

TEST REPORT

Product SMART CONNECT GOLD REEL

Trade mark N/A

Model/Type reference SCRV.2

Serial Number N/A

Report Number EED32K00336001

FCC ID : 2AQ7V-SCRMB1 Date of Issue

: Jan. 17, 2019 **Test Standards** : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

V-Mark Enterprises Ltd. 400-601 West Broadway, Vancouver, British Columbia, Canada

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Tom-chen Compiled by:

Peter

Reviewed by:

Date:

More XM

Tom chen

Ware Xin

Jan. 17, 2019

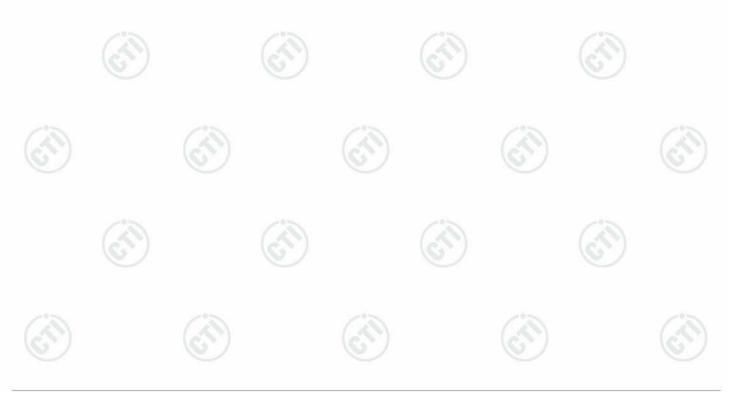
Kevin yang

Check No.: 1022536210

Report Sea

2 Version

Version No.	Date	(6	Description	<u> </u>
00	Jan. 17, 2019		Original	
	200	100	75	/05
($(c_i^{(r)})$	(64,	(6%)



Report No.: EED32K00336001 Page 3 of 50

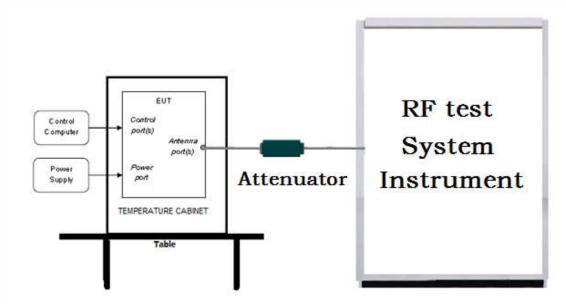
3 Test Summary

rest Summary			1
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content

-						
1 C	OVER PAGE			•••••		1
2 V	ERSION		•••••	•••••	•••••	2
3 T	EST SUMMARY			•••••	•••••	3
4 C	ONTENT				•••••	4
5 TI	EST REQUIREMENT				•••••	5
5	5.1 TEST SETUP 5.1.1 For Conducted test s 5.1.2 For Radiated Emissi 5.1.3 For Conducted Emis 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	setup ons test setupsions test setup				5 6 6
6 G	ENERAL INFORMATION		•••••	••••••	••••••	7
6 6	6.1 CLIENT INFORMATION	E EUT SUBJECTIVE TO THIS STA UNITS RDS INDARD CONDITIONS	NDARD			
7 E	QUIPMENT LIST			•••••		9
8 R	ADIO TECHNICAL REQUIF	REMENTS SPECIFICA	TION	•••••		12
	Appendix A): 6dB Occupied Appendix B): Conducted For Appendix C): Band-edge for Appendix D): RF Conducted Appendix E): Power Special Appendix F): Antenna Recomposition Appendix G): AC Power Lower Lower Holds (Appendix H): Restricted by Appendix I): Radiated Special Appendix I): Radiated Special Appendix III	Peak Output Poweror RF Conducted Emised Spurious Emissions tral Density	sionsnntal frequency (Rad	iated)		
РН	OTOGRAPHS OF TEST SE	TUP		•••••	•••••	38
РН	OTOGRAPHS OF EUT COM	ISTRUCTIONAL DETA	AILS		•••••	41



Report No.: EED32K00336001 Page 5 of 50

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

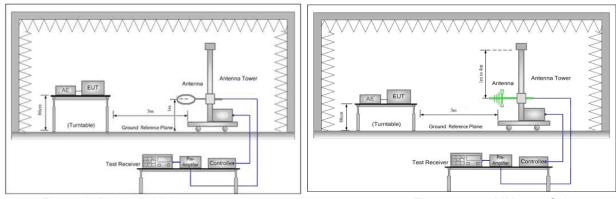


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

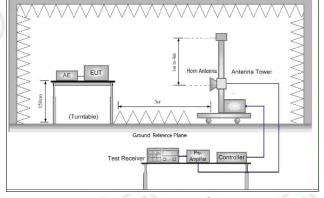
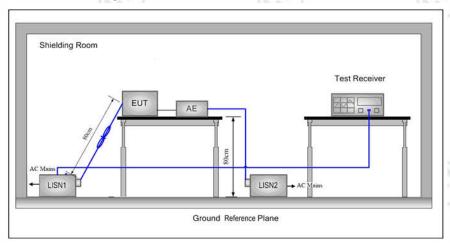
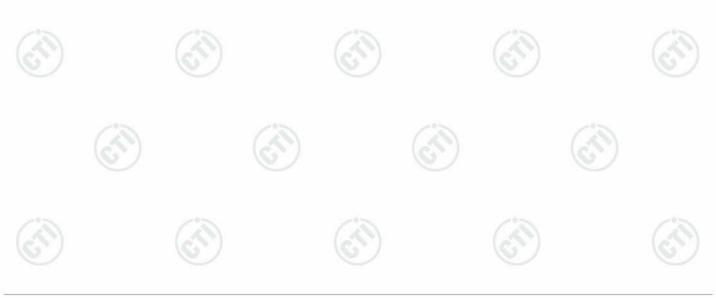



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment(F	RF):		(6)
Temperature:	26.2 °C		
Humidity:	55 % RH	Date of the Control o	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	TX/RX	Low(L)	Middle(M)	High(H)	
ŀ	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. : EED32K00336001 Page 7 of 50

