Report No: CCISE180906705

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E. Dyer Road, Santa Ana, California, United States

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: Eternity H67

FCC ID: 2AQ7MH25568K

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 15 Sep., 2018

Date of Test: 15 Sep., to 25 Oct., 2018

Date of report issued: 25 Oct., 2018

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Oct., 2018	This report was amended on FCC ID: 2AQ7MH25568K follow FCC Class II Permissive Change. The differences between them as below: Model number, Battery, Antenna welding board and removed the Fingerprint Identification. Base on the differences description, all the EMC were re-tested.

Tested by: Date: 25 Oct., 2018

Test Engineer

Reviewed by: Date: 25 Oct., 2018

Project Engineer

3 Contents

		!	Page
1	С	OVER PAGE	1
2	٧	ERSION	2
3	С	CONTENTS	3
4	Т	EST SUMMARY	4
5		ENERAL INFORMATION	
_	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	T	EST SETUP PHOTO	17
ጸ	F	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc
Address of Applicant:	800 E. Dyer Road, Santa Ana, California, United States
Manufacturer:	SHENZHEN HENG DA INFINITE COMMUNICATION EQUIPMENTS LIMITED
Address:	Rm 1301 Block D, Tian An Cloud Park Building 3rd, Bantian Street, Longgang District, Shenzhen. P. R. C.
Factory:	HUIZHOU HENG DA INFINITE COMMUNICATION EQUIPMENTS LIMITED
Address:	The Second Floor B01 No.15 Wanli Industrial Zone, Gan Po Hang, Huiyang Town, Huizhou

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	Eternity H67
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2300mAh
AC adapter :	Model: HJ-0501000E1-US Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)	

Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

Project No.: CCISE1809067

Report No: CCISE180906705

Report No: CCISE180906705

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

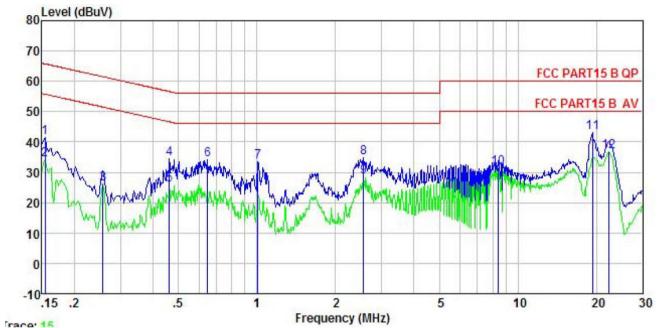
Page 6 of 18

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

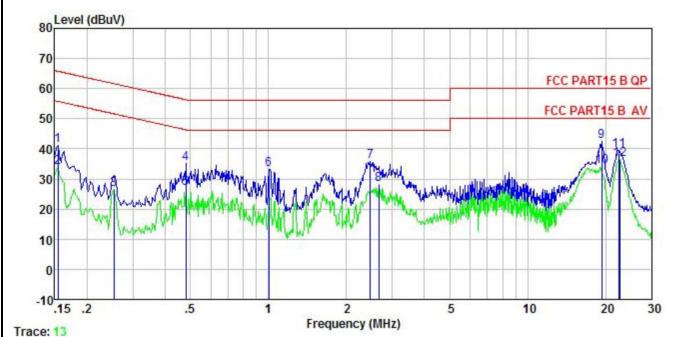
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	FCC Part 15 B Section 15.107			
Test Method:	ANSI C63.4:2014				
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Lir	mit (dBµV)		
	, , , ,	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarith				
Test setup:	Reference Plan	ne			
	AUX Equipment E.U.T Filter AC power EMI Receiver Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test environment:	Temp.: 23 °C Humid.: 56% Press.: 101kPa				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	Smart Phone	Product model:	Eternity H67
Test by:	Caffrey	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
Lovel (dDvV)			


