Shenzhen Global Test Service Co.,Ltd.

GTS

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....... GTSR18092031-BT FCC ID....... : 2AQ7LTK1G8GKD5

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)..: Manager Jason Hu

Date of issue...... Sep. 13, 2018

Representative Laboratory Name .: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... QPS ELECTRONICS CO.,Limited

Address 5th floor, 64 building, baotian Industrial Zone, qianjin 2nd road,

xixiang, bao'an District, Shenzhen, Guangdong, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description TABLET PC

Trade Mark /

Manufacturer QPS ELECTRONICS CO.,Limited

Difference All the same except the model number

Rating AC 120V/60Hz

Result..... PASS

Report No.: GTSR18092031-BT Page 2 of 46

TEST REPORT

Test Report No. :	GTSR18092031-BT	Sep. 13, 2018
rest Report No	G13K10092031-B1	Date of issue

Equipment under Test : TABLET PC

Model /Type : TK1G8GKD5

Listed Models : TK1G8GKD2

Applicant : QPS ELECTRONICS CO.,Limited

Address : 5th floor, 64 building, baotian Industrial Zone, qianjin 2nd road,

xixiang,bao'an District,Shenzhen,Guangdong,China

Manufacturer : QPS ELECTRONICS CO.,Limited

Address : 5th floor, 64 building,baotian Industrial Zone,qianjin 2nd road,xi

xiang,bao'an District,Shenzhen,Guangdong,China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: GTSR18092031-BT Page 3 of 46

Contents

I. TEST STANDARDS	<u> 4</u>
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	
2.3. Equipment Under Test	5
2.4. Short description of the Equipment under Test (EUT)	
2.5. EUT operation mode	
2.6. Block Diagram of Test Setup	
2.7. Related Submittal(s) / Grant (s)	
2.8. EUT configuration	7
2.9. Modifications	7
	_
3. TEST ENVIRONMENT	8
	_
3.1. Address of the test laboratory	
3.2. Test Facility	
3.4. Summary of measurement results	
3.5. Statement of the measurement uncertainty	
3.6. Equipments Used during the Test	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	_
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	
4.2. Radiated Emission	
4.3. Maximum Peak Output Power	
4.4. 20dB Bandwidth	
4.5. Frequency Separation	23
4.6. Band Edge Compliance of RF Emission	
4.7. Spurious RF Conducted Emission	
4.9. Time Of Occupancy(Dwell Time)	
4.10. Pseudorandom Frequency Hopping Sequence	
4.11. Antenna Requirement	
5. TEST SETUP PHOTOS OF THE EUT	39
E EVTERNAL AND INTERNAL BUOTOS OF THE FILT	2.0

Report No.: GTSR18092031-BT Page 4 of 46

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Report No.: GTSR18092031-BT Page 5 of 46

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Sep. 5, 2018
Testing commenced on	:	Sep. 5, 2018
Testing concluded on	:	Sep. 13, 2018

2.2. Product Description

Name of EUT	TABLET PC
Trade Mark:	1
Model Number	TK1G8GKD5
List Model:	TK1G8GKD2
Antenna Type	Internal Antenna
Bluetooth FCC Operation frequency	2402MHz-2480MHz
Bluetooth Modulation	GFSK,π/4DQPSK,8DPSK
Antenna gain	1.28dBi

2.3. Equipment Under Test

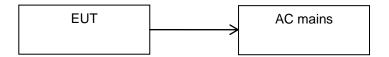
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow	

2.4. Short description of the Equipment under Test (EUT)

This is a TABLET PC

For more details, refer to the user's manual of the EUT.


2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/38/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

Report No.: GTSR18092031-BT Page 7 of 46

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AQ7LTK1G8GKD5 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O Supplied by the lab

0	M/N:	
	Manufacturer:	

2.9. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTSR18092031-BT Page 8 of 46

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2018.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C			
Humidity:	30-60 %			
Atmospheric pressure:	950-1050mbar			

Report No.: GTSR18092031-BT Page 9 of 46

3.4. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	\boxtimes				complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-			\boxtimes		Not applicable for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full					complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	⊠ Middle					complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest					complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	Lowest	GFSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK 8DPSK		GFSK						complies
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK		\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK						complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-			\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report
- 4. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

