

EST REPORT

Product Coolbox **Trade mark** Coolbox CB100 Blue, CB200 White, Model/Type reference Ξ. CB300 Green Serial Number : N/A **Report Number** : EED32K00221601 FCC ID 2AQ7ECB100-GWB01 Date of Issue Sep. 10, 2018 2 **Test Standards** : 47 CFR Part 15 Subpart C

: PASS

Prepared for: Texas Coolbox Hardgoods, LLC 12310 Old Oaks Drive, Houston, Texas, United States 77024

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

10M- cho Tom chen (Test Project)

kein ja

Test result

Reviewed by:

Tested By:

Date:

Sep. 10, 2018

Kevin yang (Reviewer)

proved by

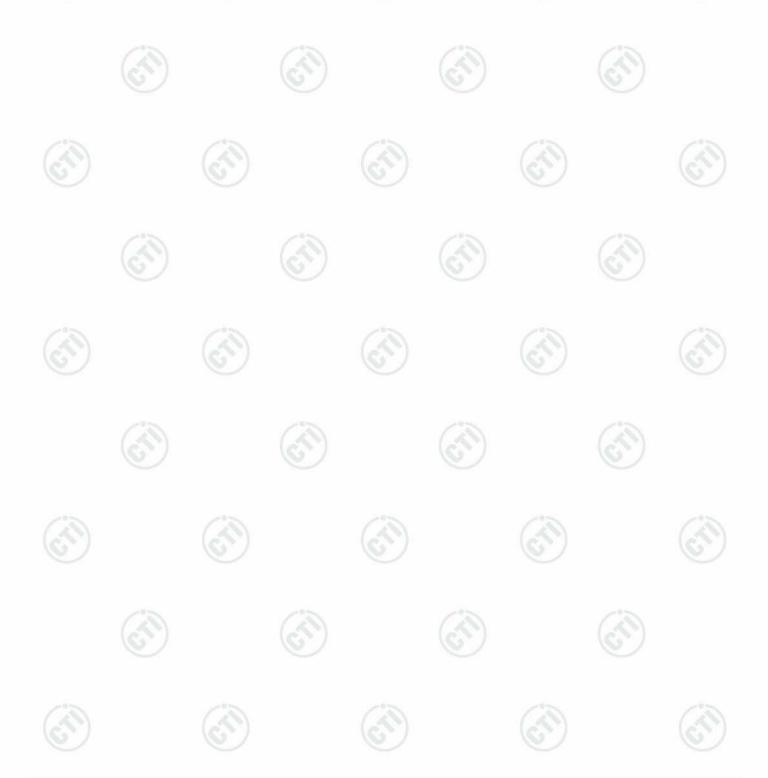
Report Seal

vien Nan

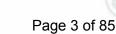
Kevin lan (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 3096323601



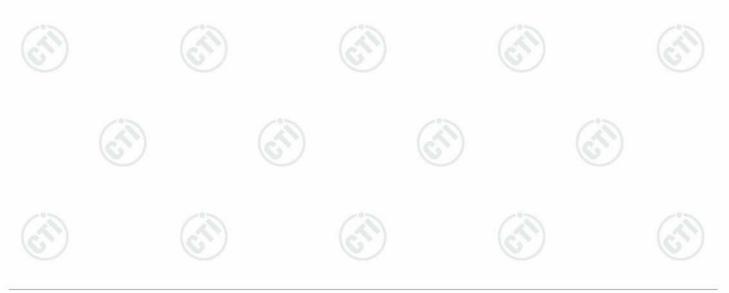
2 Version


Page 2 of 85

Version No.	Date	(6	Description	
00	Sep. 10, 2018		Original	
			1	- /
	(c))	(d))	(23)	(e

3 Test Summary

root Gammary		12		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

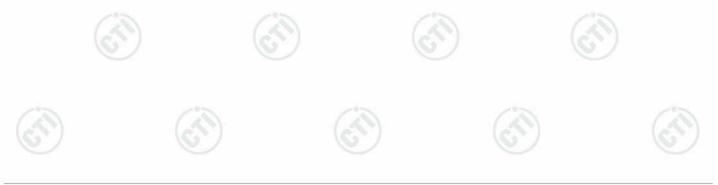

Remark:

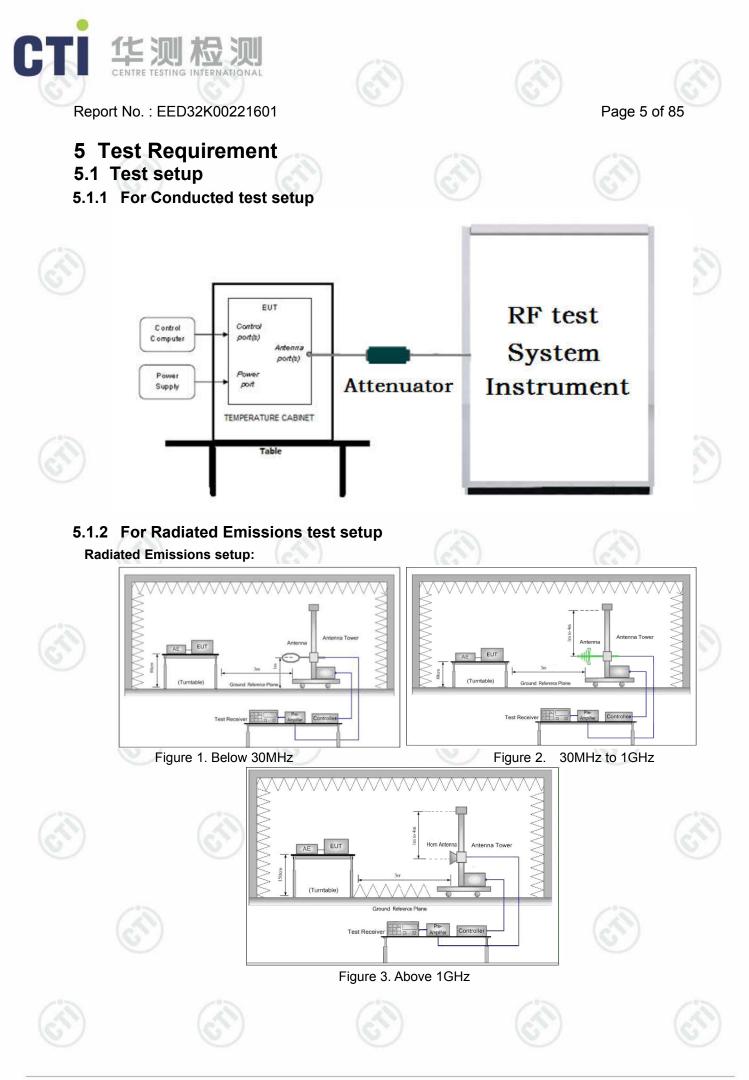
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No.: CB100 Blue, CB200 White, CB300 Green

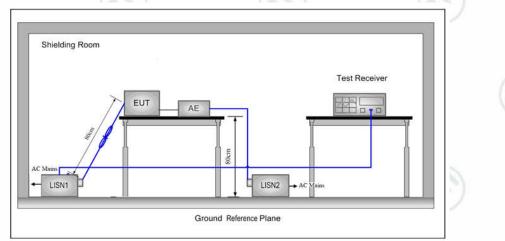
Only the model CB100 Blue was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being the outer decoration.





