

Cover Page 1

TEST REPORT

Applicant:	DTEN Inc
Address of Applicant:	97 E. Brokaw Road, Suite 180, San Jose, CA 95112, United States
Manufacturer/Factory :	DTEN Inc
Address of Manufacturer/Factory :	97 E. Brokaw Road, Suite 180, San Jose, CA 95112, United States
Equipment Under Test (E	UT)
Product Name:	DTEN Mate
Model No.:	DBA13310
Trade Mark:	DTEN
FCC ID:	2AQ7Q-DBA13310
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Dec. 04, 2020
Date of Test:	Dec. 04, 2020~Mar. 11, 2021
Date of report issued:	Mar. 12, 2021
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description		
00 Mar. 12, 2021		Original		

Prepared By:

sand

Date:

Mar. 12, 2021

Tested/Project Engineer

Reviewer

Mar. 12, 2021

Check By:

3 Contents

1	cov	ER PAGE	. 1
2	VER	SION	2
3 4		TENTS	-
5	GEN	ERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	GENERAL DESCRIPTION OF EUT	7 7 7 7 7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA 1	10
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9.1 7.9.2 7.10 7.10. 7.10.	Radiated Emission Method 3 SPURIOUS EMISSION 3 1 Conducted Emission Method 2 Radiated Emission Method	11 14 18 21 24 26 30 31 31 34 36 36 39
8	TES	T SETUP PHOTO	47
9	EUT	CONSTRUCTIONAL DETAILS	17

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission and Restrict Bands	15.205/15.209	Pass
Conducted Unwanted emissions and Bandedge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	0.009MHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	DTEN Mate		
Model No.:	DBA13310		
Test sample(s) ID:	GTSL202103000144-01		
Sample(s) Status:	Engineer sample		
Serial No.:	N/A		
Hardware Version:	K-MATE-V1.0		
Software Version:	20200930		
Operation Frequency:	2402MHz~2480MHz		
Channel numbers:	79		
Channel separation:	1MHz		
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK		
Antenna Type:	FPCB antenna		
Antenna gain:	3.21dBi		
Power supply:	FJ-SW2120502400U		
	INPUT: 100-240V~ 50/60Hz 0.4A OUTPUT: DC 5V 2.4A		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
-------------------	---

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the followin	g organizations:
• FCC — Registration No.: 381383	
Global United Technology Services Co., Ltd., Shenzhen EMC Labo	ratory has been registered and fully
described in a report filed with the (FCC) Federal Communications	Commission. The acceptance letter
from the FCC is maintained in files. Registration 381383. Designation	on Number: CN5029
• IC —Registration No : 9079A	

IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2020	Oct. 18 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2020	Oct. 18 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2020	Oct. 18 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021		

RF C	RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 25 2020	June. 24 2021		
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)					
15.203 requirement:						
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit so be replaced by the user, but the use of a standard antenna jack or electrical					
15.247(c) (1)(i) requiremen	it:					
operations may employ tran	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.					
E.U.T Antenna:	E.U.T Antenna:					
The antenna is FPC antenr details	na, the best case gain of the is 3.21dBi, reference to the appendix II for					

1.2								
	Test Requirement:	FCC Part15 C Se	ction 15.2	07				
	Test Method:	ANSI C63.10:201	3					
	Test Frequency Range:	150KHz to 30MH	Z					
	Class / Severity:	Class B						
	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
	Limit:				Limit	(dBuV)		
		Frequency ran	ige (MHZ)	Qı	Quasi-peak Average			
		0.15-0		6	66 to 56*	56 to		
		0.5-5			56	4	-	
		5-30 * Decreases with	the legarit	hm of the	60 fraguanav	5	0	
	Test setup:		eference Pla		frequency.			
	Test procedure:	AUX Equipment Test table/Insulation	AUX Equipment E.U.T Test table/Insulation plane arkc '' E Equipment Under Test '' Line Impedence Stabilization Network				through a	
		 line impedance 50ohm/50uH c The peripheral LISN that prov termination. (P photographs). Both sides of A interference. In positions of eq according to A 	e stabilizat coupling im devices a ides a 500 lease refe A.C. line ar order to f uipment a	ion netwo pedance re also cc hm/50uH r to the blo re checker ind the mandall of th	rk (L.I.S.N.). for the measure onnected to the coupling imp ock diagram d for maximum aximum emisure interface c	This provides uring equipm he main powe bedance with of the test se m conducted ssion, the rela- sables must b	s a lent. er through a 50ohm tup and ative be changed	
	Test Instruments:	Refer to section 6	6.0 for deta	ils				
	Test mode:	Refer to section 5	5.2 for deta	ils				
	Test environment:	Temp.: 25 °	СН	umid.:	52%	Press.:	1012mbar	
	Test voltage:	AC 120V, 60Hz	I		1	1	<u></u>	
	Test results:	Pass						

