

FCC Test Report

FCC ID	:	2AQ68-TFX701C
Equipment	:	BLE-tag
Model No.	:	TFX701C
Applicant	:	HON LIN TECHNOLOGY CO., LTD.
Address	:	11F, No.32, Jihu Rd., Neihu Dist., Taipei City,Taiwan 114
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Dec. 16, 2020
Tested Date	:	Dec. 30, 2020 ~ Jan. 04, 2021

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

CI n

Along Cheil/ Assistant Manager

Gary Chang / Manager

Approved by:

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	Test Equipment List and Calibration Data	8
1.5	Test Standards	9
1.6	Reference Guidance	9
1.7	Deviation from Test Standard and Measurement Procedure	9
1.8	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Facility	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	6dB and Occupied Bandwidth	11
3.2	RF Output Power	15
3.3	Power Spectral Density	17
3.4	Emissions in Restricted Frequency Bands	21
3.5	Emissions in non-restricted Frequency Bands	31
4	TEST LABORATORY INFORMATION	34

Release Record

Report No.	Version	Description	Issued Date
FR0D1603	Rev. 01	Initial issue	Mar. 04, 2021

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	Note	N/A
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 12010.00MHz 44.55 (Margin -9.45dB) - AV	Pass
15.247(b)(3)	Maximum Output Power	Power [dBm]: -1.42	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

N/A means Not Applicable.

Note: The device consumes DC power from battery, so the test is not required.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)Bluetooth ModeCh. Freq. (MHz)Channel NumberData Rate						
2400-2483.5 V4.2 LE 2402-2480 0-39 [40] 1 Mbps						
Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

1.1.2 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Chip	NA	0.5	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type

1.1.4 Accessories

	Accessories				
No.	No. Equipment Description				
1	Lithium battery	Brand: Panasonic Model: CR2450 Rating: 3Vdc, 620mAh			

1.1.5 Channel List

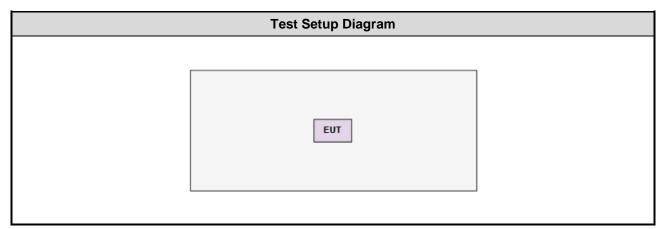
	Frequency	band (MHz)			2400~2	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.6 Test Tool and Duty Cycle

Test Tool	Serial Port Utility, ver. 2.5.8.0825				
Duty Cycle and Duty Easter	Duty Cycle (%)	Duty Factor (dB)			
Duty Cycle and Duty Factor	100.00	0.00			

1.1.7 Power Index of Test Tool

Modulation Mode	Test Frequency (MHz)			
	2402	2440	2480	
BT LE-1Mbps	0x01(0dBm)	0x01(0dBm)	0x01(0dBm)	



1.2 Local Support Equipment List

	Support Equipment List						
No. Equipment Brand Model FCC ID Remarks							
1	Notebook	DELL	Latitude E5470	DoC			
2	Fixture				Provided by applicant.		

Note: The support notebook and fixture are connected to EUT by USB cable and disconnected from EUT and removed from test table after sending command to control EUT to transmit continuously.

1.3 Test Setup Chart

1.4 Test Equipment List and Calibration Data

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03C	H01-WS)				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2020	Dec. 03, 2021	
Receiver	R&S	ESR3	101657	Feb. 14, 2020	Feb. 13, 2021	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 10, 2020	Jul. 09, 2021	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2020	Dec. 10, 2021	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 06, 2020	Nov. 05, 2021	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 17, 2020	Nov. 16, 2021	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 06, 2020	Oct. 05, 2021	
Preamplifier	EMC	EMC02325	980225	Jul. 03, 2020	Jul. 02, 2021	
Preamplifier	Agilent	83017A	MY39501308	Sep. 26, 2020	Sep. 25, 2021	
Preamplifier	EMC	EMC184045B	980192	Jul. 21, 2020	Jul. 20, 2021	
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 06, 2020	Oct. 05, 2021	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 06, 2020	Oct. 05, 2021	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 06, 2020	Oct. 05, 2021	
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 06, 2020	Oct. 05, 2021	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 06, 2020	Oct. 05, 2021	
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 06, 2020	Oct. 05, 2021	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Apr. 30, 2020	Apr. 29, 2021
Power Meter	Anritsu	ML2495A	1241002	Nov. 04, 2020	Nov. 03, 2021
Power Sensor	Anritsu	MA2411B	1207366	Nov. 04, 2020	Nov. 03, 2021
DC POWER SOURCE	GW INSTEK	GPC-6030D	GES855395	Nov. 09, 2020	Nov. 08, 2021
Measurement Software	ICC	SENSE-15247_FS	V5.10.7	NA	NA