Content

4 Content			
1 COVER PAGE	(1
2 VERSION			2
3 TEST SUMMARY			
4 CONTENT		-	4
5 TEST REQUIREMENT			
5.1 Test setup			5
5.1.1 For Conducted test setup			
5.1.2 For Radiated Emissions test setup			
5.1.3 For Conducted Emissions test setup			
5.2 TEST ENVIRONMENT			6
5.3 TEST CONDITION		<u> </u>	6
6 GENERAL INFORMATION			7
6.1 CLIENT INFORMATION			
6.2 GENERAL DESCRIPTION OF EUT.	N	<u> </u>	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS ST			
6.4 DESCRIPTION OF SUPPORT UNITS			
6.5 TEST LOCATION			
6.6 DEVIATION FROM STANDARDS			
6.7 ABNORMALITIES FROM STANDARD CONDITIONS			
6.8 OTHER INFORMATION REQUESTED BY THE CUSTO			
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE			
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIREMENTS SPECIFIC			
Appendix A): 20dB Occupied Bandwidth			
Appendix B): Carrier Frequency Separation			
Appendix C): Dwell Time			
Appendix D): Hopping Channel Number			
Appendix E): Conducted Peak Output Power			
Appendix F): Band-edge for RF Conducted Emi			
Appendix G): RF Conducted Spurious Emission			
Appendix H): Pseudorandom Frequency Hoppir			
Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission			
Appendix K): Restricted bands around fundame Appendix L): Radiated Spurious Emissions			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	AILS	<u>N</u>	67



5.1.3 For Conducted Emissions test setup

Page 6 of 85

5.2 Test Environment

Operating Environment:	6	5)	0	0
Temperature:	23°C			
Humidity:	62% RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test Mode	Тх		RF Channel			
rest mode	IX	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3, DH5)	2402MHz ~2480MHz	2402MHz	2441MHz	2480MHz		
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).						

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK		
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	4.347	4.510	4.515

Mode		π/4DQPSK	
packets	2-DH1	2-DH3	2-DH5
Power(dBm)	2.221	2.257	2.277
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
Power(dBm)	2.408	2.467	2.574

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.

General Information 6

6.1 Client Information

Applicant:	Texas Coolbox Hardgoods, LLC
Address of Applicant:	12310 Old Oaks Drive, Houston, Texas, United States 77024
Manufacturer:	ZHONGSHAN XINZHIYUAN ELECTRIC&ELECTRONICS CO., LTD
Address of Manufacturer:	5/F Building A & B, No.389 Dongfu Road, Heping Industral Zone Dongfeng Town, ZhongshsnCity, 528425
Factory:	ZHONGSHAN XINZHIYUAN ELECTRIC&ELECTRONICS CO., LTD
Address of Factory:	5/F Building A & B, No.389 Dongfu Road, Heping Industral Zone Dongfeng Town, ZhongshsnCity, 528425

Page 7 of 85

6.2 General Description of EUT

Product Na	ame:	Coolbox	/	e e		No.			
Model No.:		CB100 E	lue, CB200 W	hite, CB300	Green				
Test Mode	l No.:	CB100 E	lue				2.00		
Trade marl	k:	Coolbox		1		1			
EUT Support	orts Radios	BT 4.0 S	ignal mode, 24	02-2480MH			Q.		
Power Sup	pply:	AC adap	ter INPU ⁻	EL No.:K48V F:100-240V~ PUT:13.5V	50/60Hz 1.2A				
		Battery	2500r	nAh 11.1V					
Sample Re	eceived Date:	Aug. 15,	2018						
Sample tes	sted Date:	Aug. 15,	2018 to Sep. 1	0, 2018	6.2				
3 Produ	uct Specif	fication s	subjective	to this s	tandard	1	(2)		
Operation	Frequency:	2402MH	z~2480MHz	/	0	/	6		
Bluetooth \		4.0							
Modulation	Technique:	Frequency Hopping Spread Spectrum(FHSS)							
Modulation	Туре:	GFSK, π	/4DQPSK, 8DI	PSK	S	13	×		
Number of	Channel:	79)	0)	6)		
Hopping C	hannel Type:	Adaptive	Frequency Ho	pping syster	ns	\sim			
Hardware	Version:	v1.0(mar	nufacturer decl	are)					
Firmware \	/ersion:	V1.0(ma	nufacturer decl	are)	13		13		
Test Powe	r Grade:	Power (E	Ext,Int) 50(man	ufacturer dec	clare))	6		
Test Softwa	are of EUT:	CSR Blu	eSuite 2.6.4 (n	nanufacturer	declare)		C		
Antenna Ty	ype:	PCB Ant	PCB Antenna						
Antenna G	ain:	0dBi		12		100			
Test Voltag	ge:	AC 120V	′, 60Hz	(2)		(3)			
Operation	Frequency ea	ch of channe	el l	e		N.			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz		

Page 8 of 85

4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Fax:+86 (0) 755 33683385 Telephone: +86 (0) 755 33683668 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

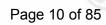
6.8 Other Information Requested by the Customer

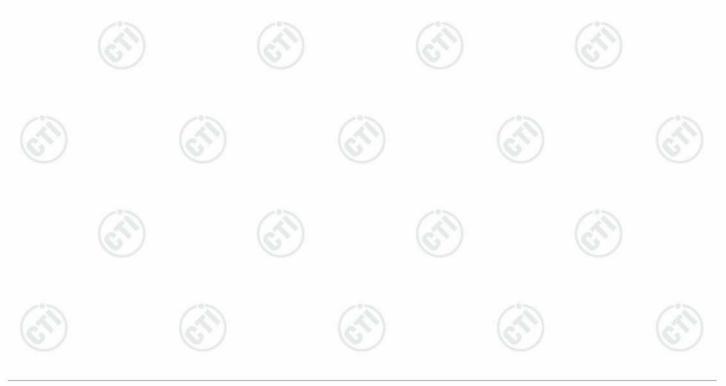
None.

