

FCC Test Report

FCC ID	:	2AQ68-N718US
Equipment	:	LoRa module
Model No.	:	N718US
Applicant	:	HON LIN TECHNOLOGY CO., LTD.
Address	:	11F, No.32, Jihu Rd., Neihu Dist., Taipei City,Taiwan 114
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Dec. 16, 2020
Tested Date	:	Dec. 24 ~ Dec. 30, 2020

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

CI n

Along Cherk/ Assistant Manager

Gary Chang / Manager

Approved by:

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Reference Guidance	9
1.7	Deviation from Test Standard and Measurement Procedure	9
1.8	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Facility	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Unwanted Emissions into Restricted Frequency Bands	11
3.2	Unwanted Emissions into Non-Restricted Frequency Bands	25
3.3	Conducted Output Power	28
3.4	Number of Hopping Frequency	29
3.5	20dB and Occupied Bandwidth	31
3.6	Channel Separation	33
3.7	Number of Dwell Time	35
3.8	Power Spectral Density	38
4	TEST LABORATORY INFORMATION	40

Release Record

Report No.	Version	Description	Issued Date
FR0D1604	Rev. 01	Initial issue	Jan. 15, 2021

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	Note	N/A
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 183.68MHz	Pass
15.209	Radiated Emissions	39.42 (Margin -4.08dB) - PK	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(2)(3)	Conducted Output Power	Power [dBm]: 19.09	Pass
15.247(a)(1)(i)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(f)	Dwell Time	Meet the requirement of limit	Pass
15.247(f)	Power spectral density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass
15.247(f)	Power spectral density	Meet the requirement of limit	Pass

N/A means Not Applicable.

Note: The device consumes DC power, so the test is not required.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information								
Frequency Range (MHz)Ch. Freq. (MHz)Channel ListData Rate (bit/sec)Spread FactorChan Bandw (kH								
902 ~ 928	902.3 ~ 914.9	64 channels	980-5.47k bps	7 ~ 10	125			
Note 1: RF output power specifies that Maximum Conducted (Average) Output Power. Note 2: The device uses Lora modulation. Note 3: The device supports hybrid mode.								

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)
1	Unictron	H2B1SD1A2C0300	PCB	i-pex	2.0

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 3.3Vdc

1.1.4 Accessories

N/A

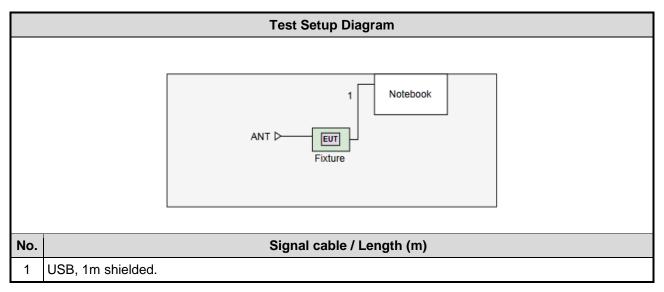
1.1.5 Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	902.3	16	905.5	32	908.7	48	911.9
1	902.5	17	905.7	33	908.9	49	912.1
2	902.7	18	905.9	34	909.1	50	912.3
3	902.9	19	906.1	35	909.3	51	912.5
4	903.1	20	906.3	36	909.5	52	912.7
5	903.3	21	906.5	37	909.7	53	912.9
6	903.5	22	906.7	38	909.9	54	913.1
7	903.7	23	906.9	39	910.1	55	913.3
8	903.9	24	907.1	40	910.3	56	913.5
9	904.1	25	907.3	41	910.5	57	913.7
10	904.3	26	907.5	42	910.7	58	913.9
11	904.5	27	907.7	43	910.9	59	914.1
12	904.7	28	907.9	44	911.1	60	914.3
13	904.9	29	908.1	45	911.3	61	914.5
14	905.1	30	908.3	46	911.5	62	914.7
15	905.3	31	908.5	47	911.7	63	914.9

1.1.6 Test Tool and Duty Cycle

Test Tool	Tera Term, ver. 4.74		
Duty Cycle and Duty Easter	Duty Cycle (%)	Duty Factor (dB)	
Duty Cycle and Duty Factor	100%	0	

1.1.7 Power Setting


Modulation Mode	Test Frequency (MHz)	Power Set
Lora	902.3	20
Lora	908.5	20
Lora	914.9	20

1.2 Local Support Equipment List

	Support Equipment List							
No. Equipment Brand Model FCC ID Signal cable / Length								
1	Notebook	DELL	Latitude E5470	DoC				
2	Fixture				Provided by applicant.			