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.41 dB			
Radiated emission > 1GHz	±4.59 dB			

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	03CH01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.
> FCC Designation No.	T\N0722

➢ FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Radiated Emissions ≤ 1GHz	BT LE	2440	1Mbps	
Maximum Output Power 6dB bandwidth Power spectral density	BTLE	2402, 2440, 2480	1Mbps	
Radiated Emissions > 1GHz				

NOTE:

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

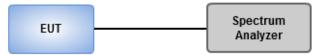
3 Transmitter Test Results

3.1 6dB and Occupied Bandwidth

3.1.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.1.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = $1\% \sim 5\%$ of OBW, Video bandwidth = $3 \times RBW$
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.1.3 Test Setup

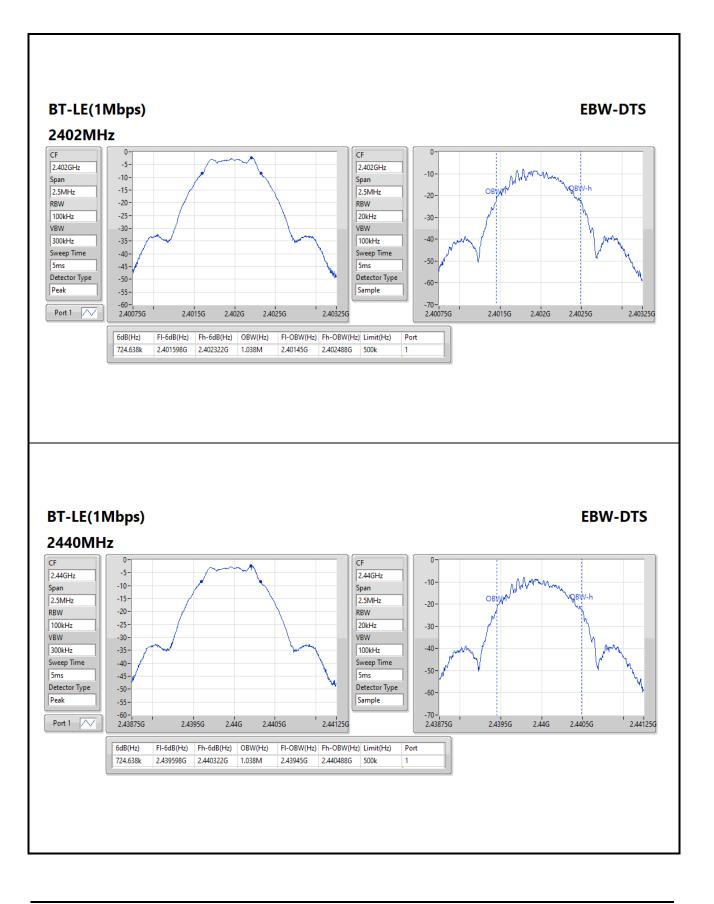
3.1.4 Test Result of 6dB and Occupied Bandwidth

Ambient Condition22°C / 65%	Tested By	Brad Wu
-----------------------------	-----------	---------

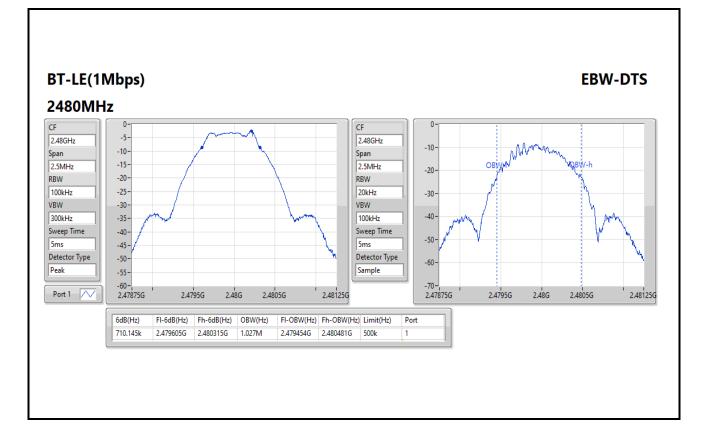
Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	724.638k	1.038M	1M04F1D	710.145k	1.027M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth


Result

Mode	Result	Limit (Hz)	Port 1-N dB (Hz)	Port 1-OBW (Hz)
BT-LE(1Mbps)		. ,		(112)
	-	-	-	-
2402MHz	Pass	500k	724.638k	1.038M
2440MHz	Pass	500k	724.638k	1.038M
2480MHz	Pass	500k	710.145k	1.027M


Port X-N dB = Port X 6dB down bandwidth;

Port X-OBW = Port X 99% occupied bandwidth

3.2 **RF Output Power**

3.2.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.2.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.2.3 Test Setup

3.2.4 Test Result of Maximum Output Power

Ambient Condition22°C / 65%Tested ByBrad Wu

Summary of Peak Conducted Output Power

Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	-1.42	0.00072

Result

Mode	Result	Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0.50	-1.42	30.00
2440MHz	Pass	0.50	-1.42	30.00
2480MHz	Pass	0.50	-1.70	30.00

DG = Directional Gain; Port X = Port X output power

Summary of Conducted (Average) Output Power

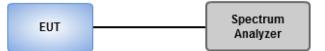
Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	-1.47	0.00071

Result

Mode	Result	Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0.50	-1.48	-
2440MHz	Pass	0.50	-1.47	-
2480MHz	Pass	0.50	-1.76	-

Note: Average power is for reference only.

3.3 Power Spectral Density


3.3.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.3.2 Test Procedures

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.3.3 Test Setup

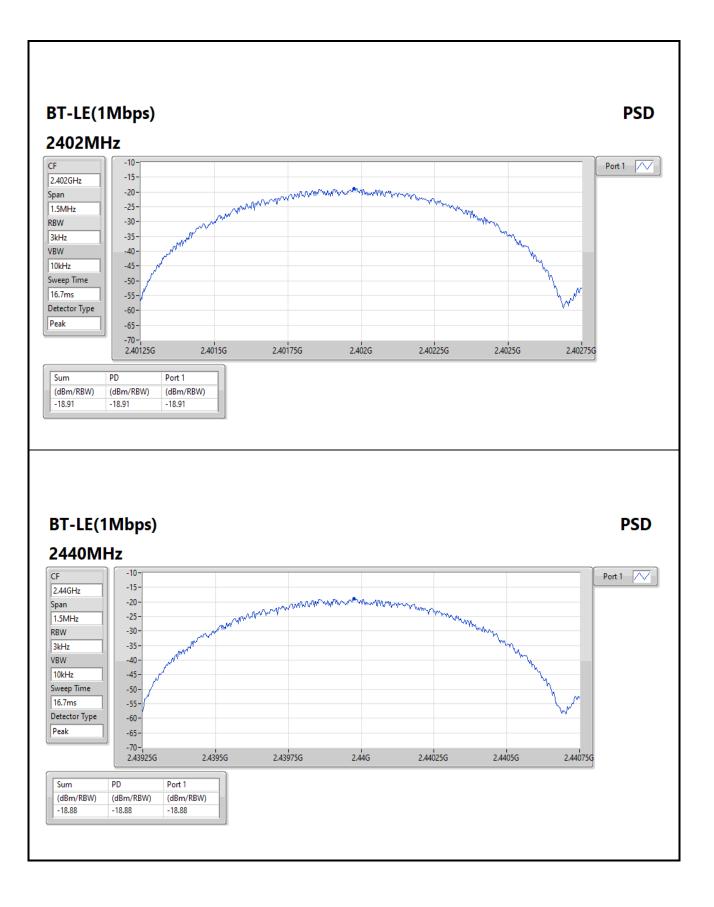
3.3.4 Test Result of Power Spectral Density

