pe	positioning for t is worse case as complete. mark eak Value eak Value	Above
Limit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	vest channel , the ments are perfor d found the X ax res until all frequence Limit (dBµV/) 40.0	e is 1.5 me e Highest of med in X, is positioni lencies me m @3m)	channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse case as complete. mark eak Value	Above
Limit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	vest channel , the ments are perfor d found the X axines until all frequencies Limit (dBµV/ 40.0 43.5	e is 1.5 me e Highest of med in X, is positioni dencies me m @3m)	channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	positioning for t is worse case as complete. mark eak Value eak Value eak Value	Above



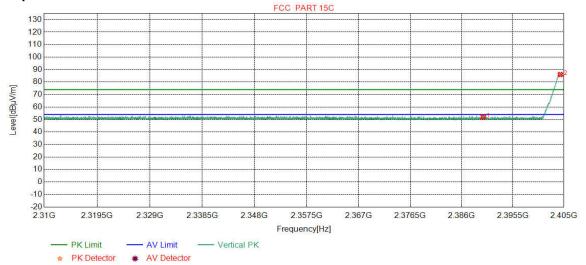
Page 34 of 57

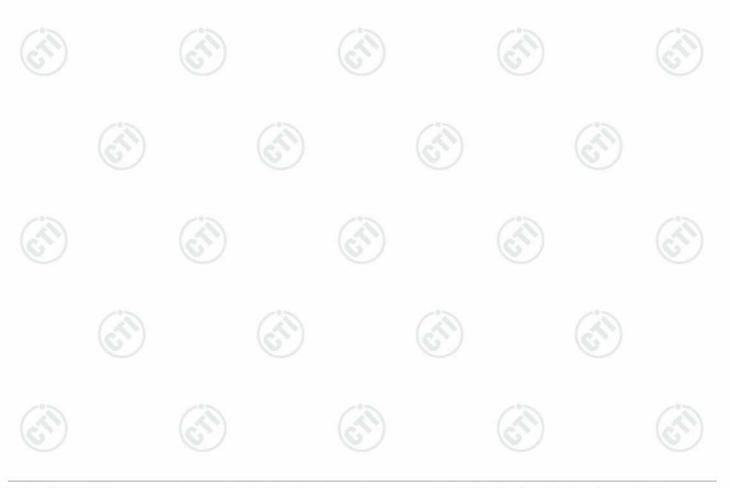

Test plot as follows:

Mode:	OQPSK	Channel:	2405
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.63	51.13	74.00	22.87	Pass	Horizontal
2	2404.4743	32.27	13.32	-43.12	93.40	95.87	74.00	-21.87	Pass	Horizontal