6 General Information

6.1 Client Information

Applicant:	V-Mark Enterprises Ltd.		
Address of Applicant: 400-601 West Broadway, Vancouver, British Columbia, Canada			
Manufacturer: Senpu Fishing Tackle Co., Ltd.			
Address of Manufacturer:	Floor 2 No 2 Building Fucheng Industrial Park, 82nd Shilian lu, Shiji Town, Panyu District, GuangZhou		
Factory: Senpu Fishing Tackle Co., Ltd.			
Address of Factory:	Floor 2 No 2 Building Fucheng Industrial Park, 82nd Shilian lu, Shiji Town, Panyu District, GuangZhou		

6.2 General Description of EUT

SMART CONNECT GOLD REEL
SCRV.2
N/A
BT: 4.2 BT Single mode: 2402MHz to 2480MHz
DC 3.3V
V2(manufacturer declare)
V2(manufacturer declare)
Dec. 17, 2018
Dec. 21, 2018 to Jan. 17, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.2
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Power Grade:	N/A
Test Software of EUT:	N/A
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Test Voltage:	AC 120V

Operation F	requency eac	h of channe	ıl .				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz

Report No. : EED32K00336001 Page 8 of 50

6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

	ted equipment	Manufacture	model	S/N	Supplied by	Certification
AE1	AC/DC ADAPTER	SHENZHEN JUKE ELECTRONICS CO.,LTD.	JK050200-S04EUA) /	СТІ	CE

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

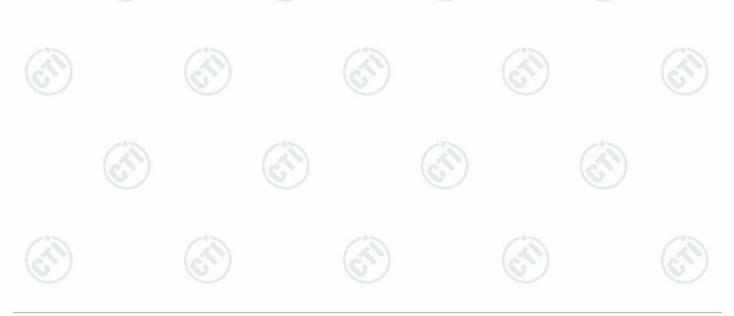
6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)


No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
(4)	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No. : EED32K00336001 Page 10 of 50

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019			
Communication test set	Agilent	E5515C	GB470505 34	03-16-2018	03-15-2019			
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019			
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019			
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019			
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020			
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019			
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019			
Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019			

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	10-28-2018	10-27-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019	
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019	
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107	6.3	01-10-2018	01-09-2019	
Muiti device Controller	maturo	11112		01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019	
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019	
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019	
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019	
Temperature/ Humidity	Shanghai	HM10	1804298	10-12-2018	10-11-2019	

Page 11 of 50

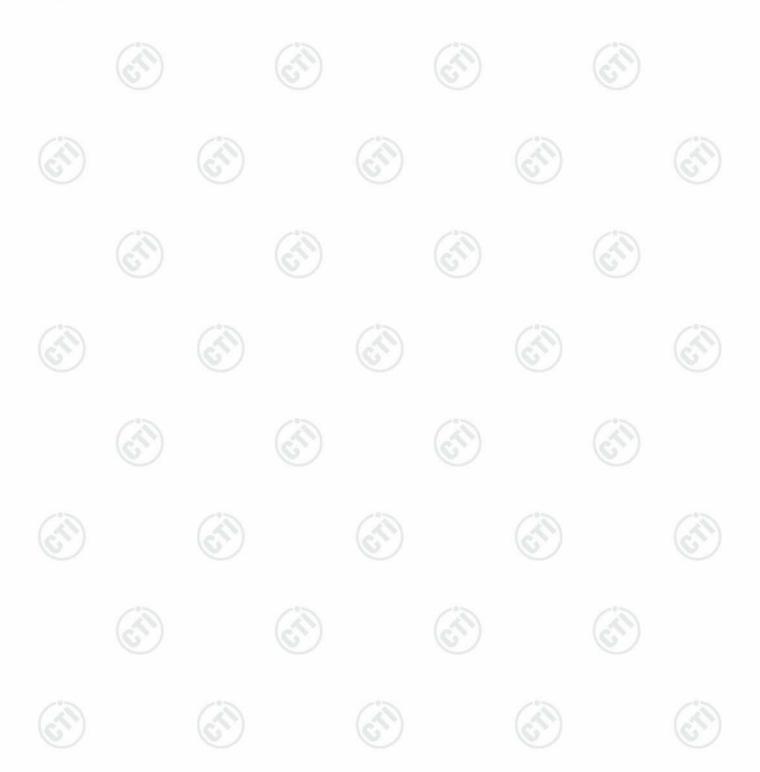
Indicator	qixiang		2000		
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018 01-09-2019	01-09-2019 01-08-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est R	esults List:	

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Appendix A): 6dB Occupied Bandwidth

Test Result

1,100				1.10.00	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6595	1.0462	PASS	
BLE	MCH	0.6589	1.0469	PASS	Peak
BLE	нсн	0.6686	1.0463	PASS	detector