Report No.: GTSR18092031-BT Page 10 of 46

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

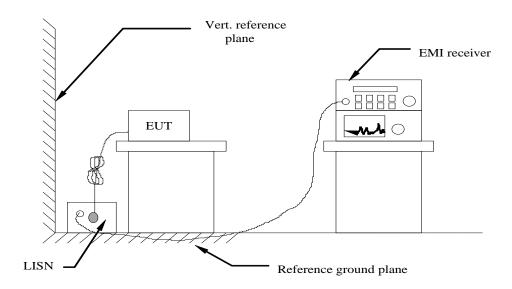
Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Model No. Serial No.		Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2017/09/20	2018/09/19
LISN	R&S	ESH2-Z5	893606/008	2017/09/20	2018/09/19
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2017/09/20	2018/09/19
EMI Test Receiver	R&S	ESCI	101102	2017/09/20	2018/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2017/09/20	2018/09/19
Controller	EM Electronics	Controller EM 1000	N/A	2017/09/20	2018/09/19
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2017/09/20	2018/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2017/09/20	2018/09/19
Amplifier	Agilent	8349B	3008A02306	2017/09/20	2018/09/19
Amplifier	Agilent	8447D	2944A10176	2017/09/20	2018/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2017/09/20	2018/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	N/A	2017/09/20	2018/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	N/A	2017/09/20	2018/09/19
RF Cable	HUBER+SUHNE R	RG214	N/A	2017/09/20	2018/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2017/09/20	2018/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2017/09/20	2018/09/19


Note: The Cal.Interval was one year.

Report No.: GTSR18092031-BT Page 11 of 46

4. TEST CONDITIONS AND RESULTS

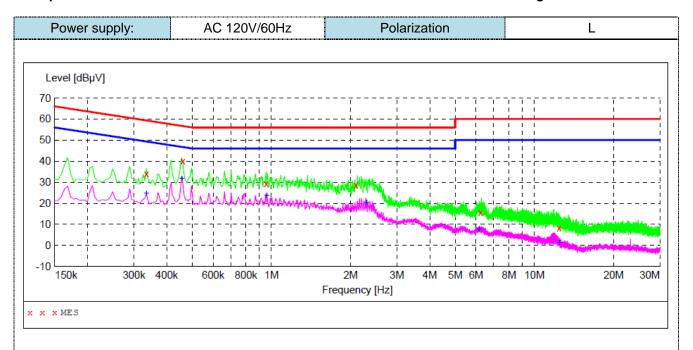
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.
- 4 The EUT received DC 5V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

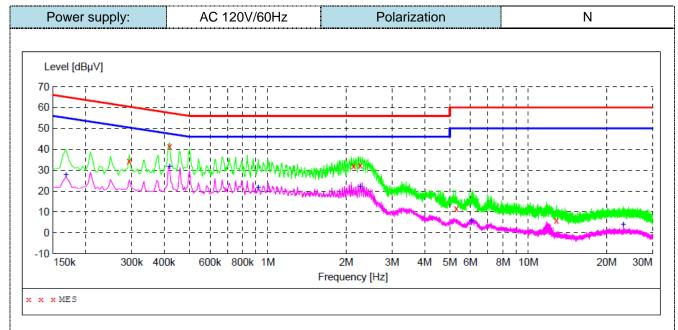

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)			
Frequency range (Mirz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

TEST RESULTS

Remark: We measured Conducted Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode in AC 120V/60Hz, the worst case was recorded .

Report No.: GTSR18092031-BT Page 12 of 46



MEASUREMENT RESULT:

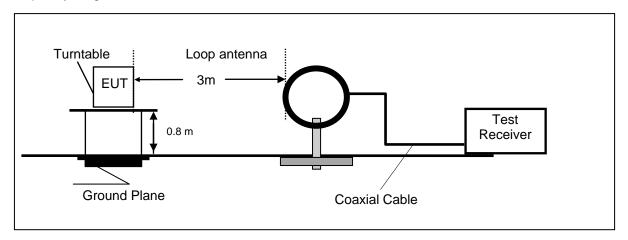
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.334500	34.10	9.9	59	25.2	QP	L1	GND
0.460500	40.10	9.8	57	16.6	QP	L1	GND
0.955500	29.50	9.6	56	26.5	QP	L1	GND
2.094000	28.60	9.5	56	27.4	QP	L1	GND
6.243000	15.60	9.2	60	44.4	QP	L1	GND
12.412500	8.20	8.5	60	51.8	QP	L1	GND