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission							
Test Site	est Site 966 chamber1 / (03CH01-WS)							
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2020	Dec. 03, 2021			
Receiver	R&S	ESR3	101657	Feb. 14, 2020	Feb. 13, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 10, 2020	Jul. 09, 2021			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2020	Dec. 10, 2021			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 06, 2020	Nov. 05, 2021			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 17, 2020	Nov. 16, 2021			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 06, 2020	Oct. 05, 2021			
Preamplifier	EMC	EMC02325	980225	Jul. 03, 2020	Jul. 02, 2021			
Preamplifier	Agilent	83017A	MY39501308	Sep. 26, 2020	Sep. 25, 2021			
Preamplifier	EMC	EMC184045B	980192	Jul. 21, 2020	Jul. 20, 2021			
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 06, 2020	Oct. 05, 2021			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 06, 2020	Oct. 05, 2021			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 06, 2020	Oct. 05, 2021			
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 06, 2020	Oct. 05, 2021			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			

Test Item	RF Conducted							
Test Site	(TH01-WS)	TH01-WS)						
Instrument	ent Manufacturer Model No. Serial No. Calibration Date Calibration Unit							
Spectrum Analyzer	R&S	FSV40	101063	Apr. 30, 2020	Apr. 29, 2021			
Power Meter	Anritsu	ML2495A	1241002	Nov. 04, 2020	Nov. 03, 2021			
Power Sensor	Anritsu	MA2411B	1207366	Nov. 04, 2020	Nov. 03, 2021			
DC POWER SOURCE	GW INSTEK	GPC-6030D	GES855395	Nov. 09, 2020	Nov. 08, 2021			
Measurement Software	ICC	SENSE-15247_FS	V5.10.7	NA	NA			

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.130 Hz				
Conducted power	±0.808 dB				
Power density	±0.583 dB				
Radiated emission ≤ 1GHz	±3.41 dB				
Radiated emission > 1GHz	±4.59 dB				

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	03CH01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.
FCC Designation No.:	TW2732

FCC site registration No.: 181692

- ➢ ISED#: 10807A
- ➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Test Frequency (MHz)	Channel Bandwidth (kHz)	Modulation	Test Configuration
Radiated Emissions				
Conducted Output Power		125		
Hopping Channel Separation	902.3 / 908.5 / 914.9		Lora / 10	-
20dB and Occupied bandwidth				
Power Spectral Density				
Number of Hopping Channels	902.3 ~ 914.9	125	Lora / 10	-
Dwell Time	902.3	125	Lora / 10, 9, 8, 7	-
NOTE:	·			

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** result was found as the worst case and was shown in this report.

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

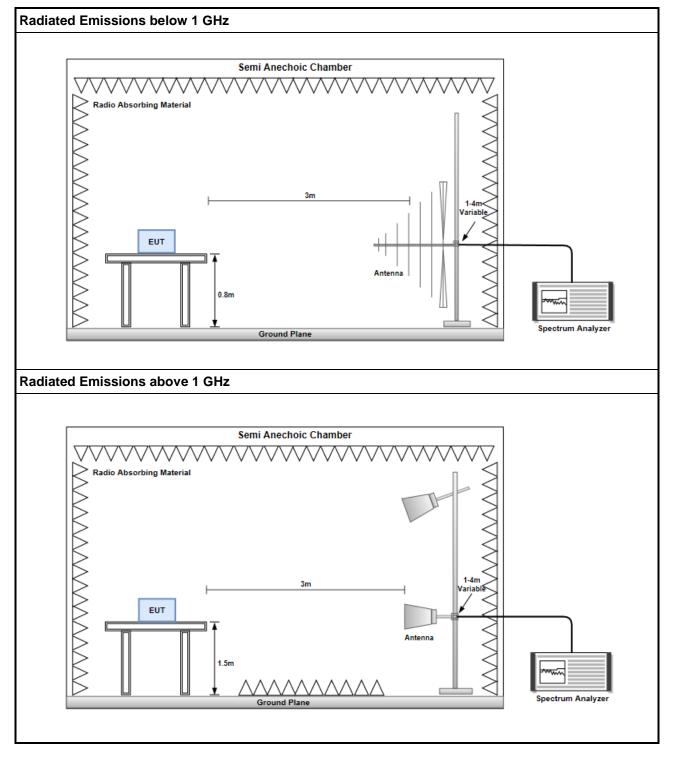
Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	0.009~0.490 2400/F(kHz)		300			
0.490~1.705 24000/F(kHz)		33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

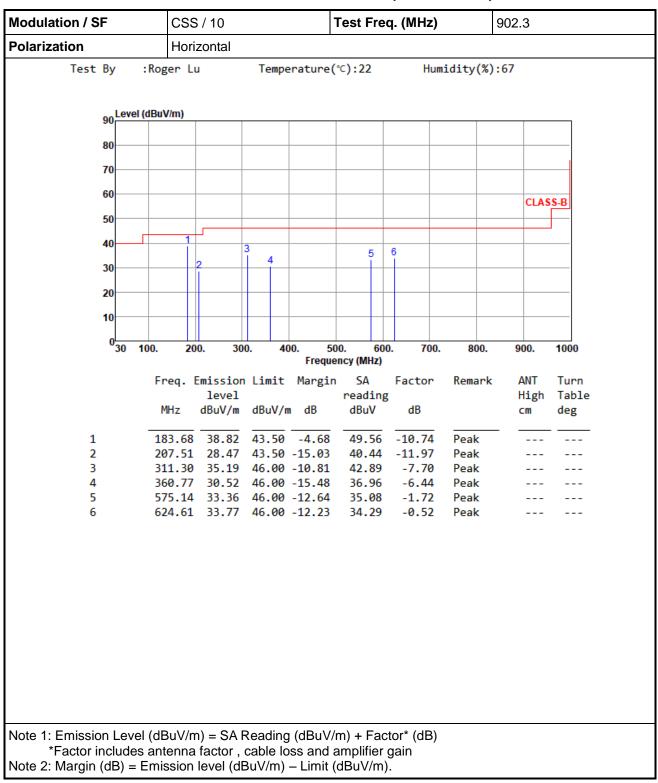
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