Page 9 of 85

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	PE nower, conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Redicted Spurious omission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

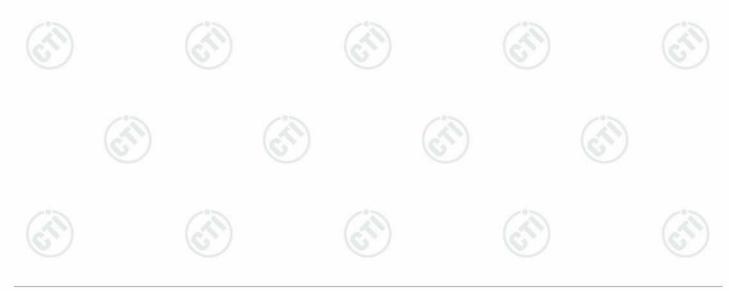




7 Equipment List

		RF test s	ystem		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	11-16-2017	11-15-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019	



	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-618	07-30-2018	07-29-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	25	01-10-2018	01-09-2019

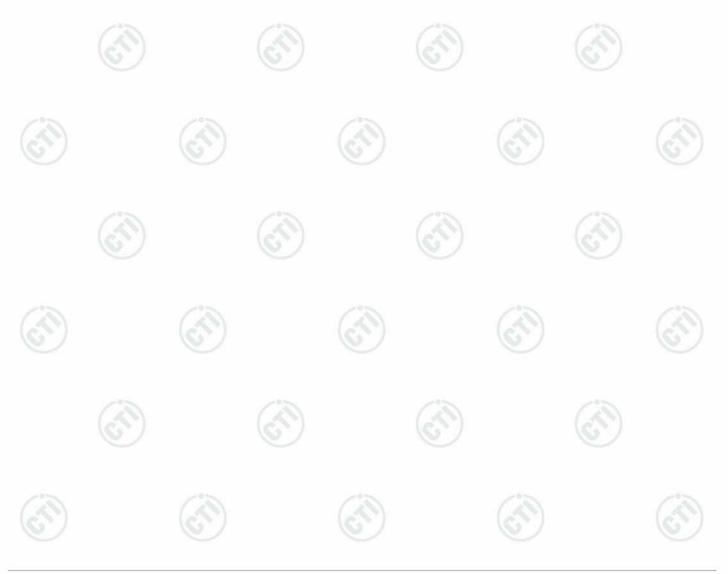
8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
9	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L



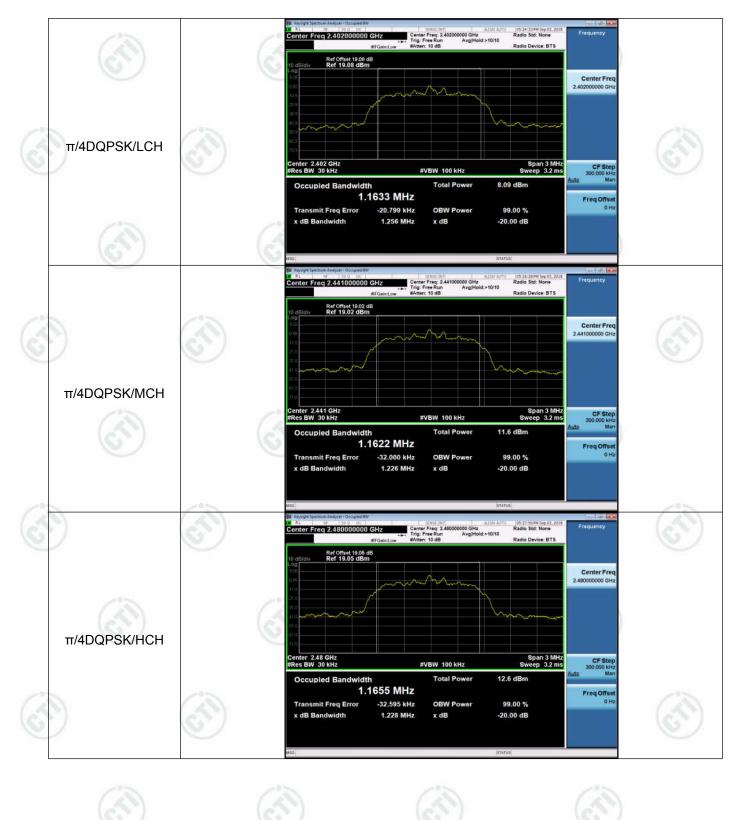
Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9444	0.85930	PASS
GFSK	мсн	0.9422	0.85841	PASS
GFSK	НСН	0.9419	0.85679	PASS
π/4DQPSK	LCH	1.256	1.1633	PASS
π/4DQPSK	мсн	1.226	1.1622	PASS
π/4DQPSK	нсн	1.228	1.1655	PASS
8DPSK	LCH	1.270	1.1565	PASS
8DPSK	МСН	1.257	1.1572	PASS
8DPSK	нсн	1.258	1.1572	PASS

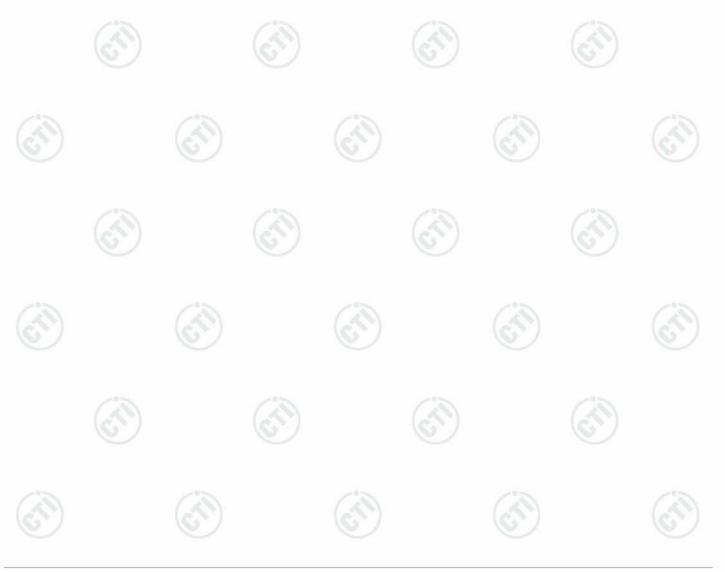
Page 13 of 85

Test Graph



Page 15 of 85

Page 16 of 85


Page 17 of 85

Report No. : EED32K00221601

Appendix B): Carrier Frequency Separation

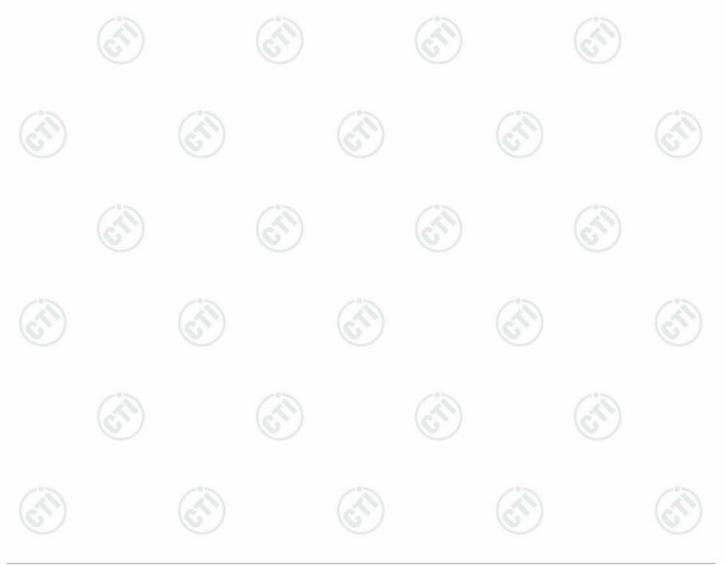
Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.996	PASS
GFSK	мсн	1.006	PASS
GFSK	НСН	1.000	PASS
π/4DQPSK	LCH	1.168	PASS
π/4DQPSK	МСН	1.076	PASS
π/4DQPSK	нсн	0.994	PASS
8DPSK	LCH	1.032	PASS
8DPSK	МСН	0.954	PASS
8DPSK	НСН	0.998	PASS