MEASUREMENT RESULT:

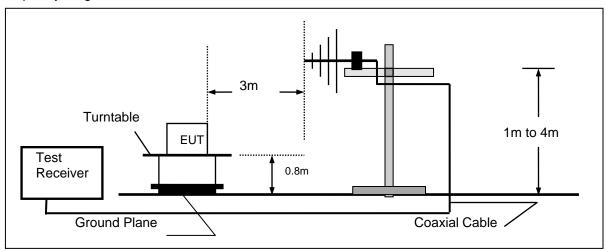
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.334500	24.70	9.9	49	24.6	AV	L1	GND
0.456000	31.70	9.8	47	15.1	AV	L1	GND
0.960000	23.80	9.6	46	22.2	AV	L1	GND
2.301000	20.40	9.5	46	25.6	AV	L1	GND
6.157500	7.70	9.2	50	42.3	AV	L1	GND
12.439500	1.20	8.5	50	48.8	AV	L1	GND

MEASUREMENT RESULT:

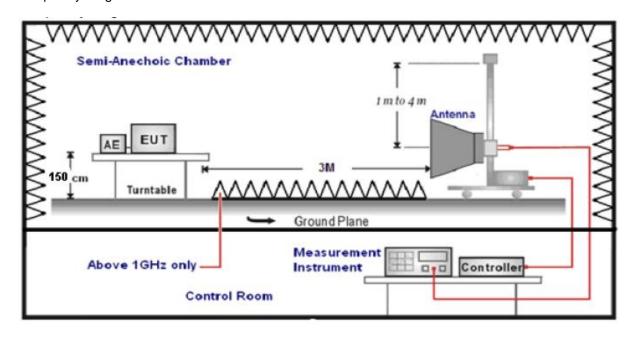
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.294000	34.30	9.9	60	26.1	QP	N	GND
0.420000	41.30	9.8	57	16.1	QP	N	GND
2.134500	32.00	9.5	56	24.0	QP	N	GND
2.265000	32.30	9.5	56	23.7	QP	N	GND
5.298000	11.70	9.3	60	48.3	QP	N	GND
12.840000	5.80	8.5	60	54.2	QP	N	GND


MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.168000	27.50	10.0	55	27.6	AV	N	GND
0.420000	31.70	9.8	47	15.7	AV	N	GND
0.919500	21.80	9.6	46	24.2	AV	N	GND
2.265000	22.00	9.5	46	24.0	AV	N	GND
6.058500	5.60	9.2	50	44.4	AV	N	GND
23.199000	4.00	9.0	50	46.0	AV	N	GND


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTSR18092031-BT Page 15 of 46

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

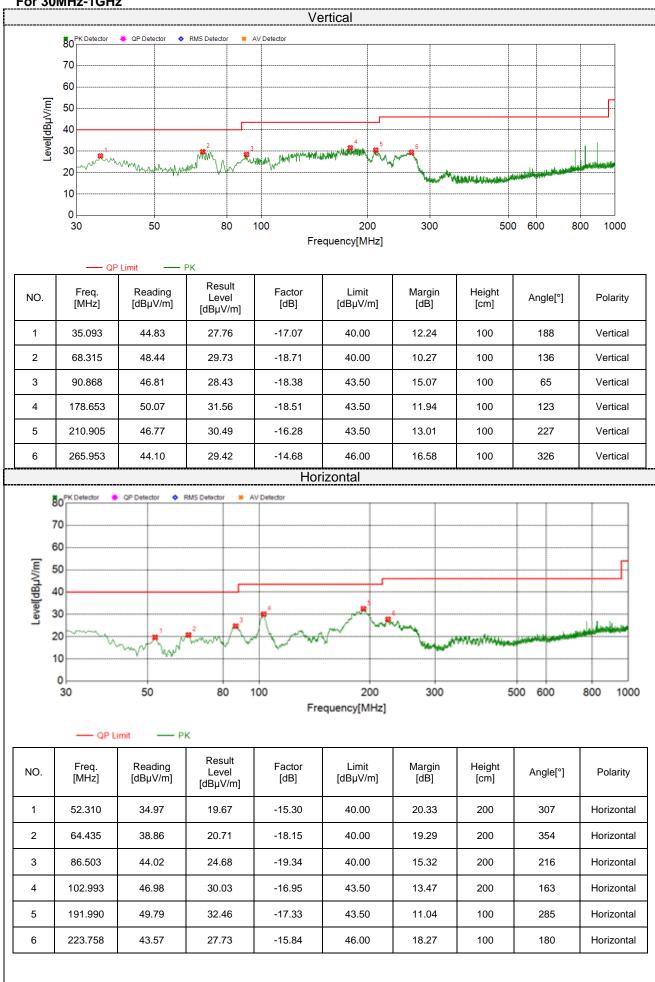
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GTSR18092031-BT Page 16 of 46