Report No.: EED32K00336001 Page 14 of 50

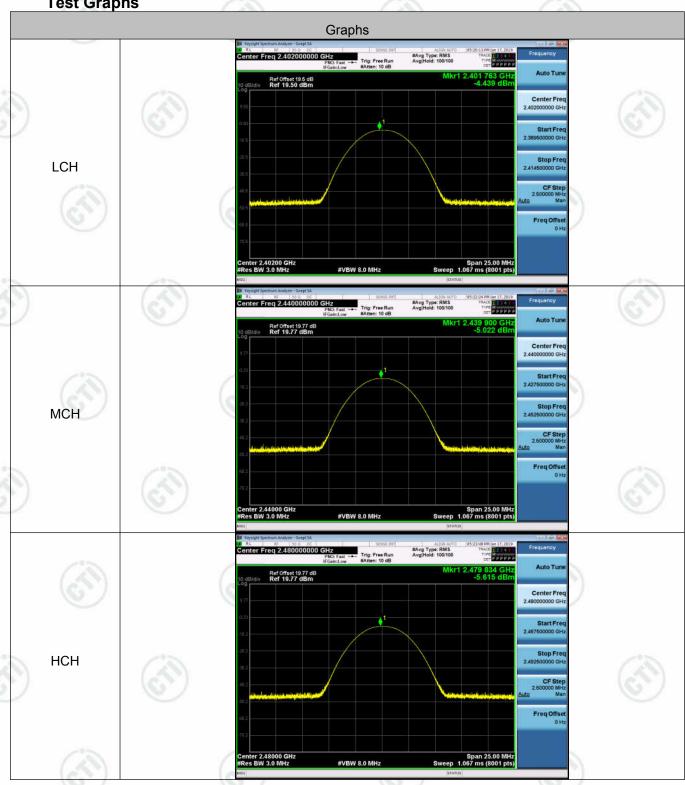
Test Graphs

Page 15 of 50

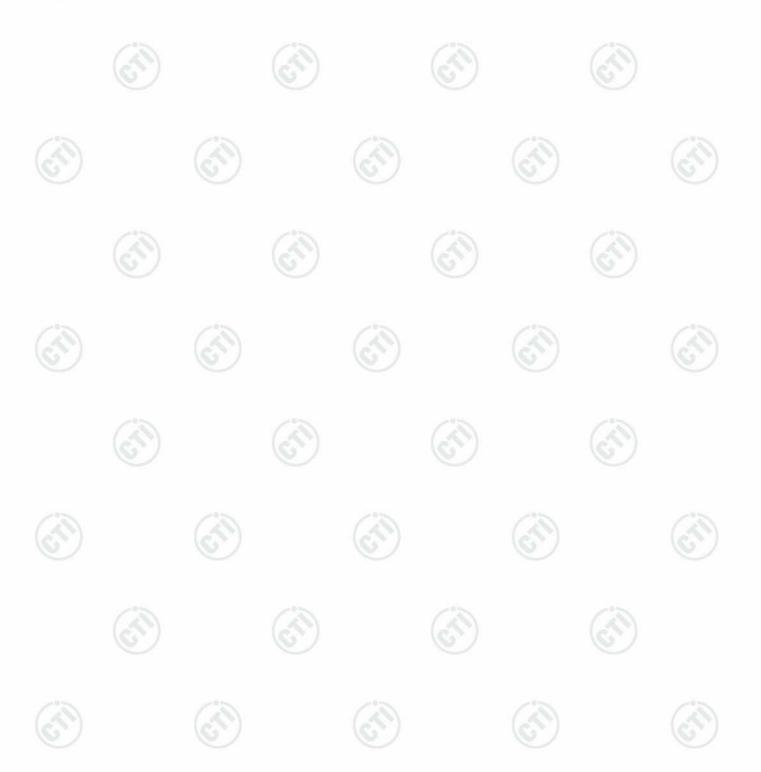
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.439	PASS
BLE	MCH	-5.022	PASS
BLE	НСН	-5.615	PASS



Test Graphs

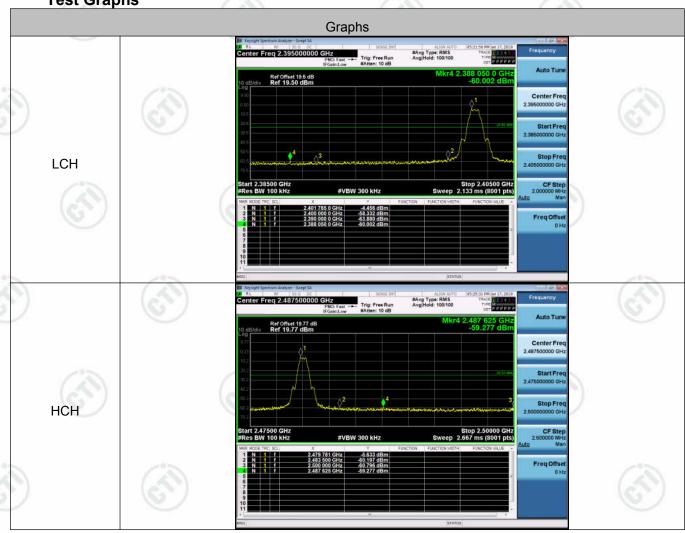


Report No. : EED32K00336001 Page 17 of 50

Appendix C): Band-edge for RF Conducted Emissions

Result Table

N	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
18	BLE	LCH	-4.456	-60.002	-24.46	PASS
3	BLE	HCH	-5.633	-59.277	-25.63	PASS

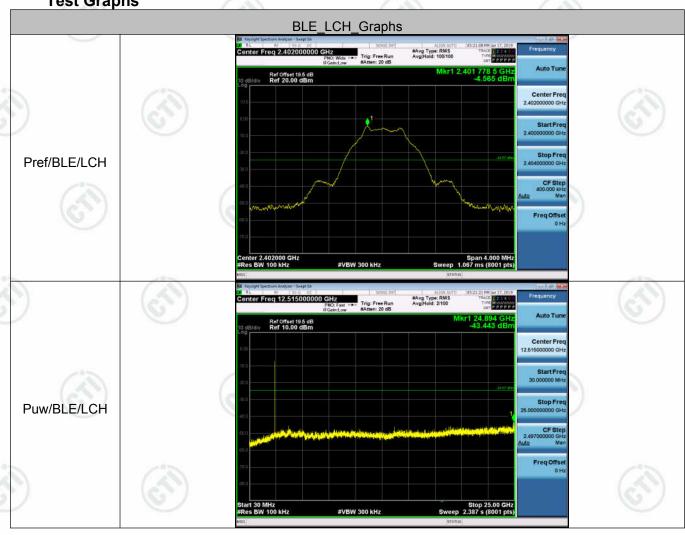


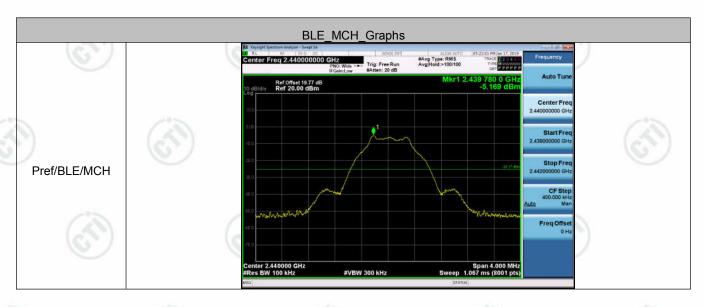
Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

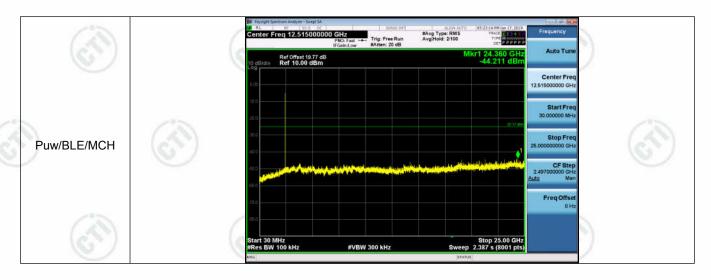
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.565	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-5.169	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-5.741	<limit< td=""><td>PASS</td></limit<>	PASS