Test Graph

Page 19 of 85

Page 20 of 85

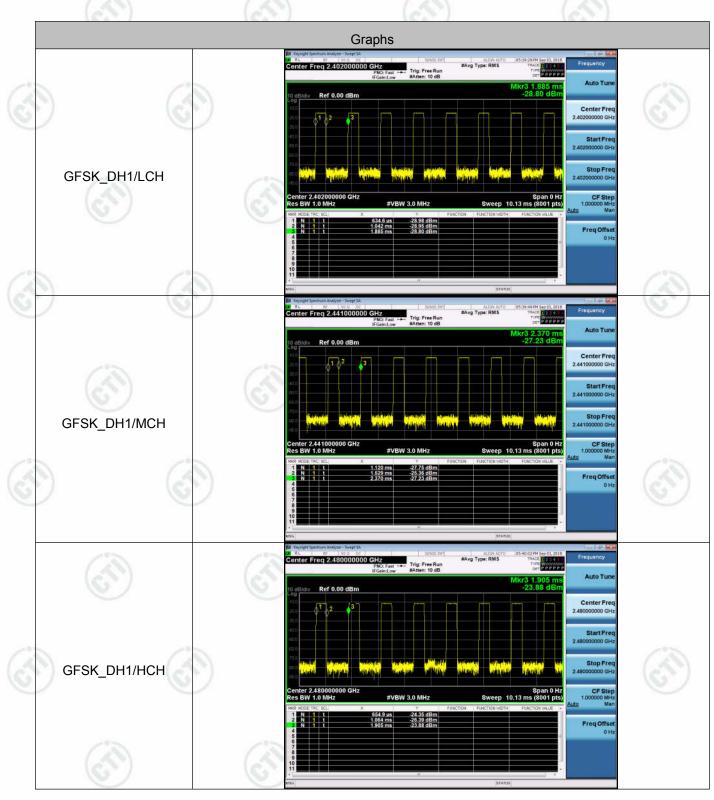

Appendix C): Dwell Time

Result Table

	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
6	GFSK	DH1	LCH	0.40787	320	0.131	0.33	PASS
	GFSK	DH1	МСН	0.40914	320	0.131	0.33	PASS
	GFSK	DH1	НСН	0.409133	320	0.131	0.33	PASS
	GFSK	DH3	LCH	1.6644	160	0.266	0.67	PASS
	GFSK	DH3	МСН	1.6644	160	0.266	0.67	PASS
	GFSK	DH3	НСН	1.6644	160	0.266	0.67	PASS
	GFSK	DH5	LCH	2.898	106.7	0.309	0.77	PASS
A	GFSK	DH5	МСН	2.898	106.7	0.309	0.77	PASS
6	GFSK	DH5	нсн	2.898	106.7	0.309	0.77	PASS

Page 21 of 85

Remark : All modes are tested, only the worst mode GFSK is reported.



Test Graph



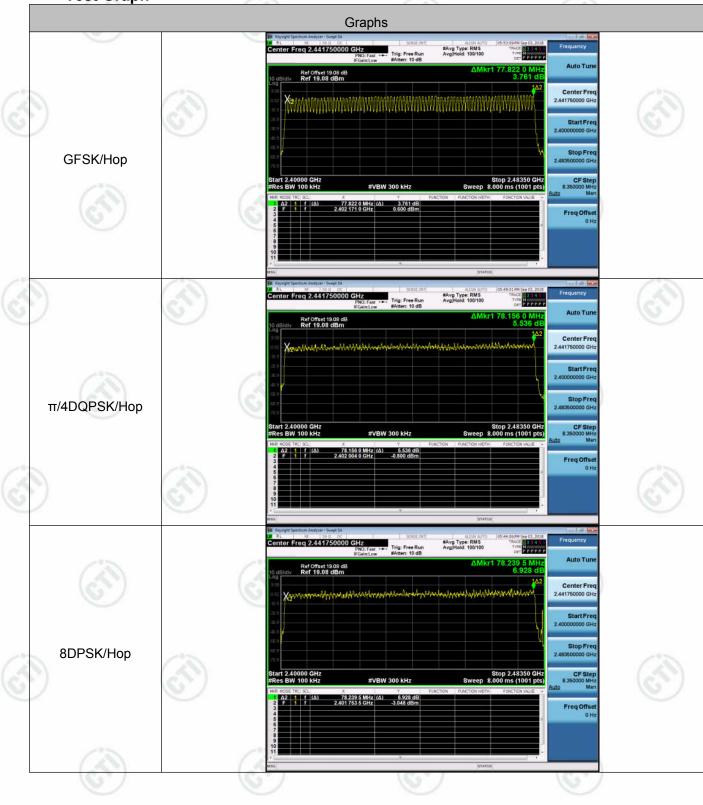
Page 23 of 85

Page 24 of 85

Appendix D): Hopping Channel Number

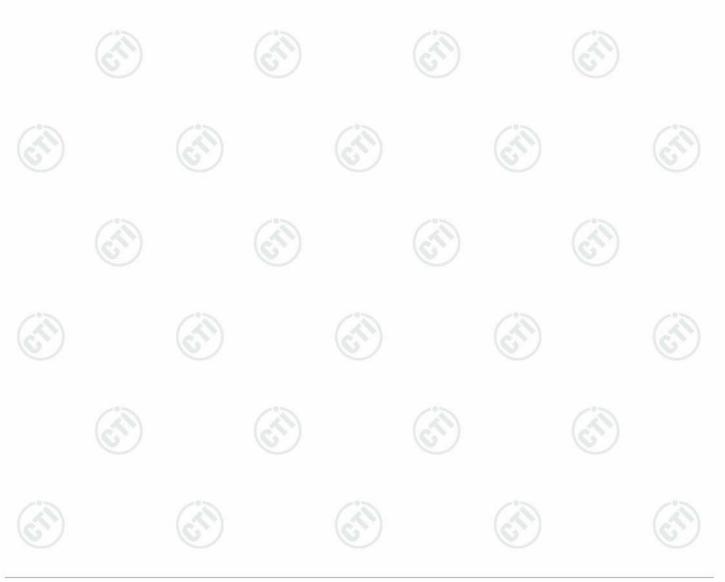
Result Table

	Mode	Channel.	Number	of Hopping C	Channel	Verdict
Ca	GFSK	Нор		79		PASS
6	π/4DQPSK	Нор	(G*)	79	6	PASS
	8DPSK	Нор		79		PASS