TEST RESULTS

Remark: We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK mode.


For 9 KHz-30MHz

Remark: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

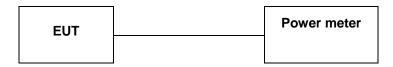
For 30MHz-1GHz

Report No.: GTSR18092031-BT Page 18 of 46

For 1GHz to 25GHz

Polar	Frequency	Meter Reading	antenna Factor	cable loss	preamp factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				24	02				
Vertical	4804	39.68	30.26	6.98	26.63	50.29	74	-23.71	Pk
Horizonta	4804	39.54	30.26	6.98	26.63	50.15	74	-23.85	PK
Vertical	7206	35.23	36.55	8.87	27.02	53.63	74	-20.37	Pk
Horizontal	7206	34.19	36.55	8.87	27.02	52.59	74	-21.41	PK
				24	41				
Vertical	4882	38.74	30.34	7.58	26.67	49.99	74	-24.01	Pk
Horizonta	4882	38.62	30.34	7.58	26.67	49.87	74	-24.13	PK
Vertical	7323	34.28	36.69	8.56	27.18	52.35	74	-21.65	Pk
Horizontal	7323	33.59	36.69	8.56	27.18	51.66	74	-22.34	PK
2480									
Vertical	4960	38.12	30.58	7.81	26.73	49.78	74	-24.22	Pk
Horizonta	4960	37.96	30.58	7.81	26.73	49.62	74	-24.38	PK
Vertical	7440	33.59	37.31	8.72	27.23	52.39	74	-21.61	Pk
Horizontal	7440	34.78	37.31	8.72	27.23	53.58	74	-20.42	PK

REMARKS:


- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)

- Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.

Report No.: GTSR18092031-BT Page 19 of 46

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result
	Low	3.870		
GFSK	Mid	3.938	30	Pass
	High	3.896		
	Low	2.693		
π/4DQPSK	Mid	2.559	21	Pass
	High	2.209		
	Low	2.952		
8DPSK	Mid	2.359	21	Pass
	High	2.863		

Note: The test results including the cable lose.

Report No.: GTSR18092031-BT Page 20 of 46

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

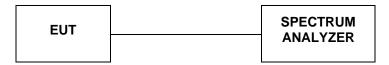
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result
	Low	0.9201	
GFSK	Mid	0.8868	
	High	0.8888	Pass
	Low	1.209	Pass
8DSPSK	Mid	1.208	
	High	1.208	



Report No.: GTSR18092031-BT Page 23 of 46

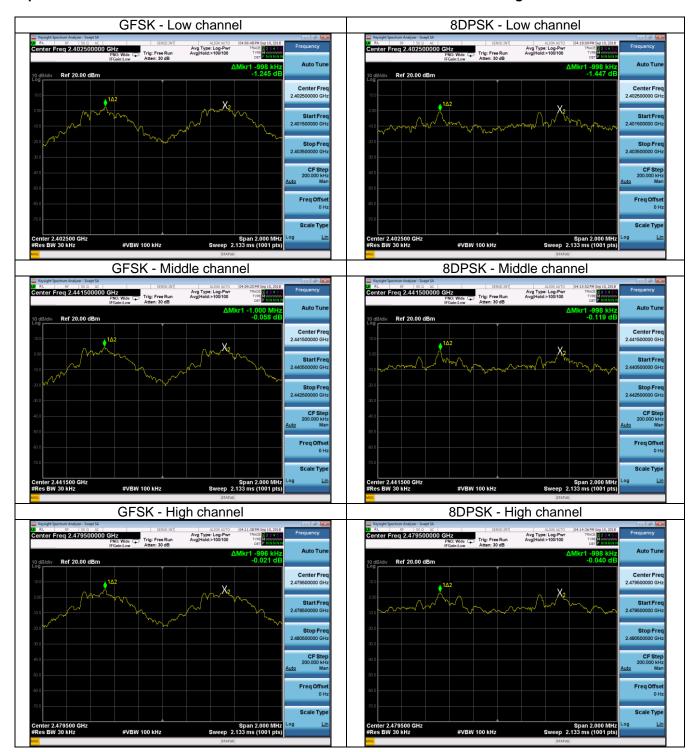
4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