Ambient Condition 22°C / 65% Tested By Brad Wu
--

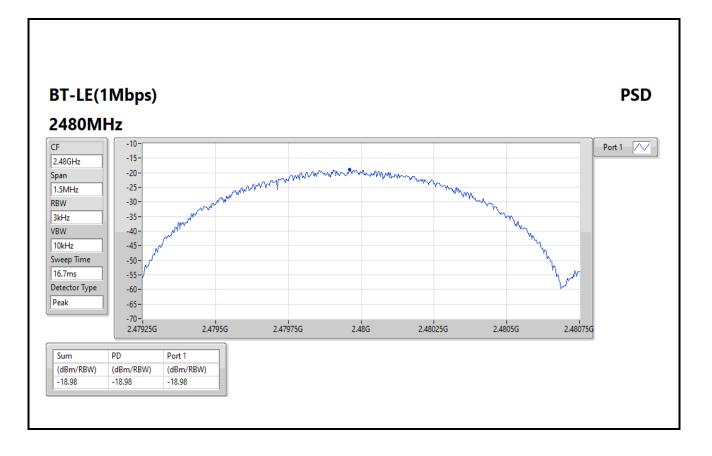
Summary

Mode	PD (dBm/3kHz)
2.4-2.4835GHz	-
BT-LE(1Mbps)	-18.88

RBW = 3kHz;


Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/3kHz)	(dBm/3kHz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0.50	-18.91	8.00
2440MHz	Pass	0.50	-18.88	8.00
2480MHz	Pass	0.50	-18.98	8.00


DG = Directional Gain;

PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

3.4 Emissions in Restricted Frequency Bands

3.4.1 Limit of Emissions in Restricted Frequency Bands

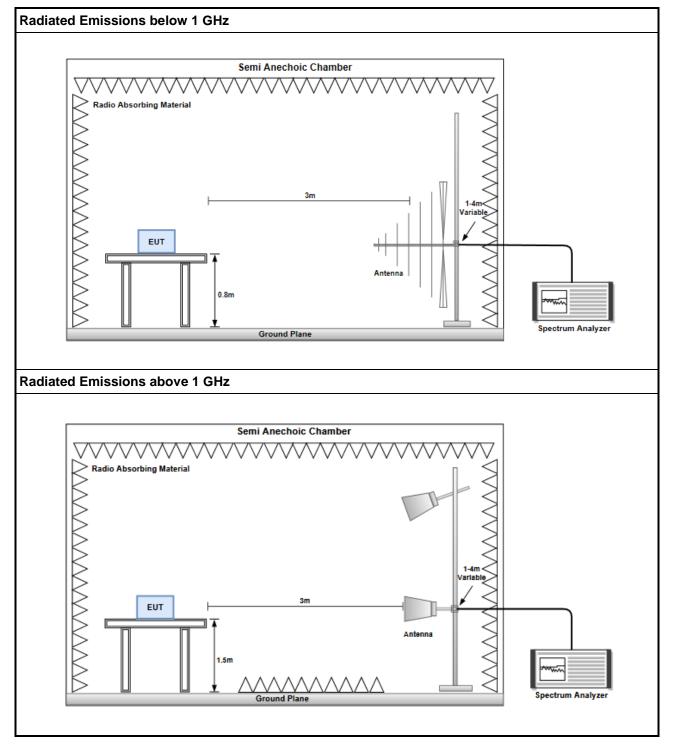
Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

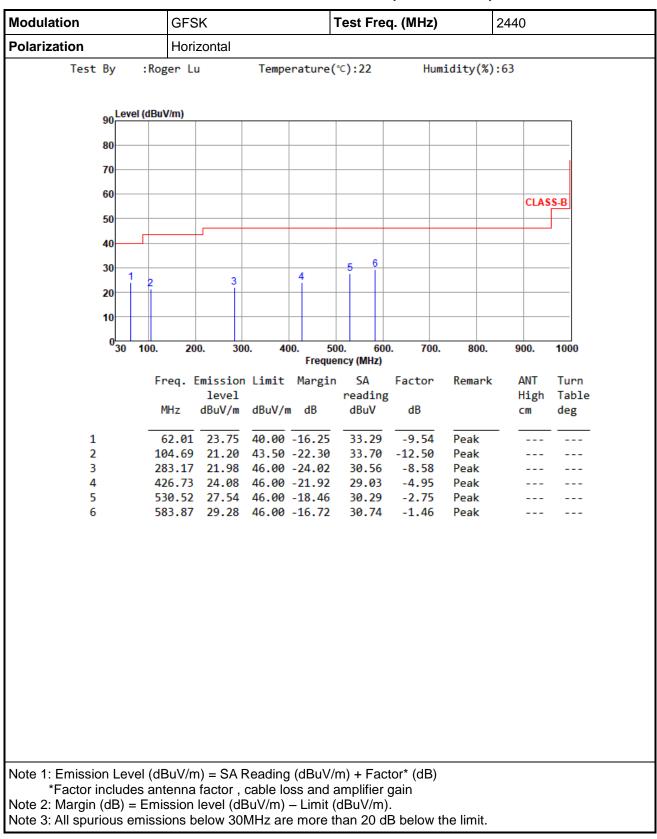
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