Page 26 of 85

Test Graph


Page 27 of 85

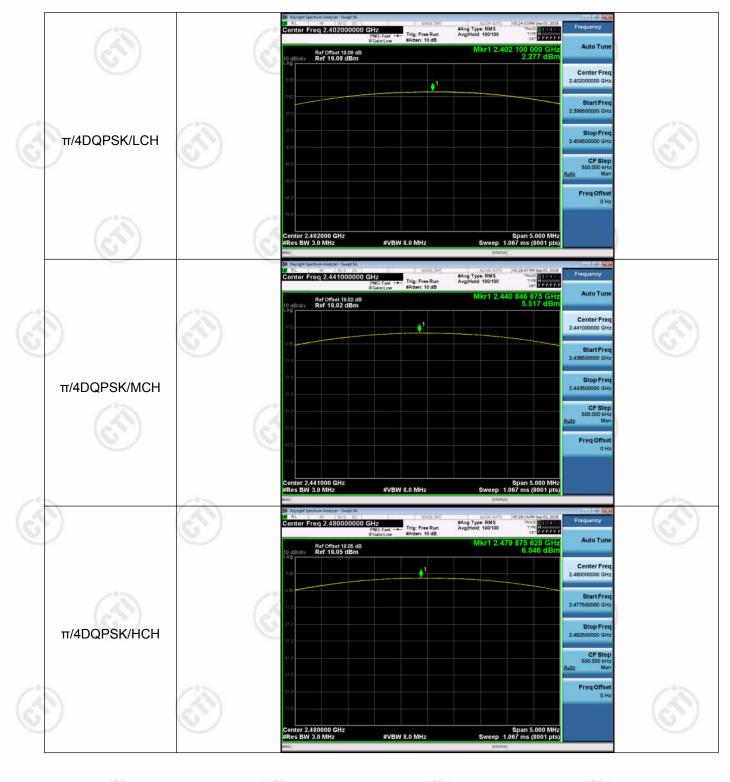
Report No. : EED32K00221601

Appendix E): Conducted Peak Output Power

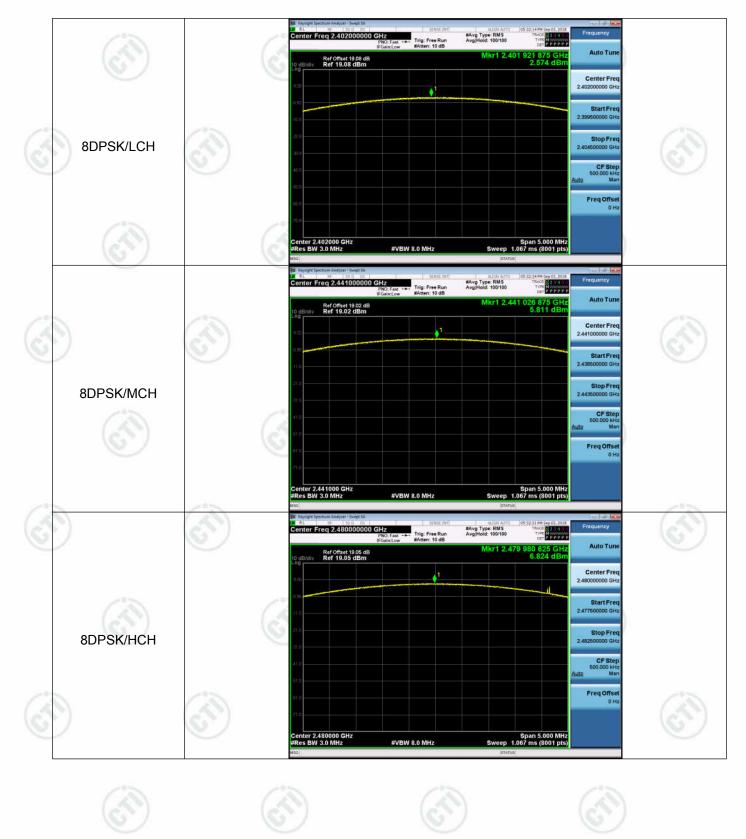
Result Table

Channel.	Maximum Peak Output Power [dBm]	Verdict
LCH	4.515	PASS
МСН	6.949	PASS
НСН	7.862	PASS
LCH	2.277	PASS
MCH	5.517	PASS
нсн 🔍	6.546	PASS
LCH	2.574	PASS
MCH	5.811	PASS
НСН	6.824	PASS
	LCH MCH HCH LCH MCH HCH LCH MCH	LCH 4.515 MCH 6.949 HCH 7.862 LCH 2.277 MCH 5.517 HCH 6.546 LCH 2.574 MCH 5.811

Test Graph



Page 29 of 85



Page 30 of 85

Page 31 of 85

Limit

[dBm]

-15.67

-17.89

-12.31

-15.03

-19.3

-17.69

-14.80

-16.41

-19.27

-17.58

-14.64

-15.28

Verdict

PASS

Report No. : EED32K00221601

Appendix F): Band-edge for RF Conducted Emissions

	Result T	able				
C	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]
	OFOK		0400	4.335	Off	-59.719
	GFSK	LCH	2402	2.111	On	-58.266
	0501/		0100	7.688	Off	-53.792
	GFSK	HCH	2480	4.966	On	-43.705
			0.400	0.699	Off	-60.128
	π/4DQPSK	LCH	2402	2.307	On	-56.179
63	UDODOK		0.400	5.203	Off	-56.839
Q	π/4DQPSK	НСН	2480	3.593	On	-44.197
			0.400	0.735	Off	-60.555
	8DPSK	LCH	2402	2.423	On	-53.096
	ODOK		2480	5.356	Off	-56.555