LIMIT


According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

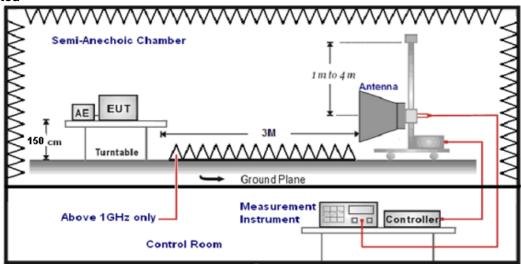
TEST RESULTS

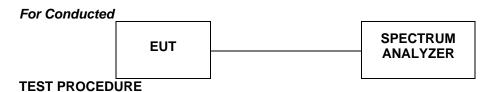
4.5.1 Test Data

Type/Modulation	/Modulation CH		CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	0.998	0.9201	pass
	Adjacency Channel	2403	0.996		
CH Separation	Mid Channel	2441	1.000	0.8868	pass
GFSK	Adjacency Channel	2442	1.000		
	High Channel	2480	0.996	0.8888	pass
	Adjacency Channel	2479	0.996		
	Low Channel	2402	0.009	0.806	pass
	Adjacency Channel	2403	0.998		
CH Separation 8DPSK	Mid Channel	2441	0.000	0.805	pass
	Adjacency Channel	2442	0.998		
	High Channel	2480	0.000	0.005	pass
	Adjacency Channel	2479	0.998	0.805	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Report No.: GTSR18092031-BT Page 25 of 46


4.6. Band Edge Compliance of RF Emission


TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST CONFIGURATION

For Radiated

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
	Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-40GHz	Sweep time=Auto	Peak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,		
	Sweep time=Auto		

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

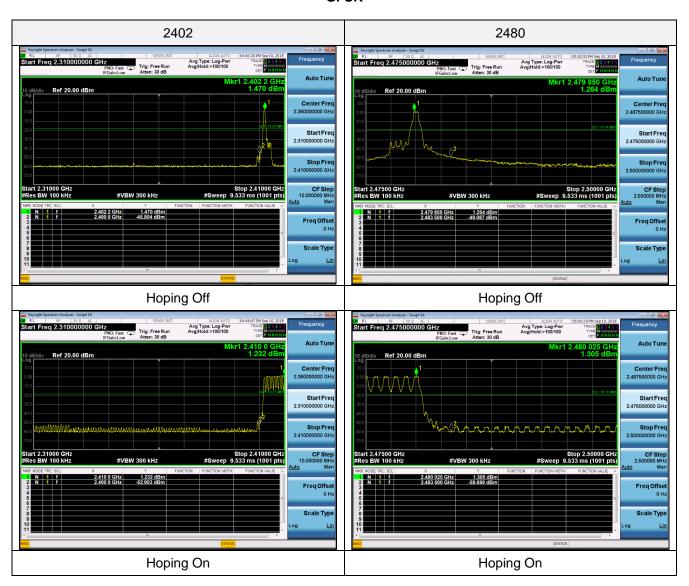
Report No.: GTSR18092031-BT Page 26 of 46

TEST RESULTS

Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH1.