7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

Line: 100.0 dBu¥ Limit: AVG: 50 5 X peak AVG 0.0 0.5 0.150 (MHz) 5 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment MHz dBu∨ dB dBuV dBuV dB Detector 1 0.2340 32.13 10.94 43.07 62.30 -19.23 peak 2 0.2380 20.24 10.93 52.16 -20.99 AVG 31.17 3 0.4620 35.49 10.05 45.54 56.66 -11.12 peak * 10.05 AVG 4 0.4660 26.11 36.16 46.58 -10.42 5 14.7460 60.00 -15.96 33.63 10.41 44.04 peak 6 16.5100 17.83 50.00 -21.55 AVG 10.62 28.45

Report No.: GTSL202103000144F02

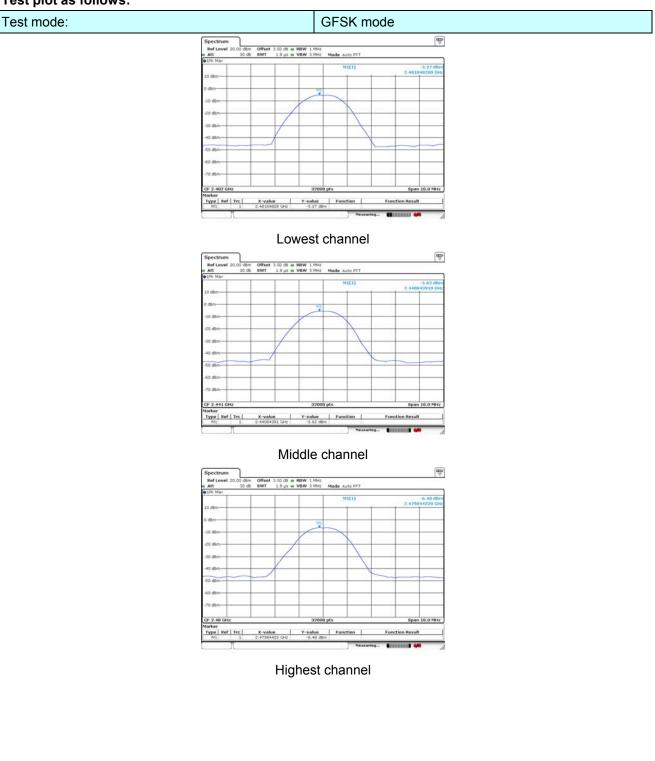
	dBuV							Limit: —
								AVG: —
-								
		3					5	
		The second se	N. Mr. Mar			-	5,7	
TM.	NYWM	Mon mary	and allow and a contradictory	Mythey Hand my Walland	Landerson bills	ار ال	III a stre	and the second second
	ллала	mullion	where a ward a start ward a start	MAN MANAGAMAN	international and Arrendom Arrived and	watermentlehally	mallille party	My man
[**]	¥ 4 4 • • •	,		L	(9444)/16 ⁴⁴⁴⁻¹ .46/py.4.48/pengled.1460	where the ward have been a second and the second	www.www.www.	Way way
								My would
0								
D.150		(0.5	(MHz)		5		30.000
		_	Reading	Correct	Measure		0	
ю.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1660	17.79	11.61	29.40	55 15	-25.75	AVG
2		0.1700	31.93	11.55	43.48	64.96	-21.48	peak
3		0.4620	36.67	10.05	46.72	56.66	-9.94	peak
								-
4	*	0.4620	31.01	10.05	41.06	46.66	-5.60	AVG
		13.7260	35.27	10.38	45.65	60.00	-14.35	peak
5		10.1200						
5 6		14.0940	22.52	10.39	32.91	50.00	-17.09	AVG

Neutral:

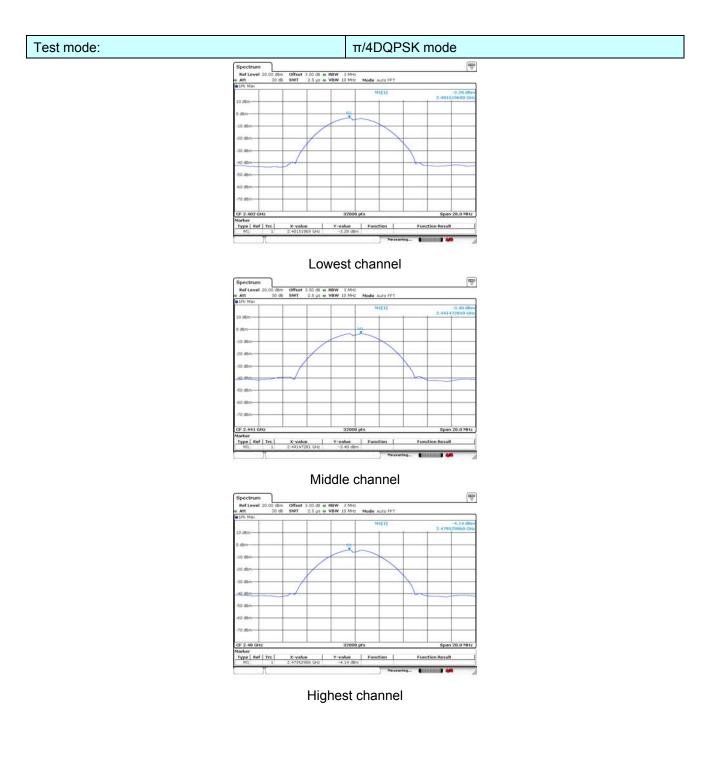
Notes:

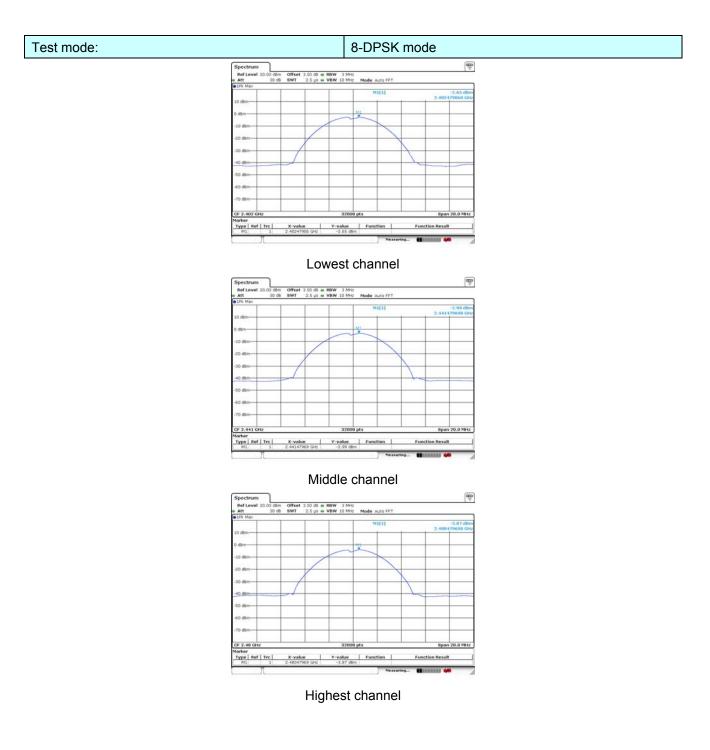
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK),20.97dBm(for EDR)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