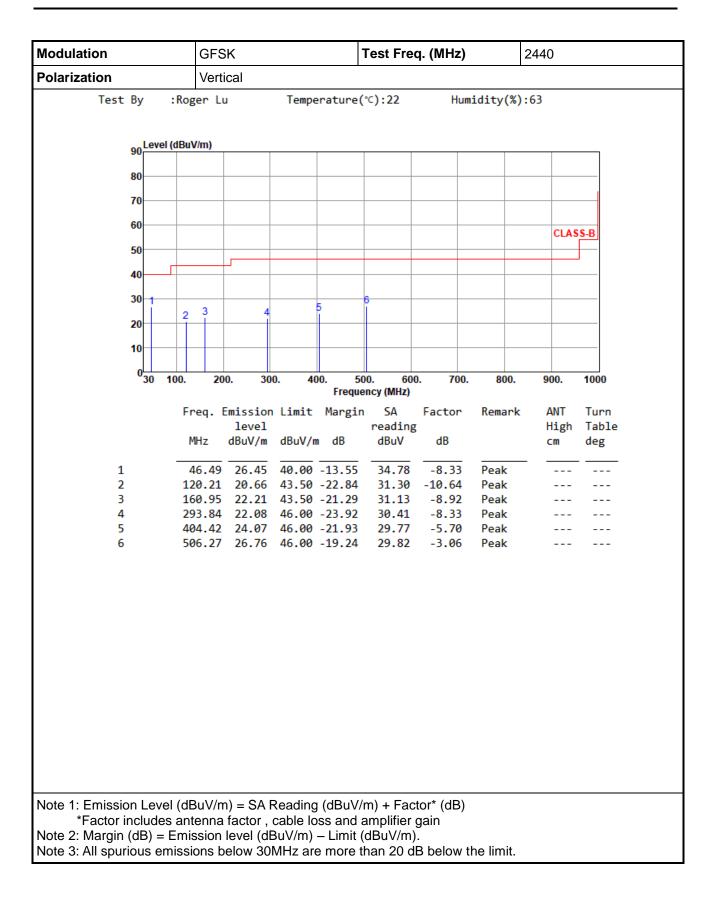
3.4.2 Test Procedures

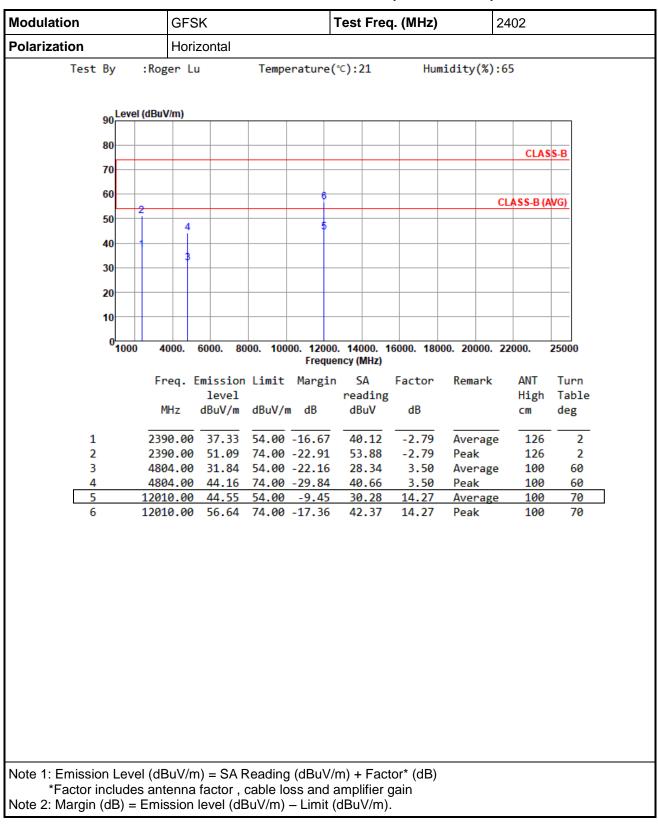

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