4.6.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes,recorded worst case at no-hopping mode


GFSK

Frequency	Meter Reading	antenna Factor	cable loss	preamp factor	Level	Limit	Margin	Polar	Result
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	[dB]	(H/V)	
	2402								
2390	43.48	28.72	3.36	26.32	49.24	74	-24.76	V	Pass
2390	42.16	28.72	3.36	26.32	47.92	74	-26.08	Η	Pass
2480									
2483.5	43.97	28.79	3.48	26.34	49.9	74	-24.1	V	Pass
2483.5	41.52	28.79	3.48	26.34	47.45	74	-26.55	Η	Pass


4.6.2 For Conducted Bandedge Measurement

Modulation		Frequency Band	· · · I hand emission I		Result	
	Non honning	Left Band	47.274	20	Pass	
GFSK -	Non-hopping	Right Band	50.351	20	Pass	
	hopping	Left Band	54.135	20	Pass	
		Right Band	61.004	20	Pass	
	Non honning	Left Band	39.183	20	Pass	
8DPSK	Non-hopping	Right Band	58.410	20	Pass	
	honning	Left Band	41.442	20	Pass	
	hopping	Right Band	58.635	20	Pass	

GFSK

8DPSK

Report No.: GTSR18092031-BT Page 29 of 46

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 9KHz to 25GHz.

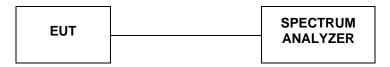
LIMIT


- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.
- 3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

TEST RESULTS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

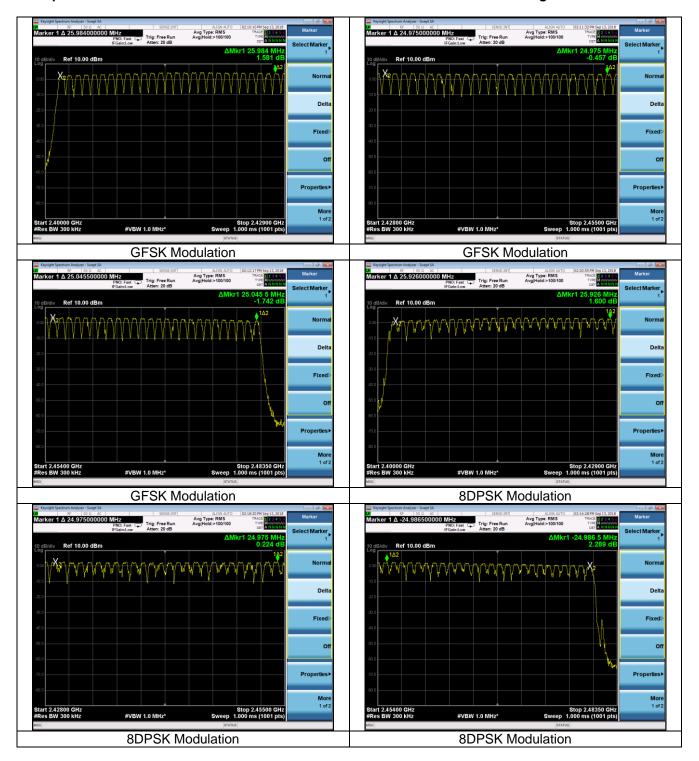
Report No.: GTSR18092031-BT Page 30 of 46



Report No.: GTSR18092031-BT Page 33 of 46

4.8. Number of hopping frequency

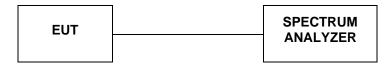
TEST CONFIGURATION


TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

LIMIT

Frequency hopping systems in the 2400–2483.5MHz band shall use at least 15 channels.


Modulation	Number of Hopping Channel	Limit	Result	
GFSK	79	>15	Door	
8DPSK	79	215	Pass	

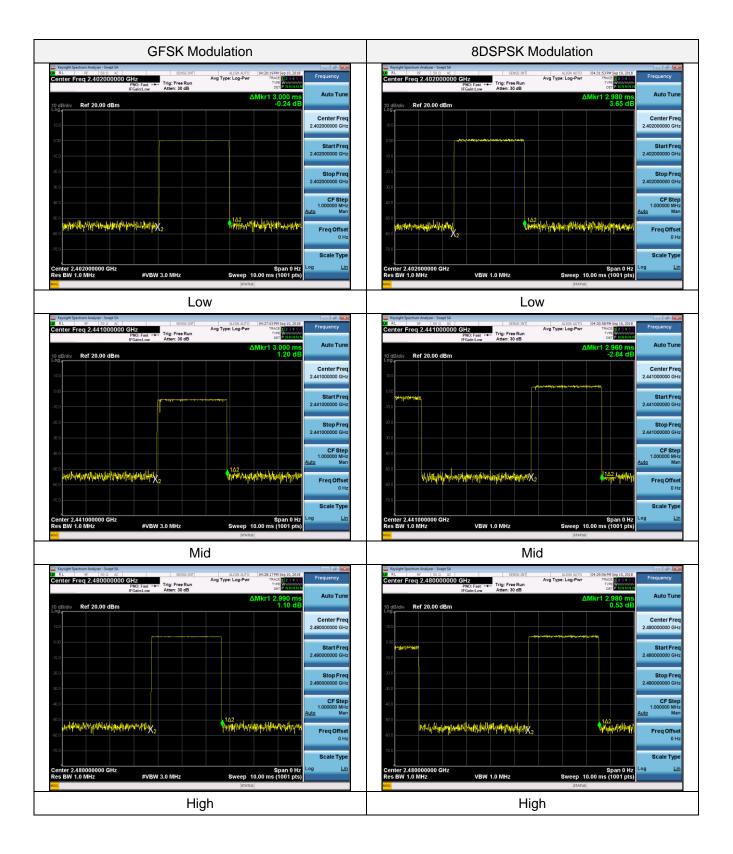
Report No.: GTSR18092031-BT Page 35 of 46