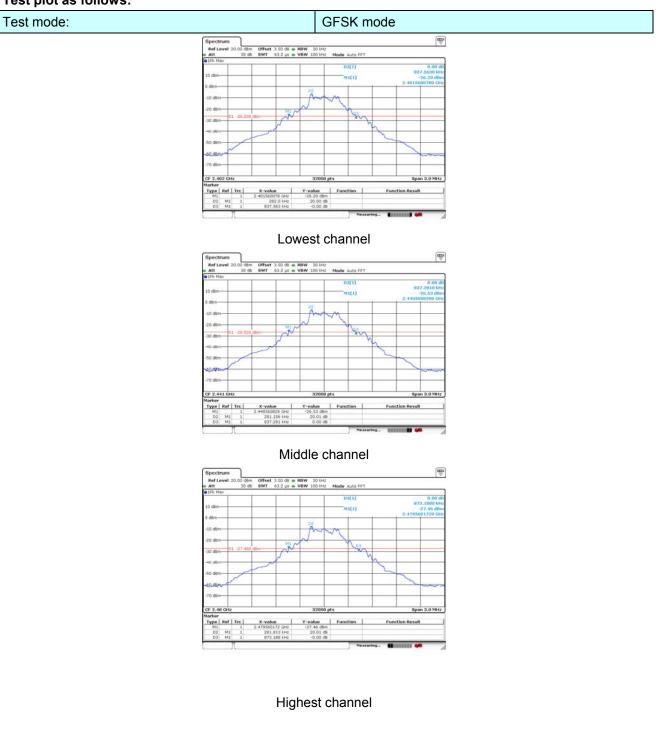

7.3 Conducted Peak Output Power

Measurement Data

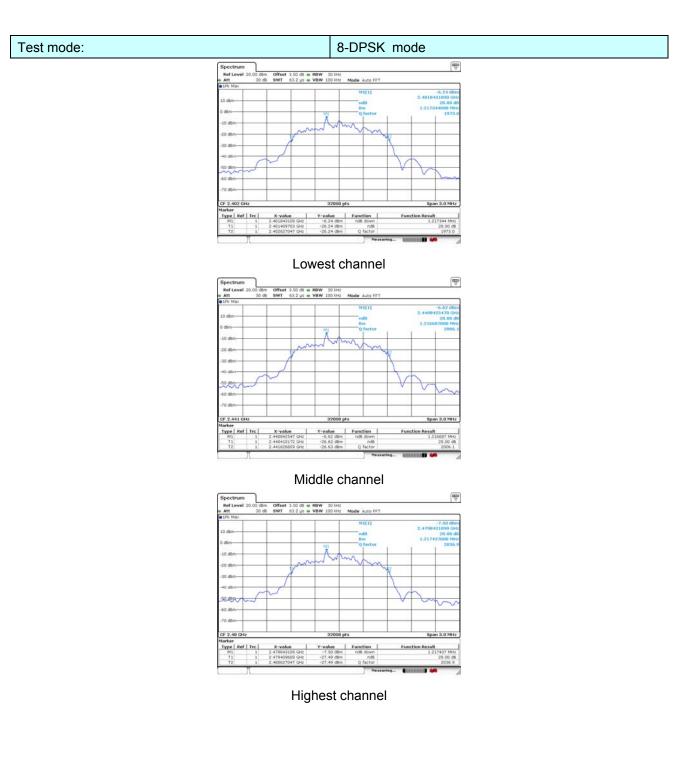

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-5.27		
GFSK	Middle	-5.62	30.00	Pass
	Highest	-6.48		
	Lowest	-3.28		
π/4DQPSK	Middle	-3.40	20.97	Pass
	Highest	-4.14		
	Lowest	-2.65		
8-DPSK	Middle	-2.99	20.97	Pass
	Highest	-3.87		


Test plot as follows:

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013			
Limit:	N/A			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			


7.4 20dB Emission Bandwidth

Measurement Data


Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	837.563	
GFSK	Middle	837.281	Pass
	Highest	873.188	
	Lowest	1217.344	
8-DPSK	Middle	1216.689	Pass
	Highest	1217.437	

Test plot as follows:

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak					
Limit:	GFSK: 20dB bandwidth π/4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.5 Carrier Frequencies Separation

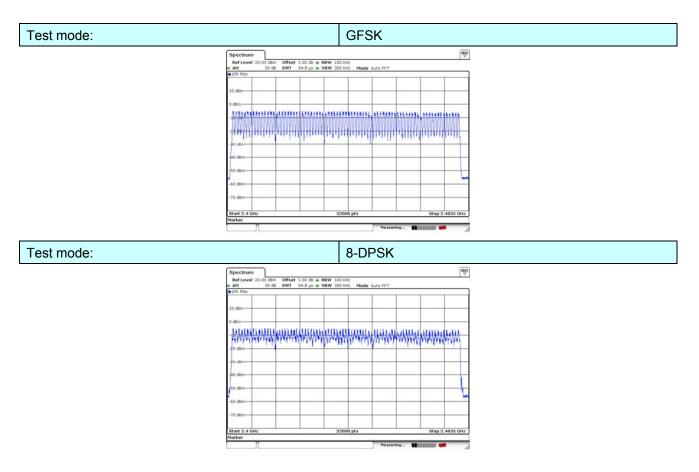
Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	999.0	582.1253	Pass
GFSK	Middle	999.0	582.1253	Pass
	Highest	999.0	582.1253	Pass
	Lowest	999.0	811.6247	Pass
8-DPSK	Middle	999.0	811.6247	Pass
	Highest	999.0	811.6247	Pass


Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	873.188	582.1253
8-DPSK	1217.437	811.6247

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result	
GFSK	79	≥15CH	Pass	
8-DPSK	79	≥15CH	Pass	

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	137.444	400	Pass
2441MHz	DH3	269.248	400	Pass
2441MHz	DH5	312.836	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.3817(ms)*(1600/ (2*79))*31.6

DH3 time slot=1.635(ms)*(1600/ (4*79))*31.6

DH5 time slot=2.883(ms)*(1600/ (6*79))*31.6

8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	134.964	400	Pass
2441MHz	3DH3	266.848	400	Pass
2441MHz	3DH5	311.436	400	Pass