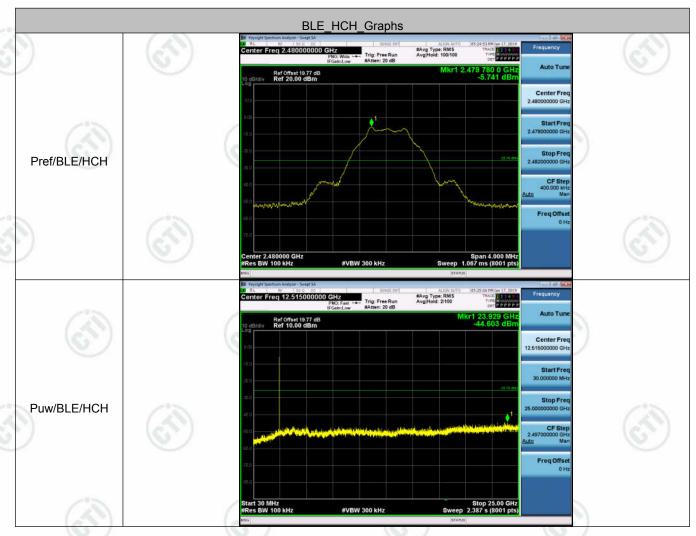




Report No.: EED32K00336001 Page 20 of 50

Test Graphs

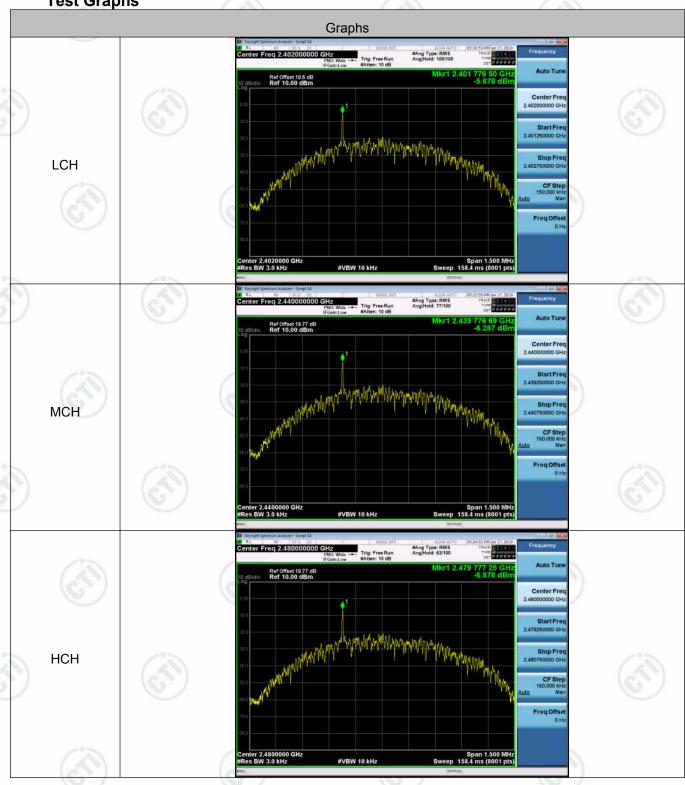




Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-5.678	8	PASS
BLE	МСН	-6.287	8	PASS
BLE	НСН	-6.878	8	PASS

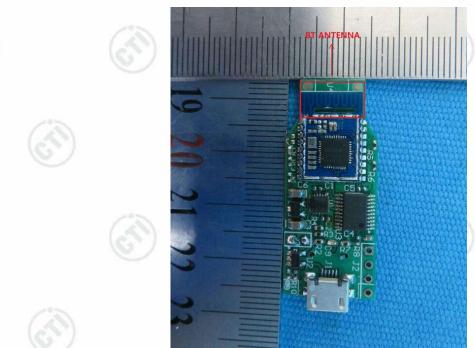


Test Graphs

Report No.: EED32K00336001 Page 24 of 50

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32K00336001 Page 25 of 50

Appendix G): AC Power Line Conducted Emission

Test Procedure:

Test frequency range: 150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

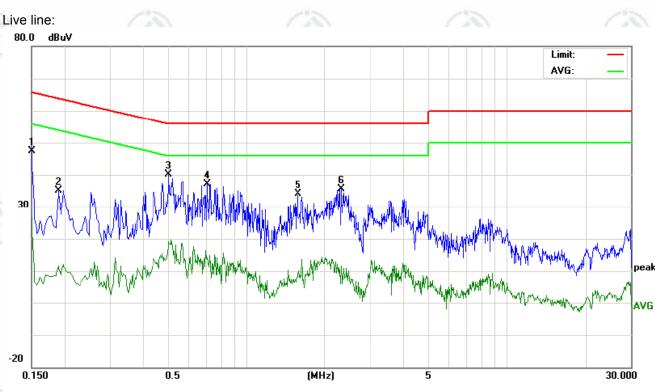
The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



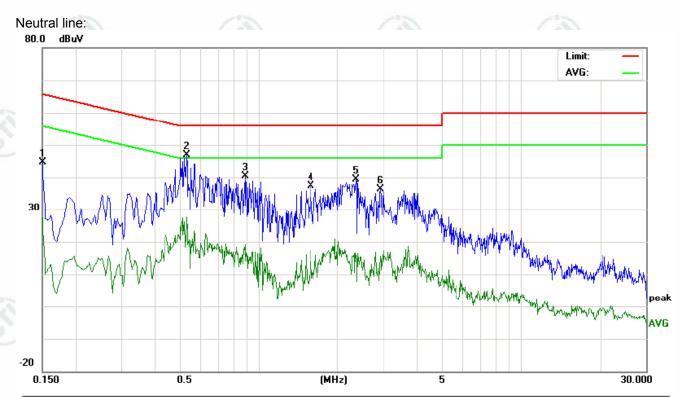
Report No. : EED32K00336001 Page 26 of 50