4.9. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.


LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

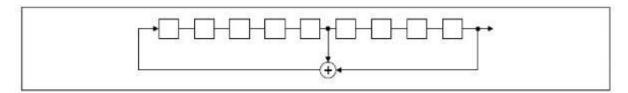
Туре	Modulation	СН	Pulse time(ms)	Dwell Time(ms)	Limit(ms)	Result
	GFSK	Low	3.000	320.00	400	Pass
		Mid	3.000	320.00	400	Pass
Dwell Time		High	2.990	319.93	400	Pass
	8DPSK	Low	2.980	317.87	400	Pass
		Mid	2.960	315.73	400	Pass
		High	2.980	317.87	400	Pass
Note:Dwell time=Pulse time(ms)*(1600/6/79)*31.6						

Note: The worst case at DH5/3DH5.

Report No.: GTSR18092031-BT Page 37 of 46

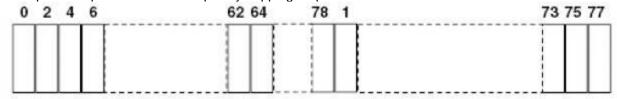
4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No.: GTSR18092031-BT Page 38 of 46

4.11. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

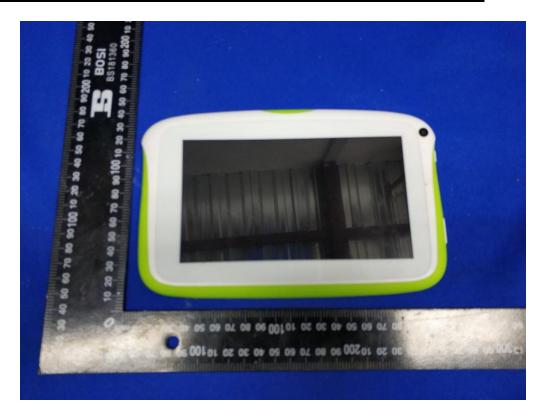
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

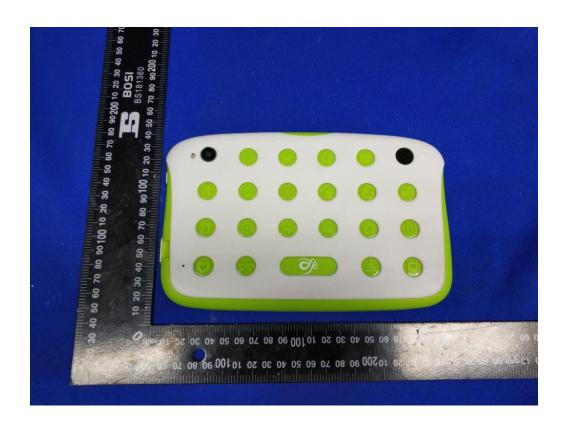
Antenna Information

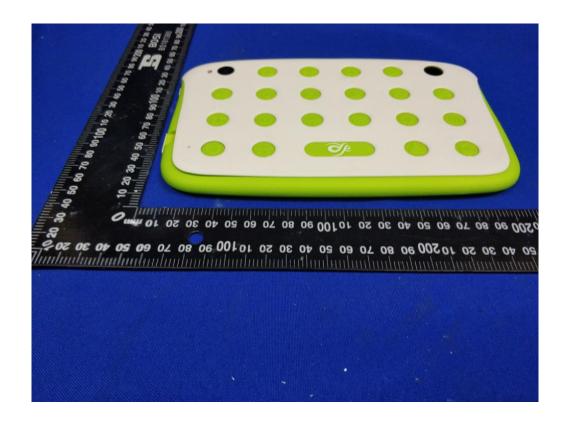
The Internal antenna for BT, The directional gains of antenna used for transmitting is 1.28dBi.