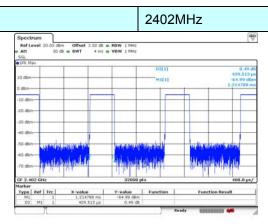
Remarks:

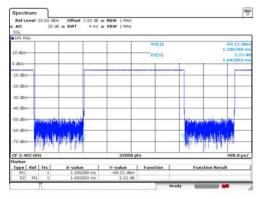
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

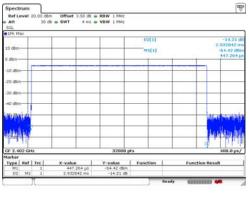
DH1 time slot=0.390(ms)*(1600/ (2*79))*31.6

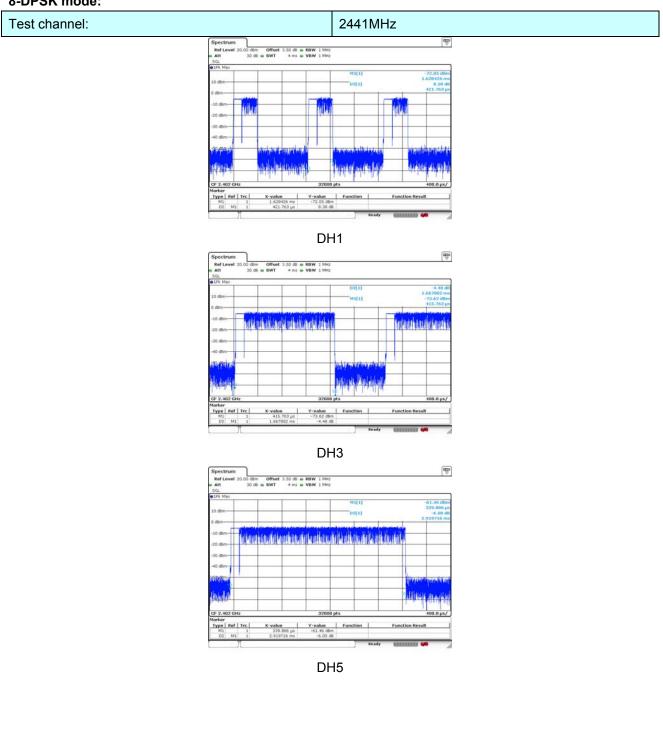
DH3 time slot=1.64(ms)*(1600/ (4*79))*31.6


DH5 time slot=2.892(ms)*(1600/ (6*79))*31.6


Test plot as follows:

GFSK mode:



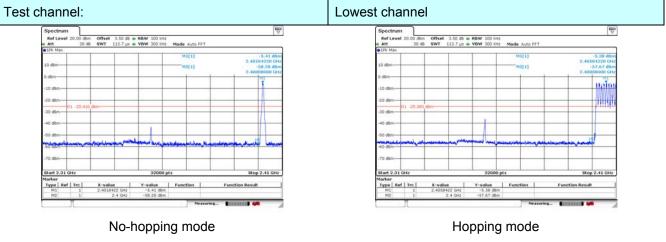

DH3

DH5

8-DPSK mode:

8	Pseudorandom Frequency Hopping Sequence						
	Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:						
	a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.						
	Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.						
	(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.						
	EUT Pseudorandom Frequency Hopping Sequence						
	The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins						
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹-1 = 511 bits 						
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹-1 = 511 bits 						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 6 2 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter.						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 0 2 4 6 62 64 78 1 73 75 77						
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding						

7.9 Band Edge


7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

GFSK Mode:

Spectrum			Spectrum		
Ref Level 20.00 dbm Offset 3.50 d	B e RBW 100 kHz IS e VBW 300 kHz Mode Auto FFT		Ref Level 20.00 dbm Offset 3.50 Att 30 d8 SWT 113.7	db e RBW 100 kHz us e VBW 300 kHz Mode Auto FFT	
1Pk Max	A VEH SOUTH PRODUCTION		1Pk Max	A WOW SOUTH Made Actory	-
	MILLI	-6.63 d8m 2.47984220 CH2		MILLI	-6,40 dBm 2,47384220 GHz
10 dBm	M2[1]	-57.20 d0m	10 dBm	M2[1]	-55.19 dBm
0 d8m		2,40350000 GHz	0 d8m	_	2,48350000 GHz
10 d8m			155 BALLE		
-10 dbm			10002A06E		
20 d8m			PP/PP/IA		
30 dBm 01 -26.630 dBm			-30 d8m		
40 d8m			-40 dBm		
50 d8m M2			-50 dBm		A ANALY IN A REAL PROPERTY OF
walking wing down was and	Anterest and interest and have	and a second second	-60 dệm	an survey and the second of the second s	and the second sec
70 d8m			-70 d8m		
Start 2.47 GHz	32000 pts	Stop 2.57 GHz	Start 2.47 GHz	32000 pts	Stop 2.57 GHz
larker Type Ref Trc X-value	Y-value Function F	anction Result	Marker Type Ref Trc X-value	Y-value Function	Function Result