Product : SMART CONNECT GOLD REEL Model/Type reference : SCRV.2

Temperature : 22° Humidity : 53%

No	Freq.		ding_Le	vel	Correct Factor	N	leasuren (dBuV)		Lin (dB			rgin IB)		
-140.	•	,					, ,		`					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	37.51	33.45	16.78	9.91	47.42	43.36	26.69	65.99	55.99	-22.63	-29.30	Р	
2	0.1900	25.27	21.45	1.73	9.91	35.18	31.36	11.64	64.03	54.03	-32.67	-42.39	Р	
3	0.5060	30.14	27.12	9.35	9.90	40.04	37.02	19.25	56.00	46.00	-18.98	-26.75	Р	
4	0.7060	27.43	23.13	3.92	9.82	37.25	32.95	13.74	56.00	46.00	-23.05	-32.26	Р	
5	1.5780	24.28	21.84	-0.08	9.76	34.04	31.60	9.68	56.00	46.00	-24.40	-36.32	Р	
6	2.3179	25.99	22.15	1.65	9.72	35.71	31.87	11.37	56.00	46.00	-24.13	-34.63	Ρ	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$



Report No.: EED32K00336001 Page 27 of 50

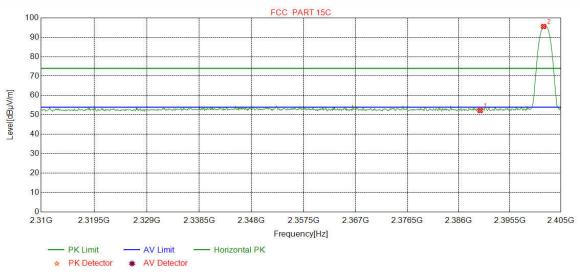
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin fB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	34.64	31.11	17.43	9.91	44.55	41.02	27.34	65.99	55.99	-24.97	-28.65	Р	
2	0.5340	36.85	33.81	17.62	9.94	46.79	43.75	27.56	56.00	46.00	-12.25	-18.44	Р	
3	0.8900	30.63	27.51	9.36	9.82	40.45	37.33	19.18	56.00	46.00	-18.67	-26.82	Р	
4	1.5820	27.62	24.42	7.63	9.76	37.38	34.18	17.39	56.00	46.00	-21.82	-28.61	Р	
5	2.3500	29.57	26.48	5.74	9.72	39.29	36.20	15.46	56.00	46.00	-19.80	-30.54	Р	
6	2.9140	26.69	23.45	5.80	9.72	36.41	33.17	15.52	56.00	46.00	-22.83	-30.48	Р	

Notes:

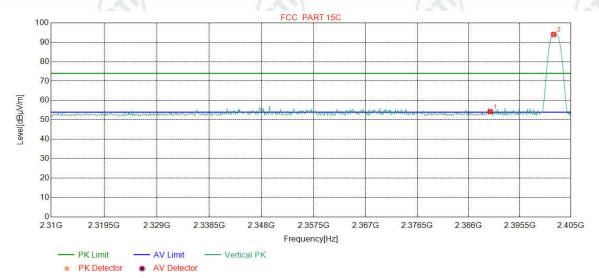
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 21/2 4011-	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the and d. For each suspected er the antenna was tuned was turned from 0 degree. The test-receiver systems and because it is a marker at the second service of the second se	on the top of a rotal choic camber. The of the highest rad eters away from the portion one managed of the field tenna are set to managed to heights from 1 rees to 360 degreem was set to Peaum Hold Mode.	e table wa iation. e interfere ight anter neter to fo d strength ake the m was arran meter to es to find k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas of the growth	o, which
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, be change form 1 meter and table owest channel, the ements are perforn d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por com Semi- meter to 1 fer). channel Y, Z axis p ng which i	Anechoic Ch. .5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the low. The radiation measures	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, be change form 1 meter and table owest channel, the ements are perforn d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each posterior semi- meter to 1 ter). It channel Y, Z axis programming which is easured was a series of the control of the cont	Anechoic Ch. .5 meter(Abo	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the fully Anechoic	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, nber change form 1 meter and table owest channel, the ments are perforned found the X axis ures until all frequents.	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each portion Semi-meter to 1 ser). I channel Y, Z axis programming which is easured ware recommended.	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal to the first the EUT in the left. The radiation measure that Transmitting mode, and jour procedure. Frequency	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, ber change form 1 meter and table bwest channel, the ments are perform d found the X axis ures until all frequents.	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each portion Semi-meter to 1 ter). The channel Y, Z axis programming which is easured was red w	Anechoic Ch. 5 meter (Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the fully Anechoic Channel	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, ober change form 1 meter and table owest channel, the ments are perforn d found the X axis ares until all frequents (dBµV/m 40.0)	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter (Abo cositioning for t is worse cas as complete. mark eak Value	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal in the left in the radiation measure and the requency and the requence the reque	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, other change form 1 meter and table towest channel, the ments are performed found the X axis tres until all frequences. Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	ambe
-imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal than 18 the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perforn d found the X axis ures until all freques Limit (dBµV/m 40.0 43.5 46.0	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch. 5 meter (Aboversitioning for t is worse cases complete. mark eak Value eak Value	ambe



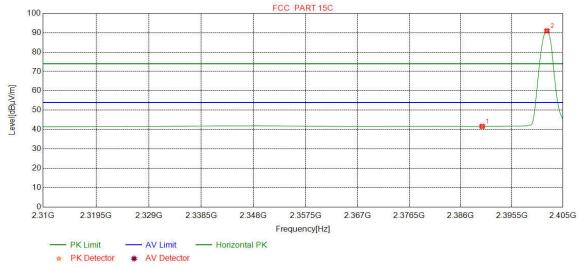
Report No. : EED32K00336001 Page 29 of 50


Test plot as follows:

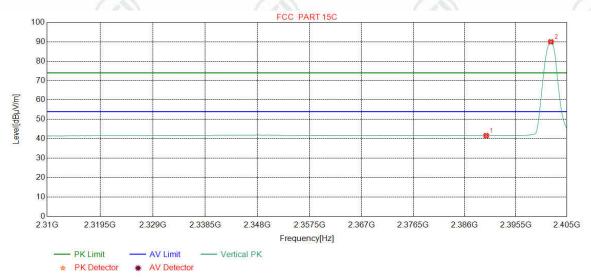
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.04	52.22	74.00	21.78	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	92.44	95.58	74.00	-21.58	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak	200	