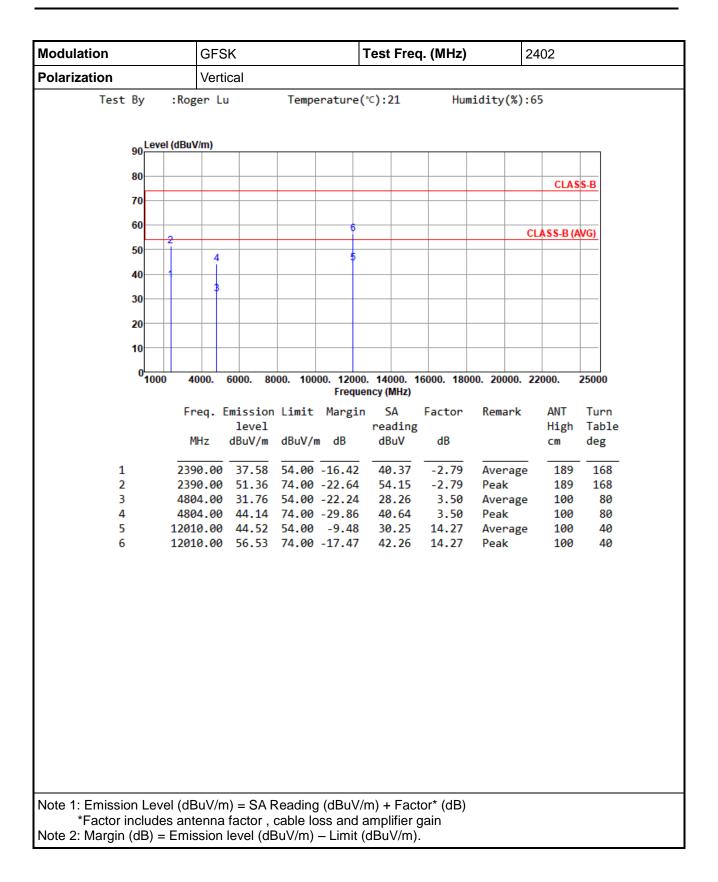

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

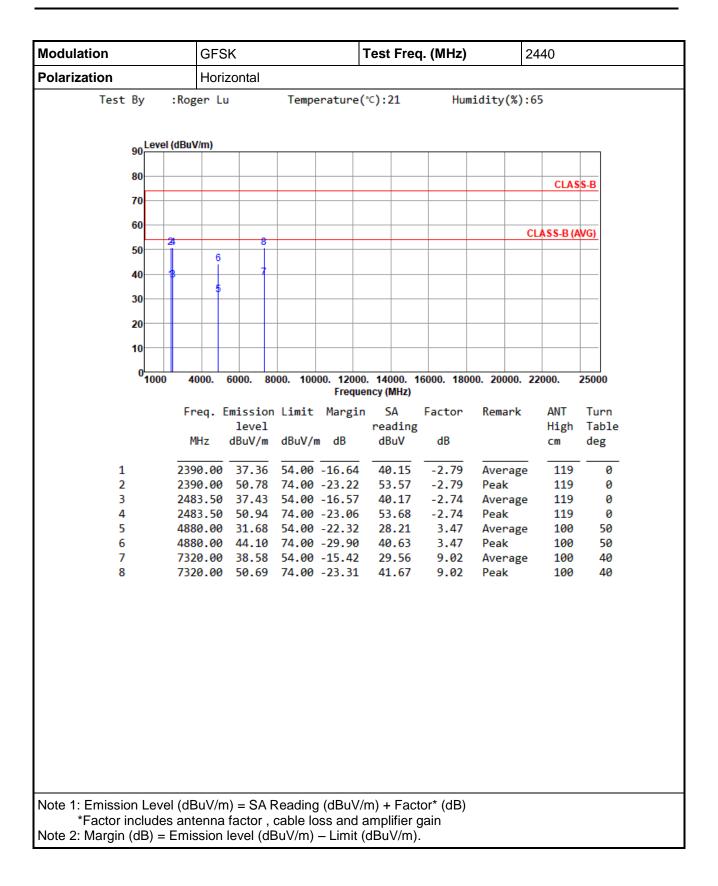