2480

8DPSK

HCH

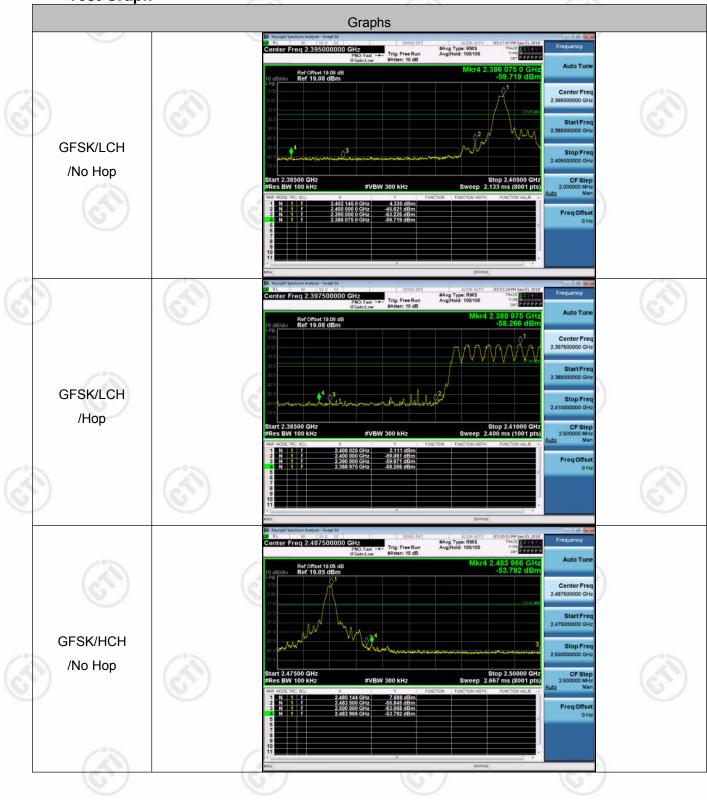
On

4.719

-52.090

)

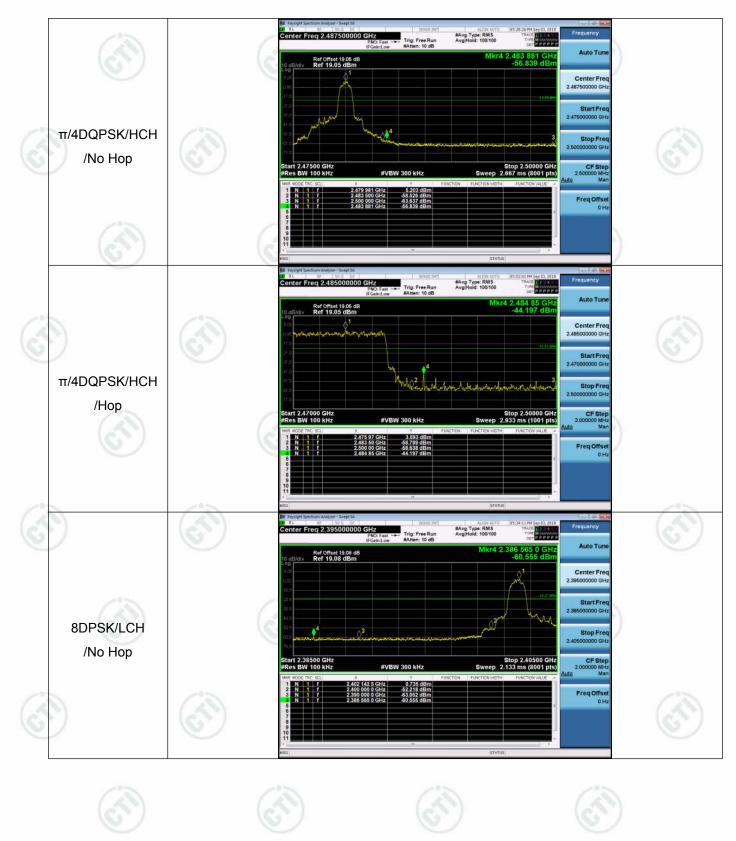
Ì



Page 32 of 85

Test Graph

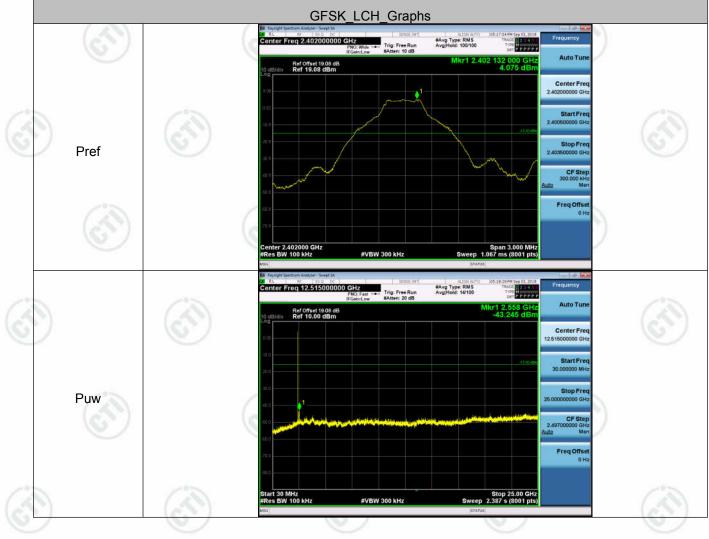
Page 33 of 85



Page 34 of 85

Page 35 of 85

Page 36 of 85

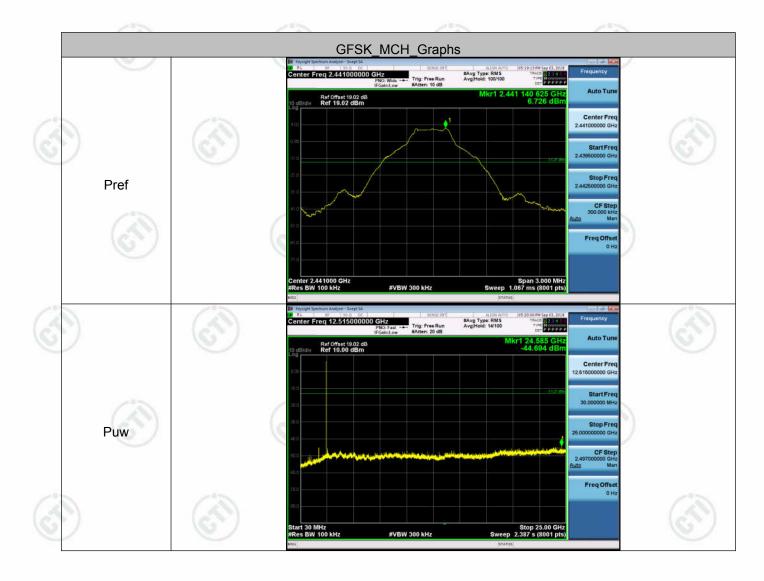

Report No. : EED32K00221601

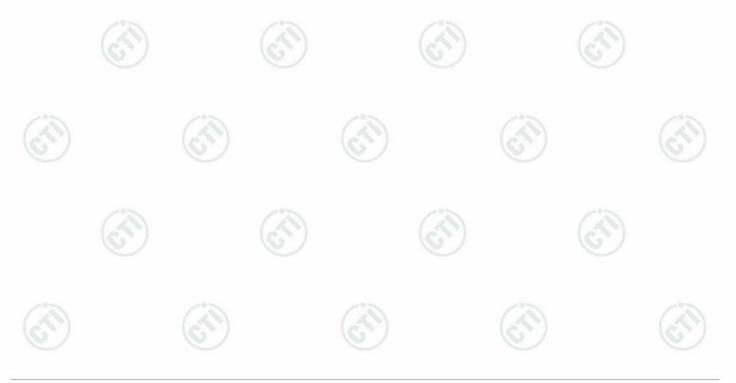
Appendix G): RF Conducted Spurious Emissions