	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>dB</u>	<u>dB</u>	dBu∀	dBu√	<u>dB</u>	
1	0.154	30.39	0.18	10.78	41.35	65.78	-24.43	QP
2	0.154	23.29	0.18	10.78	34.25	55.78	-21.53	Average
1 2 3 4 5 6 7 8 9	0.258	15.32	0.14	10.75	26.21	51.51	-25.30	Average
4	0.461	23.49	0.12	10.74	34.35	56.67	-22.32	QP
5	0.461	15.02	0.12	10.74	25.88	46.67	-20.79	Average
6	0.647	23.17	0.13	10.77	34.07	56.00	-21.93	QP
7	1.010	22.52		10.87	33.52	56.00	-22.48	QP
8	2.567	23.68	0.15	10.94	34.77	56.00	-21.23	QP
9	2.567	17.38	0.15	10.94	28.47	46.00	-17.53	Average
10	8.367	20.30	0.28	10.87	31.45	50.00	-18.55	Average
11	19.326	31.88	0.28	10.93	43.09	60.00	-16.91	QP
12	22.298	25.52	0.30	10.90	36.72	50.00	-13.28	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smart Phone	Product model:	Eternity H67
Test by:	Caffrey	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
=	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1	0.154	29.55	0.98	10.78	41.31	65.78	-24.47	QP
2	0.154	22.16	0.98	10.78	33.92	55.78	-21.86	Average
3	0.253	14.73	0.95	10.75	26.43	51.64	-25.21	Average
4	0.481	23.48	0.97	10.75	35.20	56.32	-21.12	QP
1 2 3 4 5 6 7 8 9	0.481	15.11	0.97	10.75	26.83	46.32	-19.49	Average
6	1.005	21.44	0.97	10.87	33.28	56.00	-22.72	QP
7	2.474	24.03	0.99	10.94	35.96	56.00	-20.04	QP
8	2.664	16.20	0.99	10.93	28.12	46.00	-17.88	Average
9	19.326	30.96	0.71	10.93	42.60	60.00	-17.40	QP
10	19.326	22.49	0.71	10.93	34.13	50.00	-15.87	Average
11	22.416	27.89	0.68	10.90	39.47	60.00	-20.53	QP
12	22.655	24.81	0.68	10.90	36.39	50.00	-13.61	Average

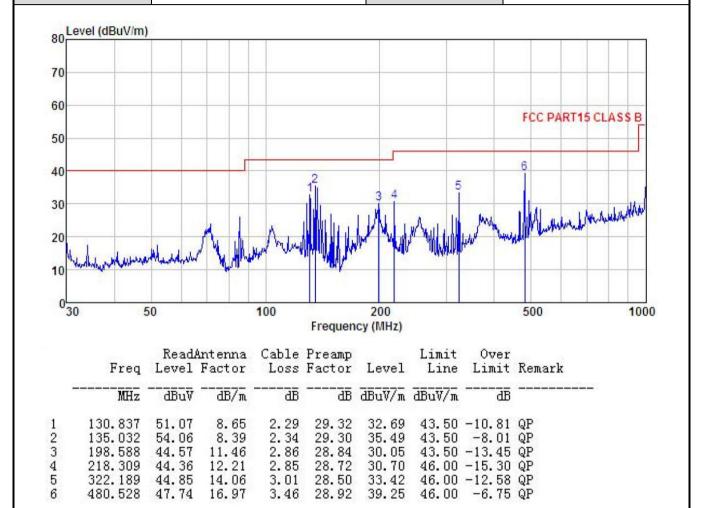
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

FCC Part 15 B Section 15.109									
ANSI C63.4:201	ANSI C63.4:2014								
30MHz to 6000I	30MHz to 6000MHz								
Measurement D	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Frequency			RBW			Remark			
30MHz-1GHz						Quasi-peak Value			
Above 1GHz						Peak Value			
Frequenc					1 <u>∠</u>	Average Value Remark			
		LIIIII	`	20111)		Quasi-peak Value			
						Quasi-peak Value			
						Quasi-peak Value			
						Quasi-peak Value			
			54.0			Average Value			
Above 1Gi	72		74.0			Peak Value			
Ground Plane — Above 1GHz	4m Am Im Am Im Am Im Am Im Im I	Ground R	Horn Ante	Searc Anten RF Test Receiver	h na				
	ANSI C63.4:201 30MHz to 6000I Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz Below 1GHz Frequence 30MHz-1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3 Frequency Detection of the peasurement Distance: 3 Below 1GHz Peasurement Distance: 3 Frequency Detection of the	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz RMS 1MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Below 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chan Frequency Detector RBW VBI 30MHz-1GHz Quasi-peak 120kHz 300k Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Antenna Ground Plane Above 1GHz Antenna Ground Plane Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 0 88MHz-216MHz 43.5 0 216MHz-960MHz 46.0 0 960MHz-1GHz 54.0 0 Above 1GHz 74.0 Below 1GHz Antenna Tower Antenna Tower Ground Plane Above 1GHz			

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.							
		T was set 3 n a, which was i	•			•		
	 The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 							
	4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rotatable table was turned from 0 degrees to 360 degrees find the maximum reading.							
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	limit spe EUT wo margin	ecified, then to	esting could bed. Otherwise ested one by	be stopped a the emission	nd the peal ons that did eak, quasi- _l			
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa		
Test Instruments:	Refer to se	ection 5.9 for	details					
Test mode:	Refer to se	ection 5.3 for	details					
Test results:	Passed							
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded							