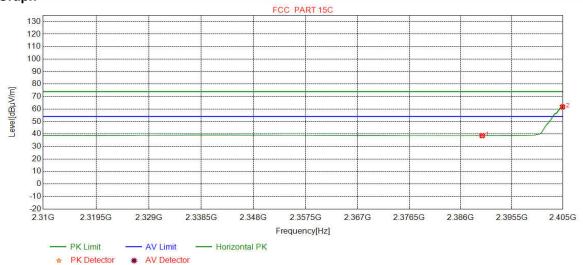


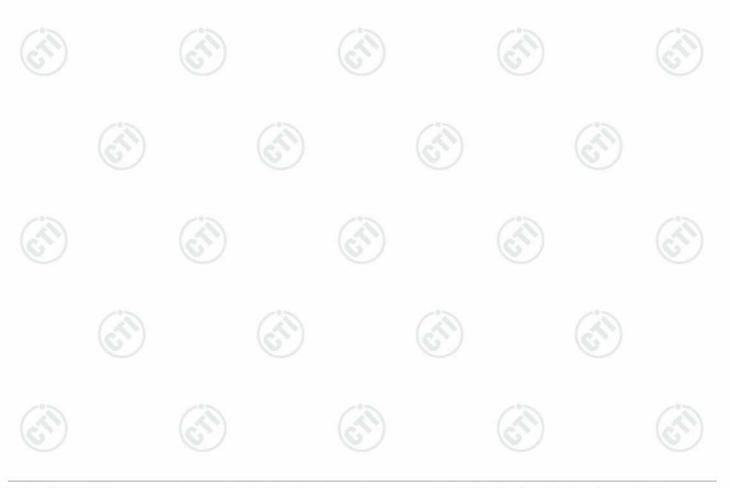


Mode:	OQPSK	Channel:	2405
Remark:	PK	(5%)	(6.27)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.57	52.07	74.00	21.93	Pass	Vertical
2	2404.3286	32.27	13.32	-43.12	83.55	86.02	74.00	-12.02	Pass	Vertical

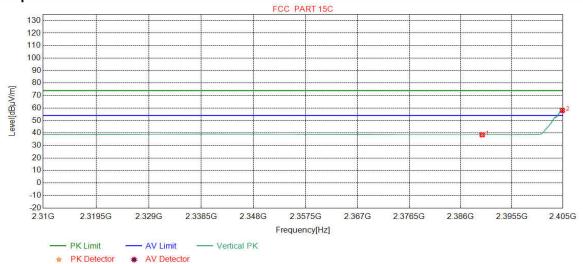


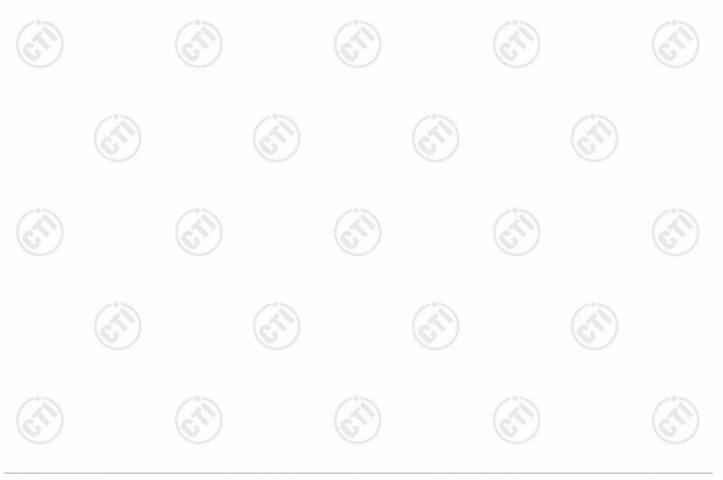


1	Mode:	OQPSK	Channel:	2405
(c	Remark:	AV	(62)	(67)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.17	38.67	54.00	15.33	Pass	Horizontal
2	2404.9303	32.27	13.32	-43.12	59.26	61.73	54.00	-7.73	Pass	Horizontal