Result Table

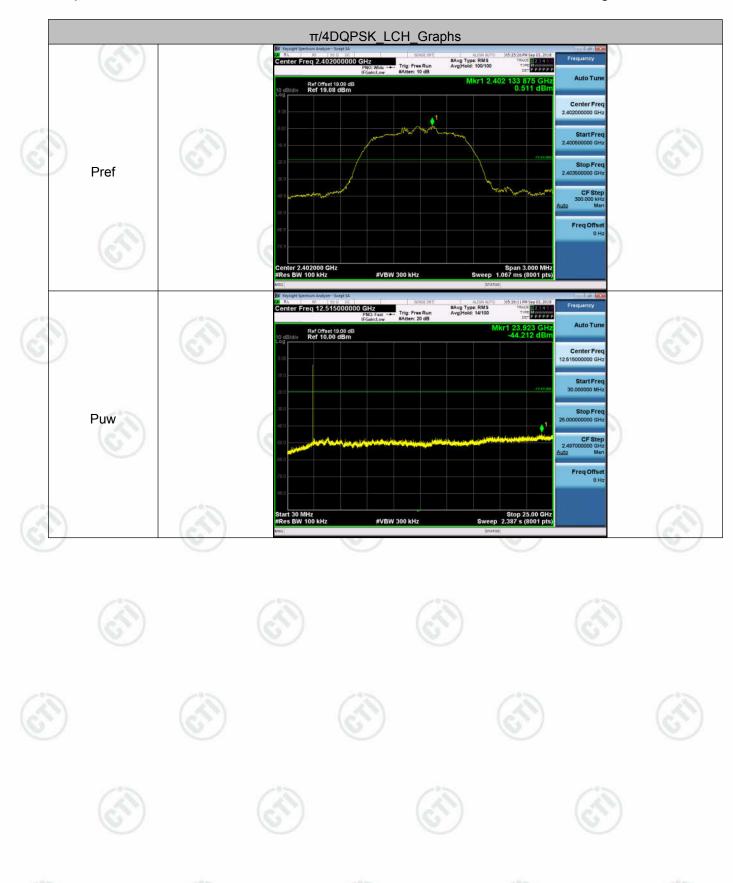
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	4.075	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	6.726	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	7.637	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	0.511	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	4.019	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	5.207	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	0.673	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	МСН	4.207	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	5.318	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph



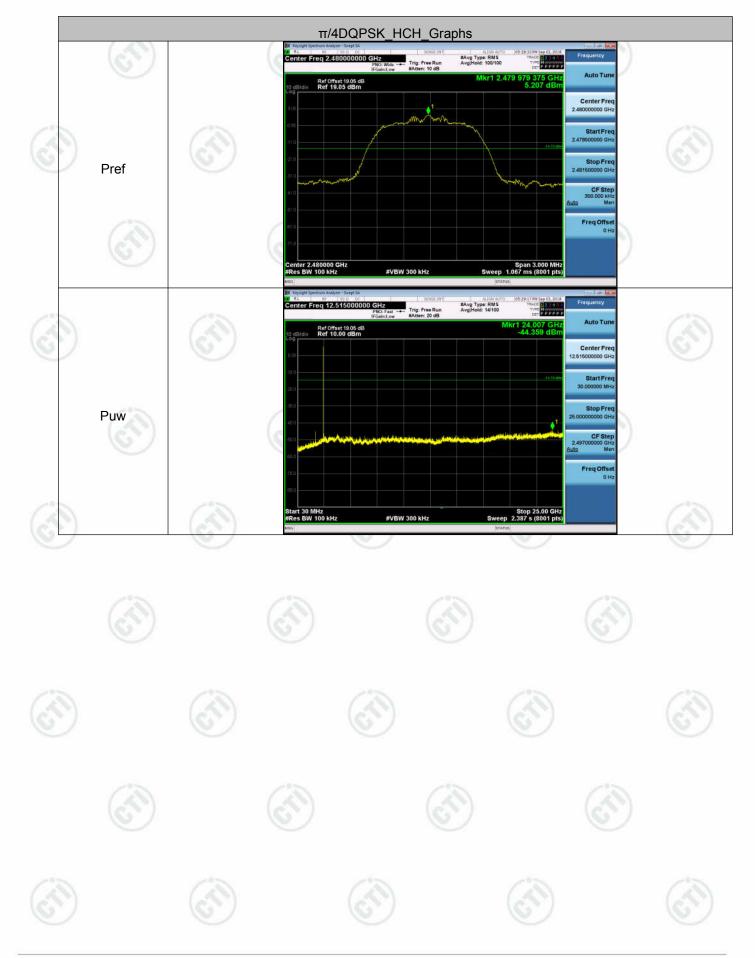


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 39 of 85

Page 40 of 85

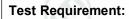


Page 41 of 85

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

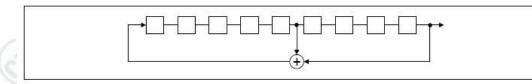
Page 43 of 85



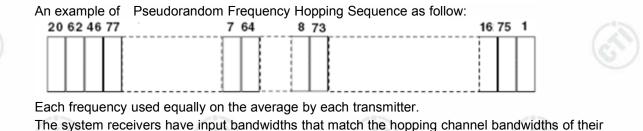

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix H): Pseudorandom Frequency Hopping Sequence

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

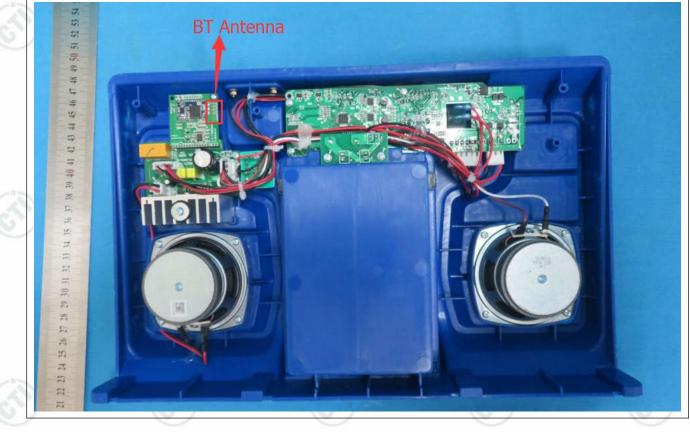
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32K00221601