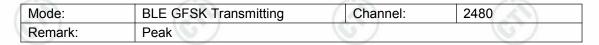


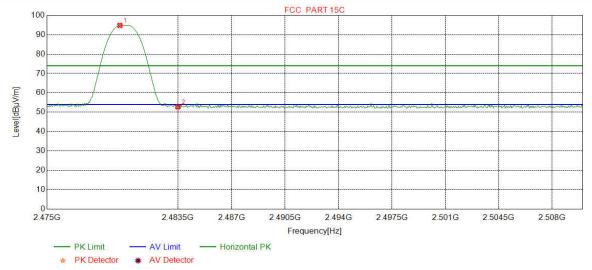
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.08	54.26	74.00	19.74	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	90.90	94.04	74.00	-20.04	Pass	Vertical


Report No.: EED32K00336001 Page 30 of 50

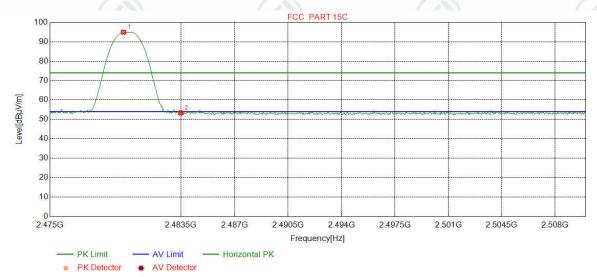
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Average	(0)	(0.)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.42	41.60	54.00	12.40	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	87.82	90.96	54.00	-36.96	Pass	Horizontal

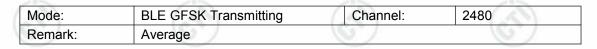

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Average		

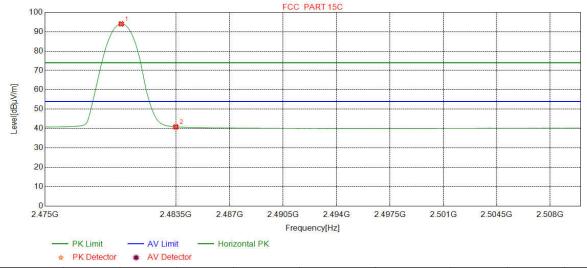


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.45	41.63	54.00	12.37	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	86.85	89.99	54.00	-35.99	Pass	Vertical

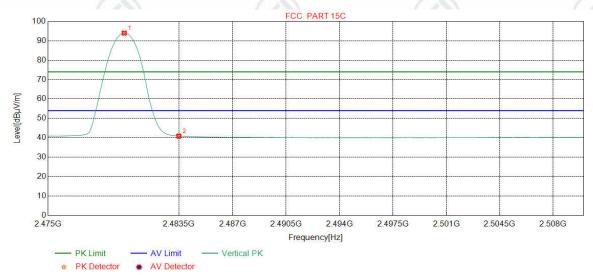

Page	31	of 50
i ayc	\circ	01 00

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	91.47	94.84	74.00	-20.84	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.39	52.75	74.00	21.25	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7747	32.37	13.39	-42.39	91.57	94.94	74.00	-20.94	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.94	53.30	74.00	20.70	Pass	Vertical


Report No.: EED32K00336001 Page 32 of 50

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.9499	32.37	13.39	-42.39	90.69	94.06	54.00	-40.06	Pass	Horizontal
Ī	2	2483.5000	32.38	13.38	-42.40	37.48	40.84	54.00	13.16	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Average		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	90.60	93.97	54.00	-39.97	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.47	40.83	54.00	13.17	Pass	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h a v a 4 O l l =	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

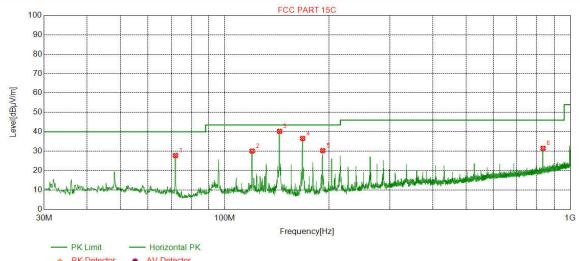
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/°-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



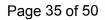
Radiated Spurious Emissions test Data:

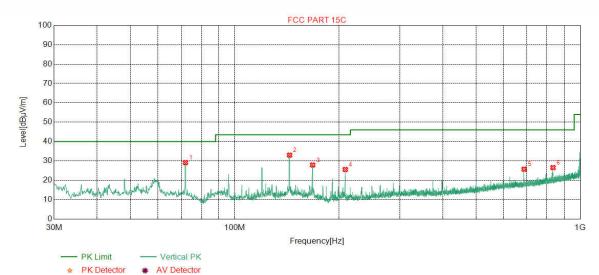
: SMART CONNECT GOLD REEL **Product** Model/Type reference SCRV.2 Temperature : 20°C Humidity 59%

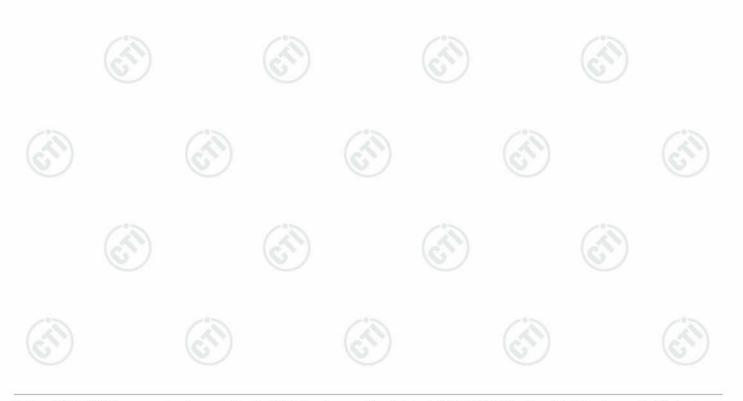
Radiated Emission below 1GHz

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	QP		

* AV Detector


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	72.0052	8.62	0.97	-32.05	50.22	27.76	40.00	12.24	Pass	Horizontal
2	120.0250	9.20	1.30	-32.07	51.63	30.06	43.50	13.44	Pass	Horizontal
3	144.0834	7.34	1.41	-31.99	63.48	40.24	43.50	3.26	Pass	Horizontal
4	168.0448	8.34	1.52	-31.96	58.65	36.55	43.50	6.95	Pass	Horizontal
5	192.1032	10.15	1.62	-31.96	50.47	30.28	43.50	13.22	Pass	Horizontal
6	834.0164	21.31	3.48	-31.94	38.61	31.46	46.00	14.54	Pass	Horizontal