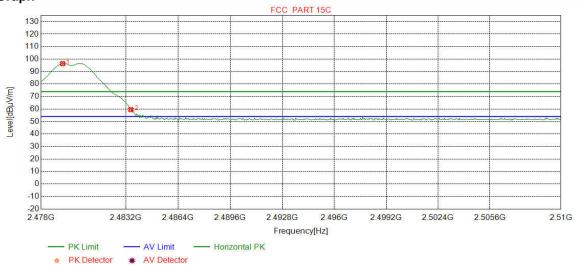


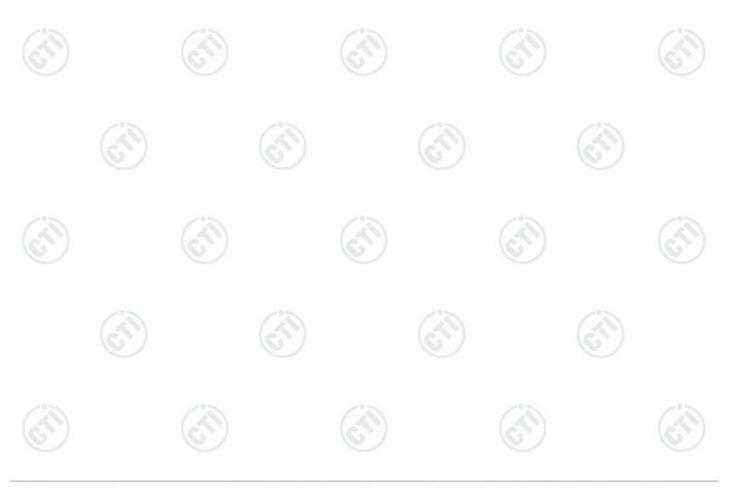


Mode:	OQPSK	Channel:	2405
Remark:	AV		(6.27)

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	36.10	38.60	54.00	15.40	Pass	Vertical
ſ	2	2404.9050	32.27	13.32	-43.12	55.61	58.08	54.00	-4.08	Pass	Vertical

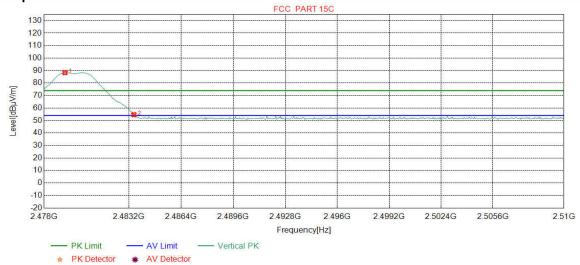


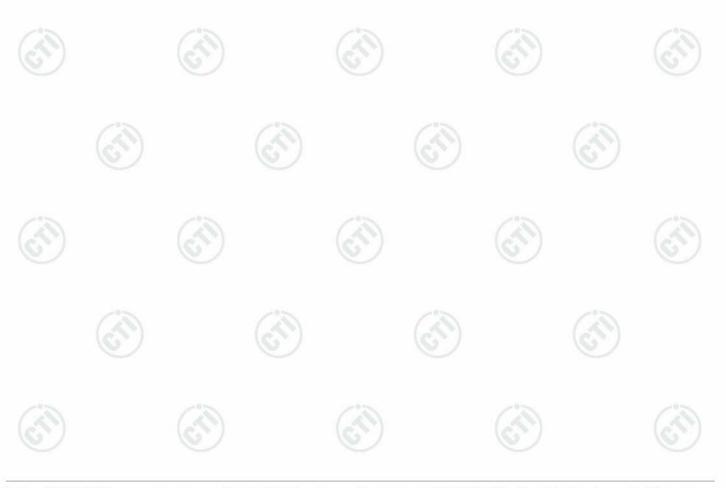


Mode:	OQPSK	Channel:	2480
Remark:	PK	(575)	(6.27)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.3217	32.37	13.40	-43.11	93.73	96.39	74.00	-22.39	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	56.88	59.53	74.00	14.47	Pass	Horizontal