Report No.: GTSR18092031-BT Page 39 of 46

5. Test Setup Photos of the EUT

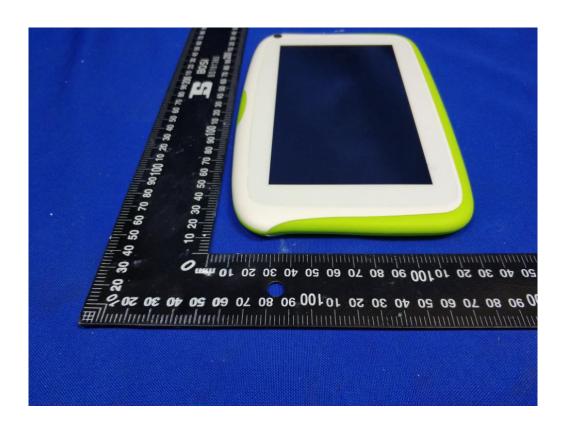


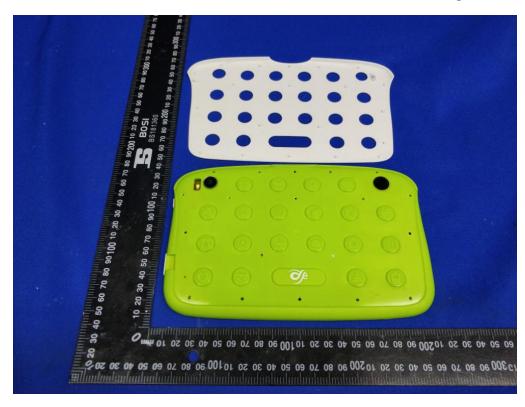

Report No.: GTSR18092031-BT Page 40 of 46


Report No.: GTSR18092031-BT Page 41 of 46

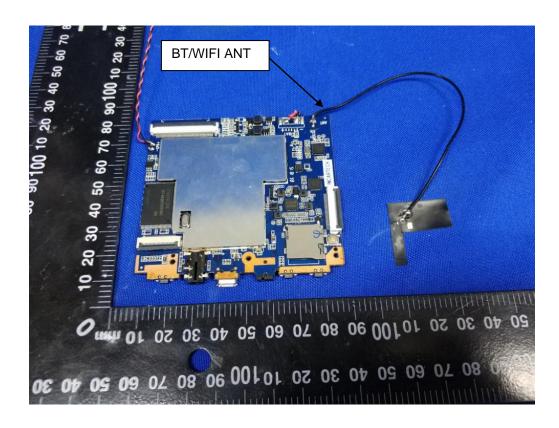
6. External and Internal Photos of the EUT

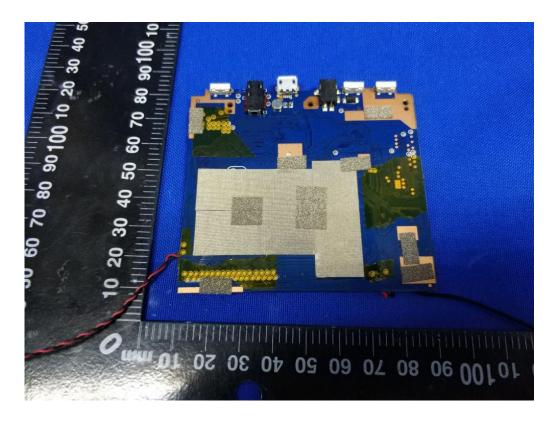



Report No.: GTSR18092031-BT Page 42 of 46



Report No.: GTSR18092031-BT Page 43 of 46




Report No.: GTSR18092031-BT Page 44 of 46

Report No.: GTSR18092031-BT Page 45 of 46

Report No.: GTSR18092031-BT Page 46 of 46

.....End of Report.....