Report No.	.: EED32K003360	01
------------	-----------------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	QP		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	72.0052	8.62	0.97	-32.05	51.58	29.12	40.00	10.88	Pass	Vertical
2	144.0834	7.34	1.41	-31.99	56.21	32.97	43.50	10.53	Pass	Vertical
3	168.0448	8.34	1.52	-31.96	49.98	27.88	43.50	15.62	Pass	Vertical
4	208.8859	11.13	1.71	-31.94	44.67	25.57	43.50	17.93	Pass	Vertical
5	687.5318	19.70	3.14	-32.06	34.91	25.69	46.00	20.31	Pass	Vertical
6	833.5314	21.30	3.48	-31.94	33.69	26.53	46.00	19.47	Pass	Vertical

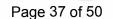
 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No.: EED32K00336001 Page 36 of 50

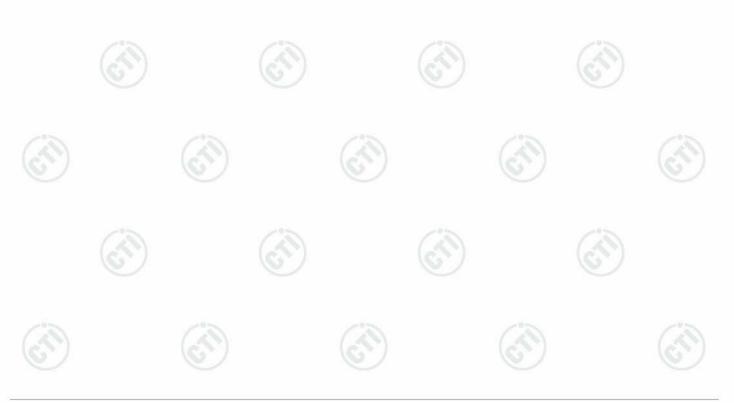
Transmitter Emission above 1GHz

Mode: BLE GFSK Transmitting			Channel:				2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1599.8600	29.06	3.07	-42.90	54.07	43.30	74.00	30.70	Pass	Н	Peak
2	3297.0698	33.32	4.57	-41.94	49.60	45.55	74.00	28.45	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	45.64	44.03	74.00	29.97	Pass	Н	Peak
4	5935.5957	35.70	5.25	-41.04	46.87	46.78	74.00	27.22	Pass	Н	Peak
5	7206.0000	36.31	5.81	-41.02	44.88	45.98	74.00	28.02	Pass	Н	Peak
6	9608.0000	37.64	6.63	-40.76	44.55	48.06	74.00	25.94	Pass	Н	Peak
7	1291.0291	28.19	2.74	-42.80	54.78	42.91	74.00	31.09	Pass	V	Peak
8	2508.5509	32.41	4.04	-42.38	56.81	50.88	74.00	23.12	Pass	V	Peak
9	4804.0000	34.50	4.55	-40.66	45.62	44.01	74.00	29.99	Pass	V	Peak
10	5991.4994	35.79	5.34	-41.09	47.91	47.95	74.00	26.05	Pass	V	Peak
11	7206.0000	36.31	5.81	-41.02	45.05	46.15	74.00	27.85	Pass	V	Peak
12	9608.0000	37.64	6.63	-40.76	45.11	48.62	74.00	25.38	Pass	V	Peak

Mode:		BLE GFSK Transmitting			Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1302.8303	28.20	2.75	-42.78	54.69	42.86	74.00	31.14	Pass	Н	Peak
2	2374.3374	32.22	3.89	-42.44	57.28	50.95	74.00	23.05	Pass	Н	Peak
3	4880.0000	34.50	4.80	-40.60	45.38	44.08	74.00	29.92	Pass	Н	Peak
4	6356.8238	35.87	5.44	-41.16	47.64	47.79	74.00	26.21	Pass	Н	Peak
5	7320.0000	36.42	5.85	-40.92	45.45	46.80	74.00	27.20	Pass	Н	Peak
6	9760.0000	37.70	6.73	-40.62	44.79	48.60	74.00	25.40	Pass	Н	Peak
7	1597.2597	29.04	3.07	-42.89	59.17	48.39	74.00	25.61	Pass	V	Peak
8	2589.7590	32.54	4.10	-42.34	56.56	50.86	74.00	23.14	Pass	V	Peak
9	4880.0000	34.50	4.80	-40.60	46.07	44.77	74.00	29.23	Pass	V	Peak
10	6350.9734	35.87	5.46	-41.16	48.41	48.58	74.00	25.42	Pass	V	Peak
11	7320.0000	36.42	5.85	-40.92	44.93	46.28	74.00	27.72	Pass	V	Peak
12	9760.0000	37.70	6.73	-40.62	45.72	49.53	74.00	24.47	Pass	V	Peak



	200	J-070			2000			21%			
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1598.2598	29.05	3.07	-42.90	54.77	43.99	74.00	30.01	Pass	Н	Peak
2	2523.3523	32.44	4.06	-42.38	56.59	50.71	74.00	23.29	Pass	Н	Peak
3	4960.0000	34.50	4.82	-40.53	45.70	44.49	74.00	29.51	Pass	Н	Peak
4	6317.8212	35.86	5.46	-41.15	47.91	48.08	74.00	25.92	Pass	Н	Peak
5	7440.0000	36.54	5.85	-40.82	45.76	47.33	74.00	26.67	Pass	Н	Peak
6	9920.0000	37.77	6.79	-40.48	45.97	50.05	74.00	23.95	Pass	Н	Peak
7	1302.0302	28.20	2.75	-42.78	56.93	45.10	74.00	28.90	Pass	V	Peak
8	2599.1599	32.56	4.10	-42.34	55.47	49.79	74.00	24.21	Pass	V	Peak
9	4960.0000	34.50	4.82	-40.53	46.67	45.46	74.00	28.54	Pass	V	Peak
10	5986.9491	35.78	5.33	-41.07	49.23	49.27	74.00	24.73	Pass	V	Peak
11	7440.0000	36.54	5.85	-40.82	45.08	46.65	74.00	27.35	Pass	V	Peak
12	9920.0000	37.77	6.79	-40.48	45.65	49.73	74.00	24.27	Pass	V	Peak


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

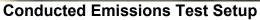
Test model No.: SCRV.2

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Radiated spurious emission Test Setup-3(Below 1GHz for Close-up)

Radiated spurious emission Test Setup-4(Above 1GHz)