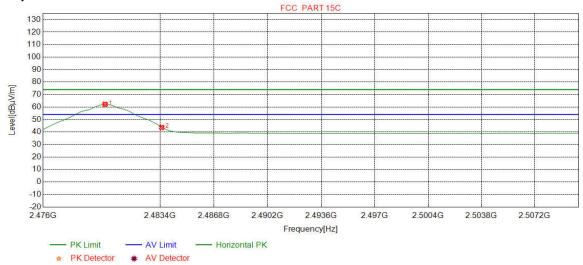


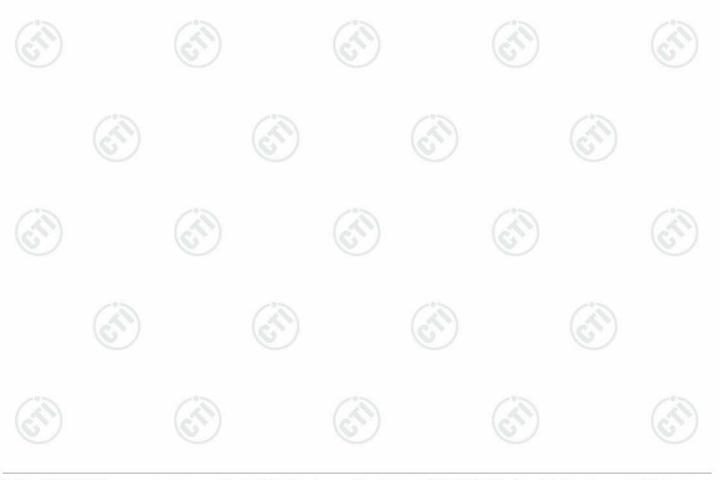


Mode:	OQPSK	Channel:	2480
Remark:	PK	(67.)	(6.77)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.2816	32.37	13.40	-43.11	85.72	88.38	74.00	-14.38	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	52.02	54.67	74.00	19.33	Pass	Vertical

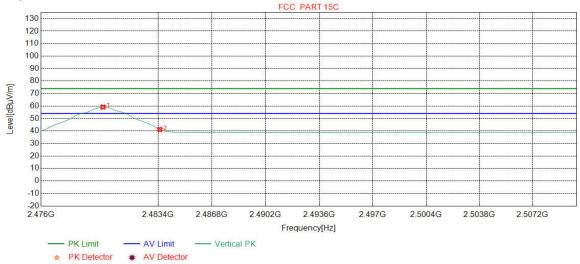




Mode:	OQPSK	Channel:	2480
Remark:	AV	(87.)	(67)

Test Graph

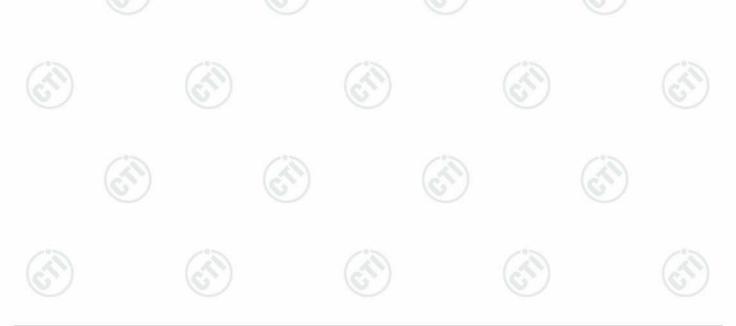
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	59.53	62.19	54.00	-8.19	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.99	43.64	54.00	10.36	Pass	Horizontal



Page 41 of 57

Mode:	OQPSK	Channel:	2480
Remark:	AV		(67)

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	56.53	59.19	54.00	-5.19	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.54	41.19	54.00	12.81	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00045501 Page 42 of 57

Appendix H): Radiated Spurious Emissions

Receiver	Setup:	
----------	--------	--

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 21/2 401 le	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

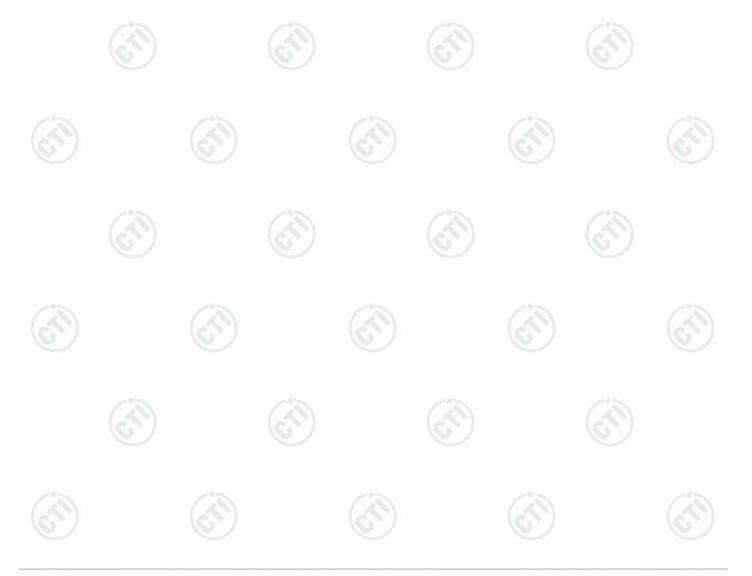
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).;
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	• •	
- 1	 	