Page 46 of 85

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 47 of 85

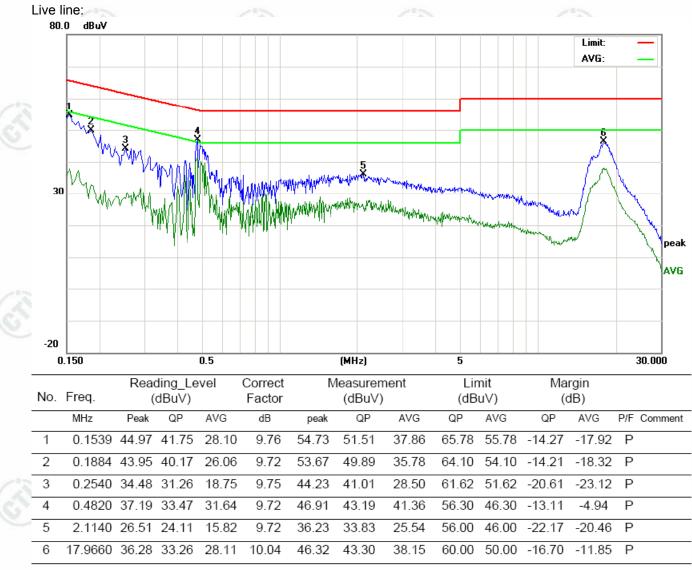
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz	(3)					
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedan Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. T power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the groun reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,							
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground refe d to the horizontal gr he boundary of the or LISNs mounted c etween the closest po	rence plane. The ver ound reference plan unit under test and on top of the group pints of the LISN 1 a	ertical grou ne. The LIS bonded to nd referen and the EU				
	5) In order to find the maximum of the interface cables must conducted measurement.							
Limit:		S.	(C)					
	Limit (dBµV)							
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*	12				
	0.5-5	56	46	G				
	5-30	60	50					
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applied	200	215	e range 0.				

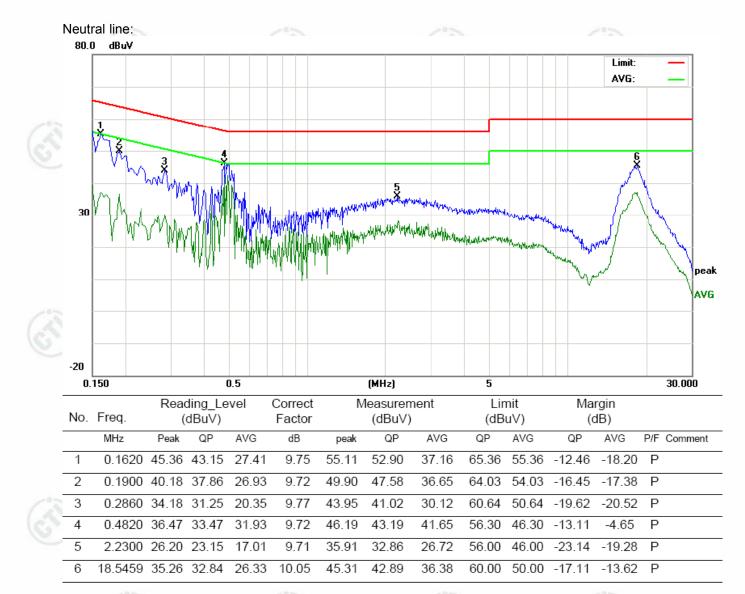
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 48 of 85



Report No. : EED32K00221601

Page 49 of 85

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00221601

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	1
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	ire as below:				
	The EUT was placed of at a 3 meter semi-anechoid determine the position of th The EUT was set 3 me was mounted on the top of The antenna height is determine the maximum va polarizations of the antenna For each suspected en the antenna was tuned to h was turned from 0 degrees The test-receiver syste Bandwidth with Maximum I Place a marker at the of	c camber. The tak ne highest radiation ters away from the a variable-height varied from one re- alue of the field st a are set to make hission, the EUT heights from 1 me to 360 degrees to m was set to Pea- Hold Mode.	ble was ro on. the interfer antenna neter to fo rength. Bo the meas was arran eter to 4 m to find the ak Detect	tated 360 ence-recei tower. our meters oth horizon surement. ged to its neters and maximum Function a	degrees to iving antenna above the gro tal and vertic worst case ar the rotatable reading. nd Specified	i, wh ounc cal nd th
	frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test procedu	nce. Also measu er plot. Repeat for	re any em	issions in	the restricted	
	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between above to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for	nce. Also measu er plot. Repeat for ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis po	change fr table 0.8 .5 meter). the Highes med in X, sitioning v	issions in t ver and mo rom Semi- meter to 1 st channel Y, Z axis p vhich it is v	the restricted odulation for I Anechoic Ch I.5 meter(Ab positioning for worse case.	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between abov to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for Repeat above procedu	nce. Also measurer plot. Repeat for ure as below: ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis po res until all freque	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter and meter to 1 st channel Y, Z axis provide the structure of the	the restricted odulation for I Anechoic Ch I.5 meter(Ab positioning for worse case.	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between above to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for	nce. Also measu er plot. Repeat for ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis po	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter to 1 meter to 1 st channel Y, Z axis p which it is weasured wa	the restricted odulation for I Anechoic Ch I.5 meter(Abu positioning for worse case. as complete. mark	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between abov to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for Repeat above procedu Frequency	nce. Also measurer plot. Repeat for ure as below: we is the test site, and change form eter and table is 1 lowest channel , ments are perform und the X axis po res until all frequent Limit (dBµV/r	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter to 1 st channel Y, Z axis p which it is veasured wa Rei Quasi-pe	the restricted odulation for l Anechoic Ch 5 meter(Ab positioning for worse case. as complete. mark eak Value	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between above to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for Repeat above procedu Frequency 30MHz-88MHz	nce. Also measurer plot. Repeat for ure as below: ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis por res until all frequires Limit (dBµV/r 40.0	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter and meter to 1 st channel Y, Z axis per which it is twe asured water and the state of the state	the restricted odulation for I Anechoic Ch I.5 meter(Abu positioning for worse case. as complete. mark	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between abov to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	nce. Also measurer plot. Repeat for ure as below: ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis por res until all frequent Limit (dBµV/r 40.0 43.5	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter and meter to 1 st channel Y, Z axis p which it is weasured wa Quasi-pe Quasi-pe	the restricted odulation for l Anechoic Ch 5 meter(Ab positioning for worse case. as complete. mark eak Value eak Value	lowe namb ove
Limit:	Save the spectrum analyze and highest channel Above 1GHz test procedu Different between above to fully Anechoic Chamber 18GHz the distance is 1 m b. Test the EUT in the The radiation measure Transmitting mode, and for Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nce. Also measurer plot. Repeat for ure as below: ve is the test site, and change form eter and table is 1 lowest channel, ments are perform und the X axis por res until all freque Limit (dBµV/r 40.0 43.5 46.0	change fr change fr table 0.8 .5 meter). the Higher med in X, sitioning v encies me	issions in twer and meter and meter to 1 st channel Y, Z axis per vhich it is veasured wa Quasi-per Quasi-	the restricted odulation for l Anechoic Ch I.5 meter(Abu positioning for worse case. as complete. mark eak Value eak Value eak Value	lowe namb ove