3.4.3 Test Setup



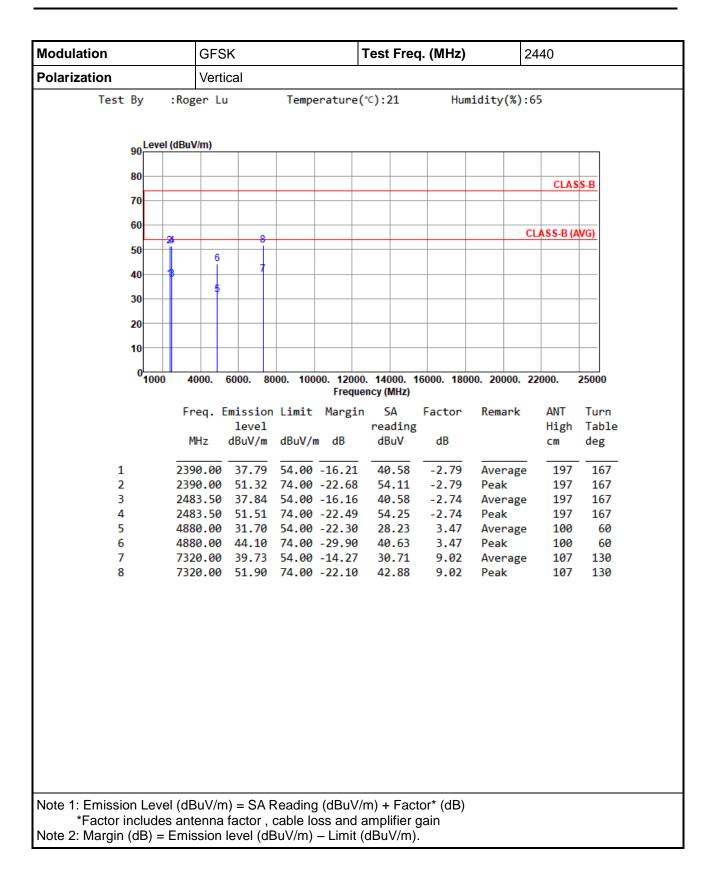


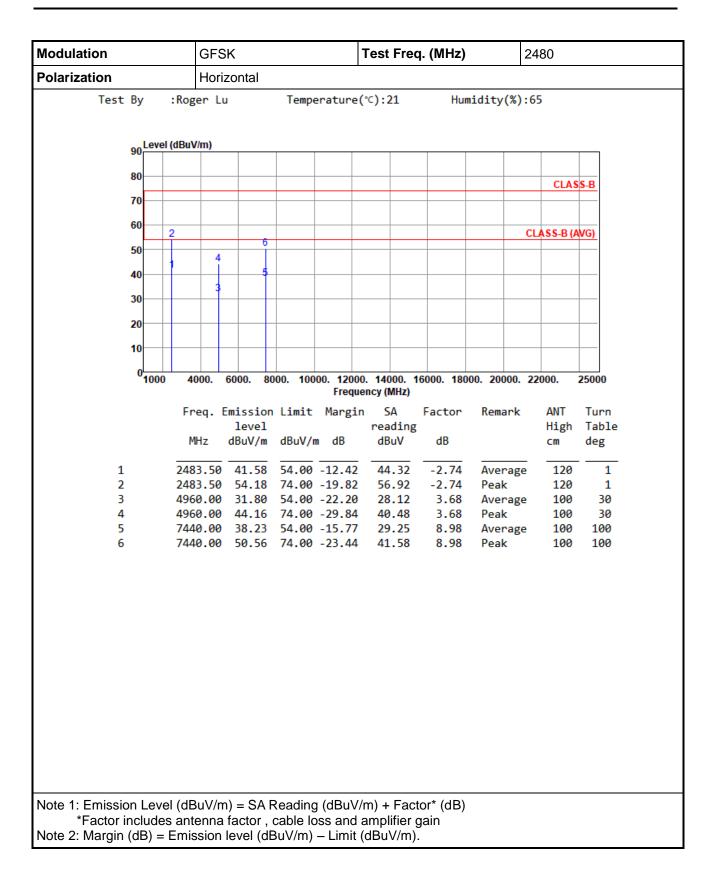
3.4.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