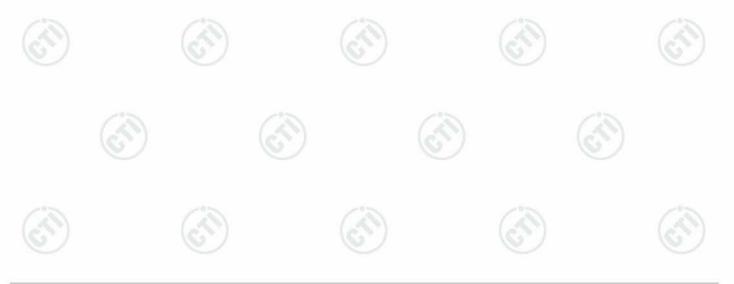
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-0-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 43 of 57

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			OQPSK					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	34.9475	10.70	0.65	-31.43	44.11	24.03	40.00	15.97	Pass	Н	PK
2	130.0170	7.70	1.33	-32.02	44.49	21.50	43.50	22.00	Pass	Н	PK
3	195.0135	10.43	1.64	-31.94	46.28	26.41	43.50	17.09	Pass	Н	PK
4	360.0270	14.52	2.27	-31.84	42.05	27.00	46.00	19.00	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	41.09	31.52	46.00	14.48	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	37.52	32.87	54.00	21.13	Pass	Н	PK
7	35.5296	10.87	0.66	-31.41	43.60	23.72	40.00	16.28	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	48.53	25.52	43.50	17.98	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	46.61	26.74	43.50	16.76	Pass	V	PK
10	360.0270	14.52	2.27	-31.84	43.28	28.23	46.00	17.77	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	40.68	31.11	46.00	14.89	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	36.62	31.97	54.00	22.03	Pass	V	PK