No-hopping mode

Hopping mode

8-DPSK Mode: Test channel: Lowest channel E ⊂ ₫ Ref Level 20 Ref Level 2 3.50 dB 👄 RBW 113.7 μs 🖷 VBW 1.50 dB . RBW Mode Auto FF inde Auto FF **WW** Type Ref Trc Type Ref Trc M1 X-value Y-value Funct No-hopping mode Hopping mode Test channel: Highest channel ÷ E E Ref Level de Auto FF1 Auto FF1 6.48.0 和問 M1 1 M1 1

No-hopping mode

Hopping mode

7.9.2 Radiated Emission M	ethod					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict ba 2500MHz) data was		tested, only	the worst	band's (2310MHz to	
Test site:	Measurement Distar	nce: 3m				
Receiver setup:	Frequency D	etector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		Peak	1MHz	10Hz	Average Value	
Limit:	Frequency Limit (dE			• /	Remark	
	Above 1GHz		54.0 74.0		Average Value Peak Value	
	Turn Table+	< 3n	n > Test Antenna < 1m 4m >	*	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
Test Procedure:	 Receivered Preamplifiered 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 					
	 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 					
	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 				neter to 4 meters D degrees to find the unction and 10dB lower than the e peak values of the nat did not have beak, quasi-peak or	
	average method a			eported in a	a data sheet.	
Test Instruments:	Refer to section 6.0					
Test mode:	Refer to section 5.2	for details				
Test results:	Pass					

7.9.2 Radiated Emission Method

Measurement Data

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:	Lowest channel

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2400.000	59.46	-5.70	53.76	74.00	-20.24	peak
2400.000	43.28	-5.70	37.58	54.00	-16.42	AVG

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2400.000	60.79	-5.70	55.09	74.00	-18.91	peak
2400.000	44.56	-5.70	38.86	54.00	-15.14	AVG

Test channel:	Highest channel
---------------	-----------------

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	50.23	-4.98	45.25	74.00	-28.75	peak
2483.500	41.35	-4.98	36.37	54.00	-17.63	AVG

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	51.27	-4.98	46.29	74.00	-27.71	peak
2483.500	41.98	-4.98	37.00	54.00	-17.00	AVG

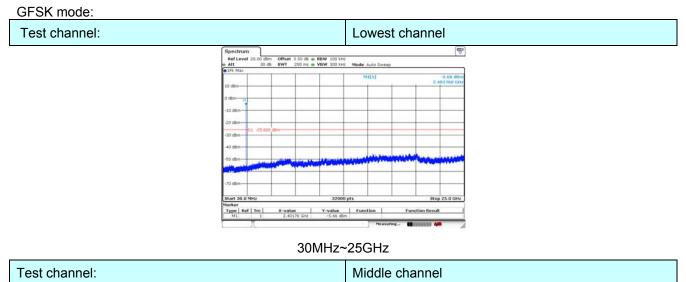
Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

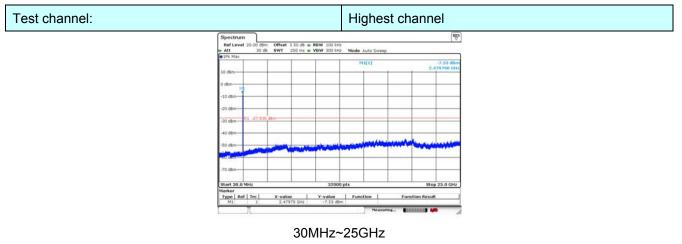
3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

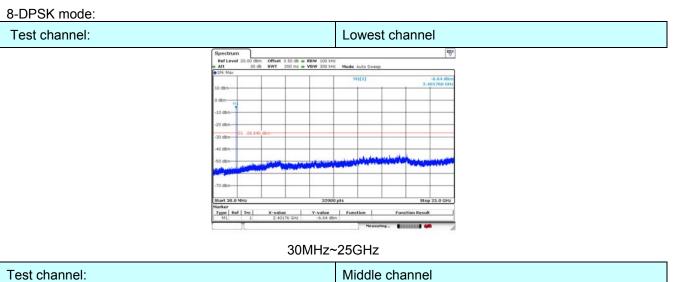
4. During the test, pre-scan the GFSK, π/4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