PHOTOGRAPHS OF EUT Constructional Details

Test model No.: SCRV.2

View of Product-1

View of Product-2

Report No. : EED32K00336001 Page 42 of 50

View of Product-3

View of Product-4

Report No. : EED32K00336001 Page 43 of 50

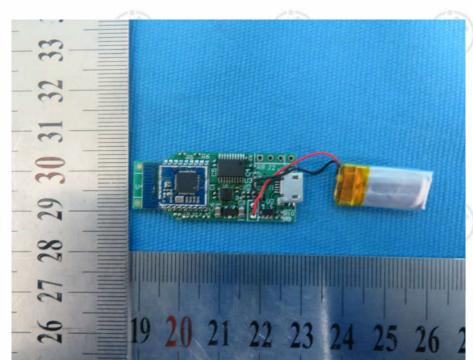
View of Product-5

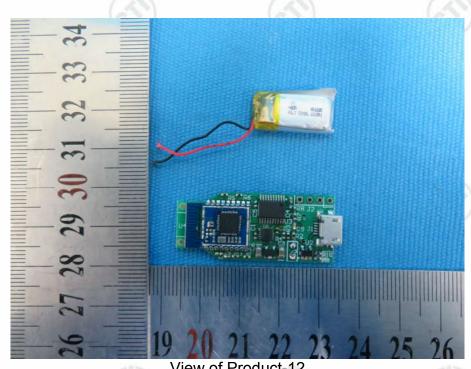
View of Product-7

View of Product-8

View of Product-9

View of Product-10

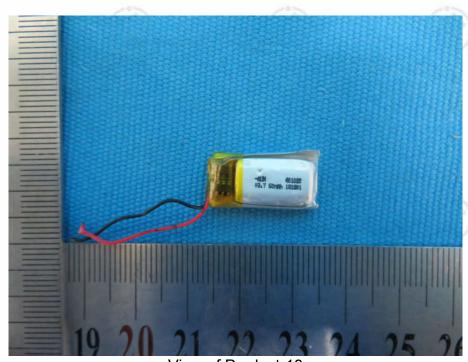


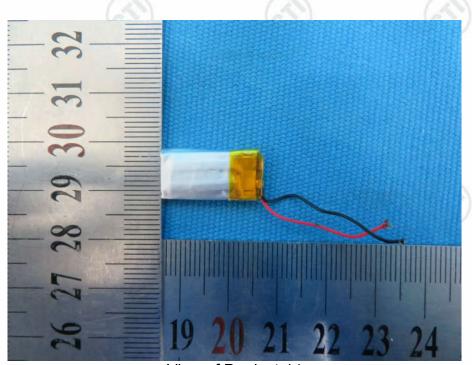


Report No.: EED32K00336001 Page 46 of 50

View of Product-11

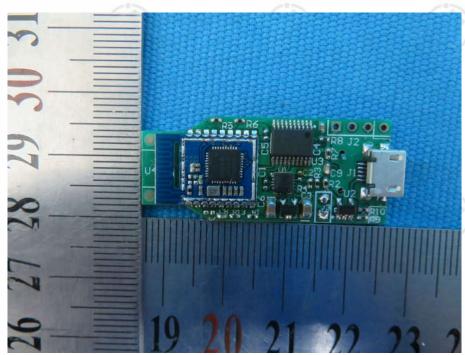
View of Product-12

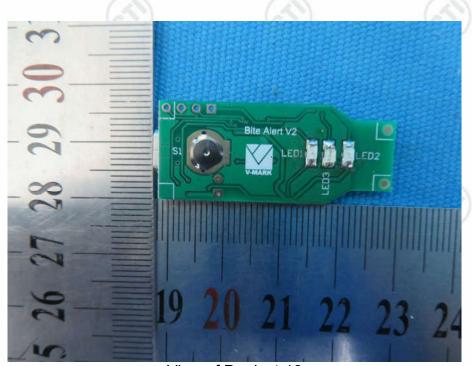




View of Product-13

View of Product-14

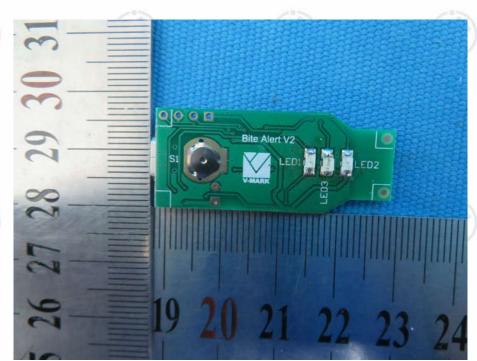


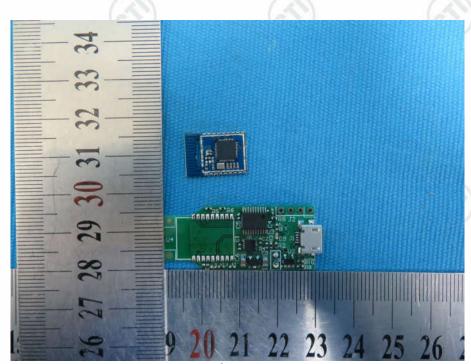


Page 48 of 50

View of Product-15

View of Product-16

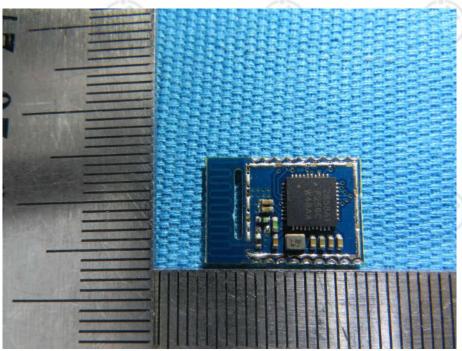


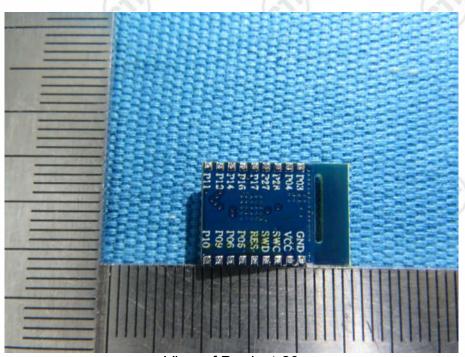


Report No. : EED32K00336001 Page 49 of 50

View of Product-17

View of Product-18





Report No.: EED32K00336001 Page 50 of 50

View of Product-19

View of Product-20

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com