Report No. : EED32M00045501 **Transmitter Emission above 1GHz**

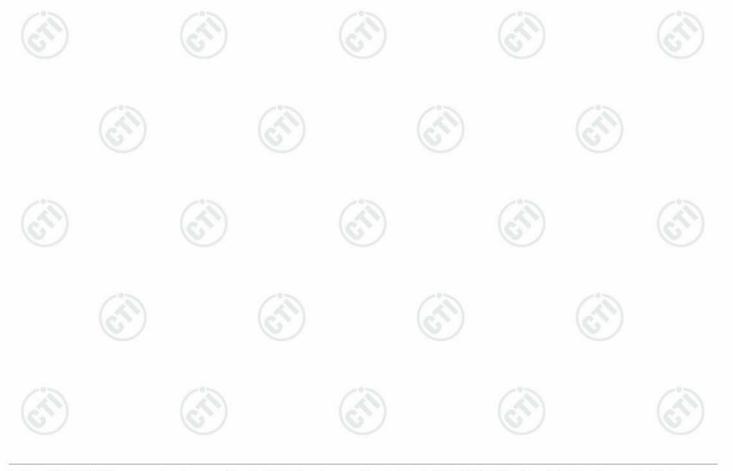
Page 44 of 57

Mode:			OQPSK					Channel:		2405	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1856.0856	30.75	3.38	-42.84	51.86	43.15	74.00	30.85	Pass	Н	PK
2	2942.3942	33.11	4.40	-43.11	51.43	45.83	74.00	28.17	Pass	Н	PK
3	3960.0640	33.77	4.34	-43.01	49.64	44.74	74.00	29.26	Pass	Н	PK
4	5014.1343	34.51	4.84	-42.79	50.76	47.32	74.00	26.68	Pass	Н	PK
5	6029.2019	35.81	5.26	-42.59	49.24	47.72	74.00	26.28	Pass	Н	PK
6	7216.2811	36.32	5.81	-42.16	51.91	51.88	74.00	22.12	Pass	Н	PK
7	1933.2933	31.26	3.42	-43.04	50.46	42.10	74.00	31.90	Pass	V	PK
8	2917.3917	33.07	4.39	-43.11	50.74	45.09	74.00	28.91	Pass	V	PK
9	3807.0538	33.65	4.37	-43.04	51.25	46.23	74.00	27.77	Pass	V	PK
10	5389.1593	34.89	4.84	-42.64	49.11	46.20	74.00	27.80	Pass	V	PK
11	5922.1948	35.68	5.18	-42.61	49.85	48.10	74.00	25.90	Pass	V	PK
12	7014.2676	36.11	5.69	-42.20	49.62	49.22	74.00	24.78	Pass	V	PK

Mode	Mode:		OQPSK					Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1773.8774	30.21	3.27	-42.70	50.98	41.76	74.00	32.24	Pass	Н	PK	
2	3048.0032	33.22	4.83	-43.10	50.46	45.41	74.00	28.59	Pass	Н	PK	
3	4101.0734	33.94	4.32	-42.95	49.36	44.67	74.00	29.33	Pass	Н	PK	
4	5018.1345	34.52	4.84	-42.79	50.87	47.44	74.00	26.56	Pass	Н	PK	
5	6377.2251	35.88	5.38	-42.53	50.20	48.93	74.00	25.07	Pass	Н	PK	
6	7671.3114	36.53	6.20	-42.14	48.76	49.35	74.00	24.65	Pass	Н	PK	
7	2076.3076	31.81	3.57	-43.19	50.39	42.58	74.00	31.42	Pass	V	PK	
8	3047.0031	33.22	4.84	-43.11	51.05	46.00	74.00	28.00	Pass	V	PK	
9	4984.1323	34.50	4.82	-42.80	50.86	47.38	74.00	26.62	Pass	V	PK	
10	6353.2235	35.87	5.45	-42.53	50.18	48.97	74.00	25.03	Pass	V	PK	
11	7913.3276	36.43	6.04	-42.18	49.34	49.63	74.00	24.37	Pass	V	PK	
12	9737.4492	37.69	6.73	-42.09	49.17	51.50	74.00	22.50	Pass	V	PK	

Pag	_	45	of	57
Pau	е	40	OI.	31

Mode	Mode:							Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1709.4709	29.78	3.21	-42.67	50.90	41.22	74.00	32.78	Pass	Н	PK
2	3424.0283	33.37	4.50	-43.10	49.55	44.32	74.00	29.68	Pass	Н	PK
3	4629.1086	34.50	4.92	-42.80	49.73	46.35	74.00	27.65	Pass	Н	PK
4	5011.1341	34.51	4.83	-42.79	51.00	47.55	74.00	26.45	Pass	Н	PK
5	7485.2990	36.59	5.93	-42.11	49.46	49.87	74.00	24.13	Pass	Н	PK
6	8519.3680	36.64	6.42	-41.99	48.92	49.99	74.00	24.01	Pass	Н	PK
7	1668.4668	29.51	3.16	-42.73	51.94	41.88	74.00	32.12	Pass	V	PK
8	3729.0486	33.58	4.30	-43.05	49.70	44.53	74.00	29.47	Pass	V	PK
9	5000.1333	34.50	4.82	-42.80	51.04	47.56	74.00	26.44	Pass	V	PK
10	6096.2064	35.82	5.26	-42.59	50.22	48.71	74.00	25.29	Pass	V	PK
11	7656.3104	36.54	6.16	-42.13	49.72	50.29	74.00	23.71	Pass	V	PK
12	9144.4096	37.67	6.45	-42.03	49.17	51.26	74.00	22.74	Pass	V	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