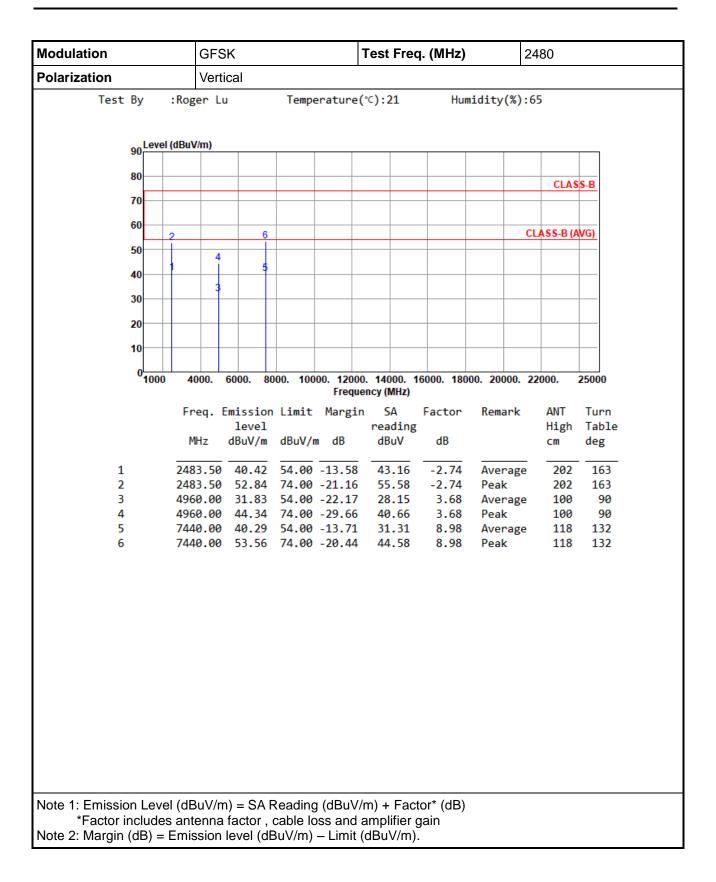




3.4.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK





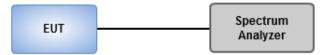


3.5 Emissions in non-restricted Frequency Bands

3.5.1 Emissions in non-restricted frequency bands limit

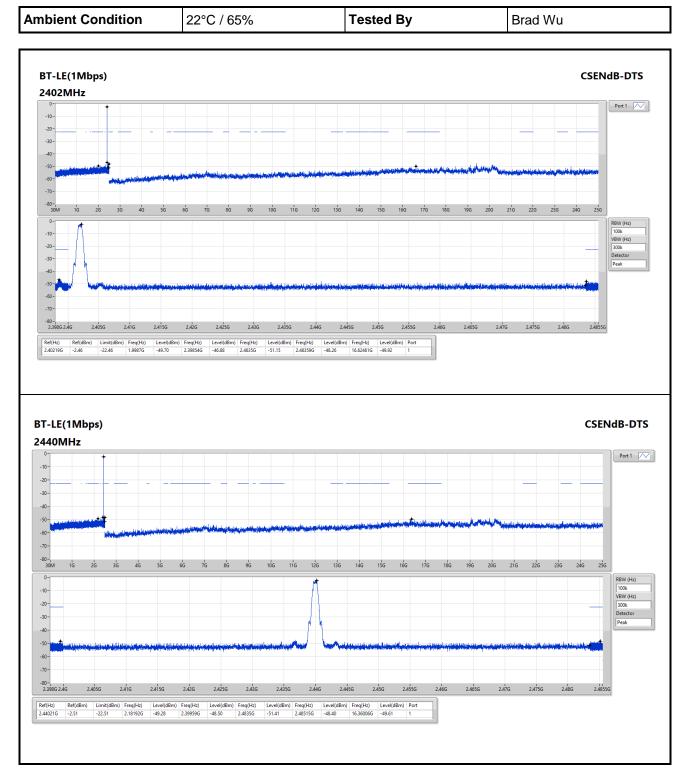
Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.5.2 Test Procedures

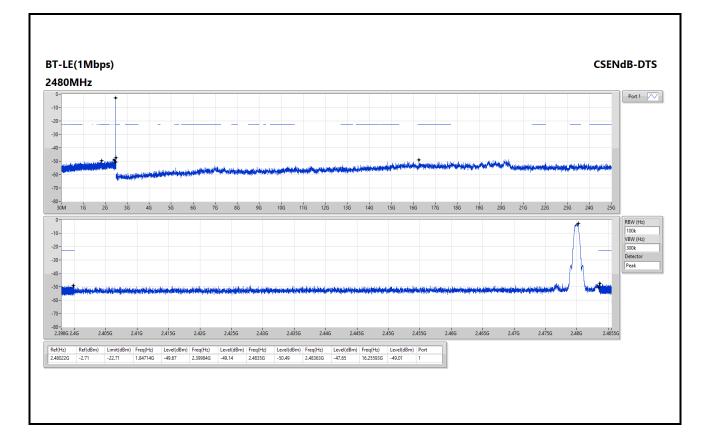

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement


- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.5.3 Test Setup



4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—