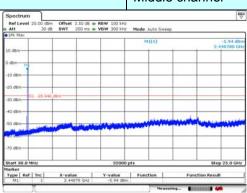

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

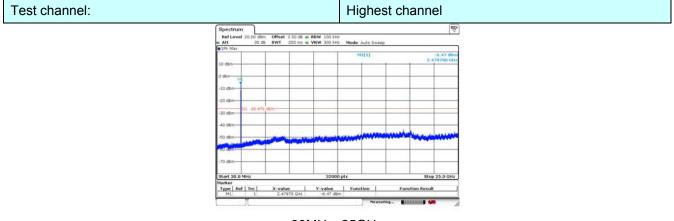
7.10 Spurious Emission

7.10.1 Conducted Emission Method

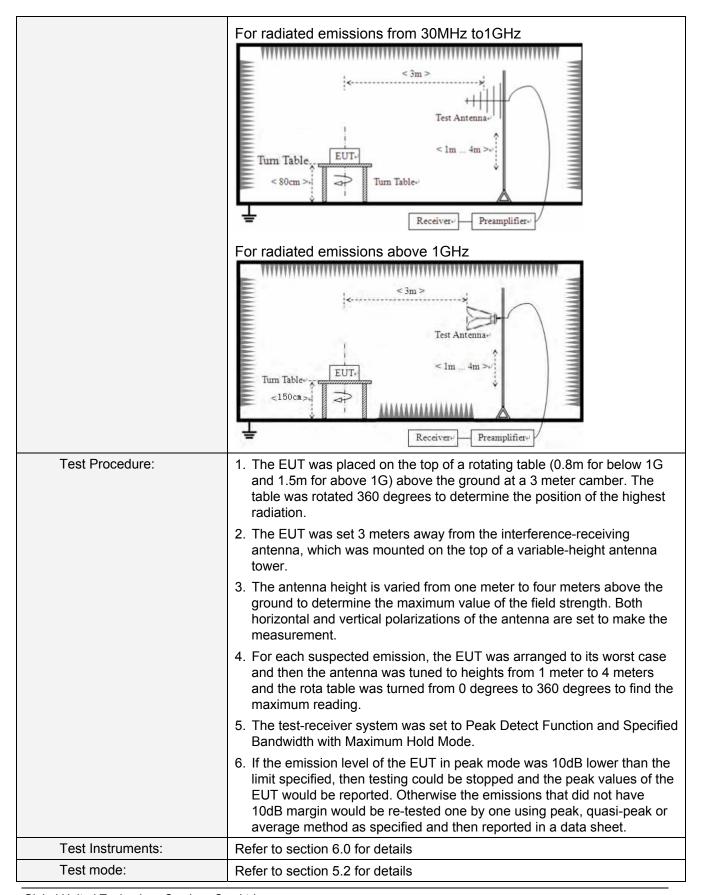

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			




 Spectrum
 Image: Control (Control (Contro) (Control (Control (Control (C



30MHz~25GHz


30MHz~25GHz

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Γ	Detector RBW		W	VBW	Value	
	9KHz-150KHz	Qı	uasi-peak 200H		Hz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KF	Ηz	30KHz	z Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	120K	Ήz	300KH	z Quasi-peak	
			Peak	1Mł	Ηz	3MHz	: Peak	
	Above 1GHz		Peak	1Mł	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u∨	//m)	V	'alue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(K	(Hz)		QP	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)			QP	30m	
	1.705MHz-30MH	lz	30			QP	30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz	Z	150			QP		
	216MHz-960MH	Z	200			QP	3m	
	960MHz-1GHz		500			QP	onn	
	Above 1GHz		500		Average			
			5000		F	Peak		
Test setup:	For radiated emiss	sions	from 9kHz	z to 30) MH	z		
	<pre></pre>							