Measurement Data:

Below 1GHz:

Product Name:	Smart Phone	Product model:	Eternity H67
Test By:	Caffrey	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phor	е	F	Product n	nodel:	Etern	ity H67		
Test By:	Caffrey		٦	Test mod	e:	PC m	PC mode		
Test Frequency:	30 MHz ~ 1	GHz	F	Polarizati	on:	Horizo	ontal		
Test Voltage:	AC 120/60H	AC 120/60Hz			ent:	Temp	: 24℃	Huni: 57	7%
80 Level (dBuV/m)								1
70									
60									-65
00						FC	CC PART1	5 CLASS E	3
50						5			
40						4			
			1	23 Ja				5	
30			hard April	W. W.	Silver of		J. WA	Markey Markey Markey	M
20	Λ.	Λ,	Jan Jan)WC	Arrille A	The state of the s	Marin		
10 Manufactor fragment	monday was "	and the work will	JAF						
030	50	100		200		50	00	10	000
		F	requency	(MHz)					
Fre	ReadAnt q Level Fa	enna Cable ctor Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
ME	z dBuV	dB/m	<u>ab</u>	dBu√/m	dBu√/m				
1 190.40	5 45.33 1	1.21 2.80	28.90	30.44	43.50	-13.06	QP		
2 239.98 3 254.72	7 47.55 1	2.97 2.82 3.33 2.82	28.59	34.75	46.00	-11.25	QP		
		7 77 11 1111	70 60	33.96	46 00	-12.04			

28.92 45.18 46.00 -0.82 QP

4.16 28.68 32.39 46.00 -13.61 QP

Remark:

5

480.528 53.67

696.857

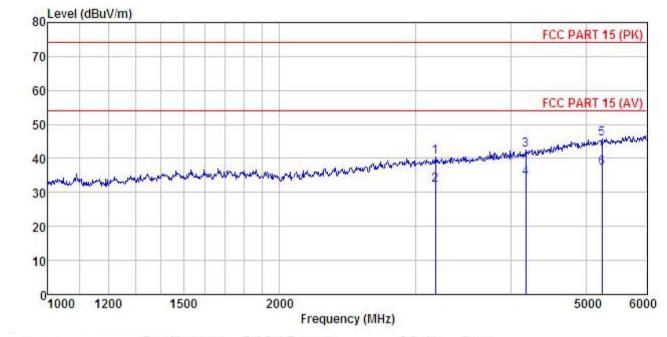
37.11

16.97

19.80

3.46

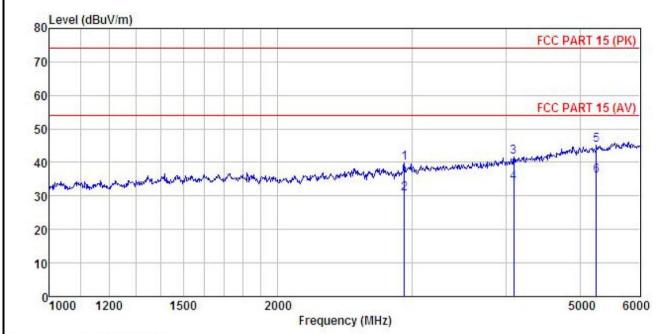
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.


^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	Smart Phone	Product model:	Eternity H67
Test By:	Caffrey	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu√		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	3189.176	47.66	28.72	5.42	41.41	40.39	74.00	-33.61	Peak
2	3189.176	39.54	28.72	5.42	41.41	32.27	54.00	-21.73	Average
3	4179.719	47.40	30.54	6.37	41.81	42.50		-31.50	
4	4179.719	39.13	30.54	6.37	41.81	34.23	54.00	-19.77	Average
5	5248.359	48.45	32.15	7.09	41.93	45.76	74.00	-28.24	Peak
6	5248.359	39.75	32.15	7.09	41.93	37.06	54.00	-16.94	Average


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product model:	Eternity H67
Test By:	Caffrey	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∀	<u>dB</u> /π		<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2933.183	47.73	28.48	5.28	41.56	39.93	74.00	-34.07	Peak
2	2933.183	38.50	28.48	5.28	41.56	30.70	54.00	-23.30	Average
3	4091.203	46.96	30.37	6.23	41.81	41.75		-32.25	
4	4091.203	39.17	30.37	6.23	41.81	33.96	54.00	-20.04	Average
5	5258.582	47.77	32.16	7.09	41.93	45.09	74.00	-28.91	Peak
6	5258.582	38.60	32.16	7.09	41.93	35.92	54.00	-18.08	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.