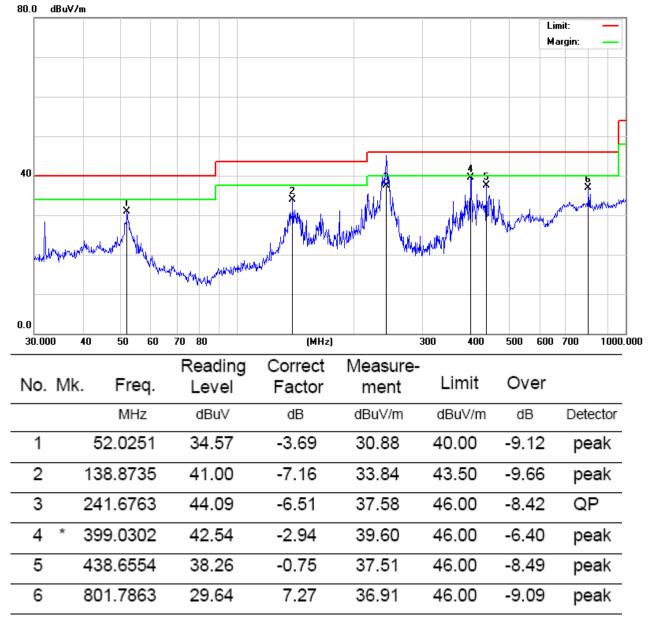
7.10.2 Radiated Emission Method

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remarks:

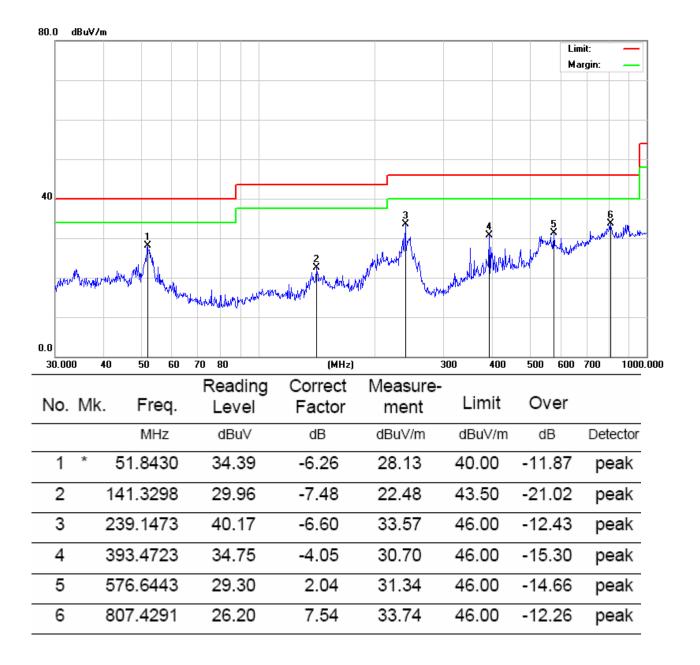
- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz


Horizontal:

Report No.: GTSL202103000144F02

Vertical:

Above 1GHz

Test channel:	Lowest channel
---------------	----------------

<u>H</u>						_
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.000	38.14	5.06	43.20	74.00	-30.80	PEAK
4804.000	29.63	5.06	34.69	54.00	-19.31	AVG
7206.000	44.25	7.03	51.28	74.00	-22.72	PEAK
7206.000	34.16	7.03	41.19	54.00	-12.81	AVG
V						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.000	48.46	5.06	53.52	74.00	-20.48	PEAK
4804.000	36.54	5.06	41.60	54.00	-12.40	AVG
7206.000	44.38	7.03	51.41	74.00	-22.59	PEAK
7206.000	34.06	7.03	41.09	54.00	-12.91	AVG

7323.000

33.34

7.54

Report No.: GTSL202103000144F02

Test channel:	Middle channel

Н						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882.000	49.09	5.14	54.23	74.00	-19.77	PEAK
4882.000	39.16	5.14	44.30	54.00	-9.70	AVG
7323.000	43.24	7.54	50.78	74.00	-23.22	PEAK
7323.000	32.85	7.54	40.39	54.00	-13.61	AVG
V						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882.000	48.66	5.14	53.80	74.00	-20.20	PEAK
4882.000	36.15	5.14	41.29	54.00	-12.71	AVG
7323.000	44.17	7.54	51.71	74.00	-22.29	PEAK

40.88

54.00

-13.12

AVG

Test channel:	Highest channel

<u>H</u>						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.000	48.16	5.22	53.38	74.00	-20.62	PEAK
4960.000	39.42	5.22	44.64	54.00	-9.36	AVG
7440.000	42.63	8.06	50.69	74.00	-23.31	PEAK
7440.000	33.29	8.06	41.35	54.00	-12.65	AVG
V						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	

Detector Type (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 4960.000 5.22 49.27 54.49 74.00 -19.51 PEAK 4960.000 5.22 43.68 54.00 38.46 -10.32 AVG 7440.000 42.55 8.06 50.61 74.00 -23.39 PEAK 7440.000 32.69 8.06 40.75 54.00 AVG -13.25

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----