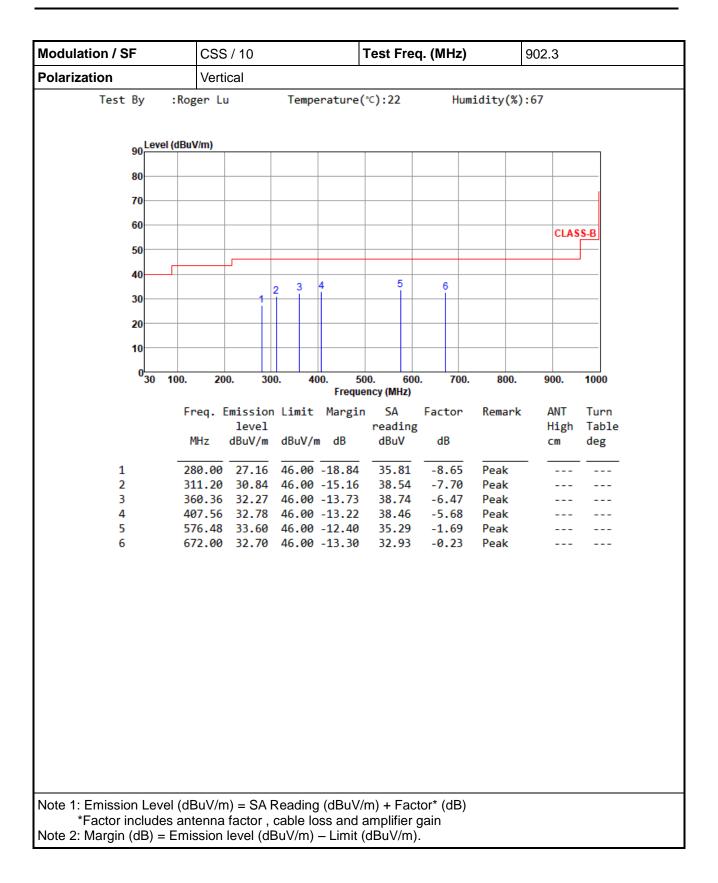
3.1.2 Test Procedures

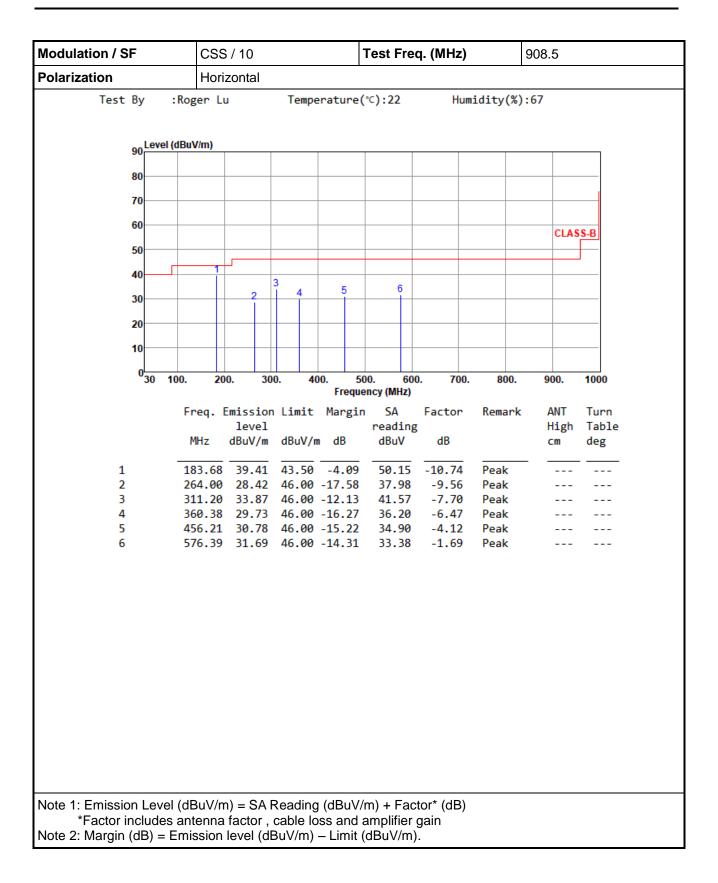

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

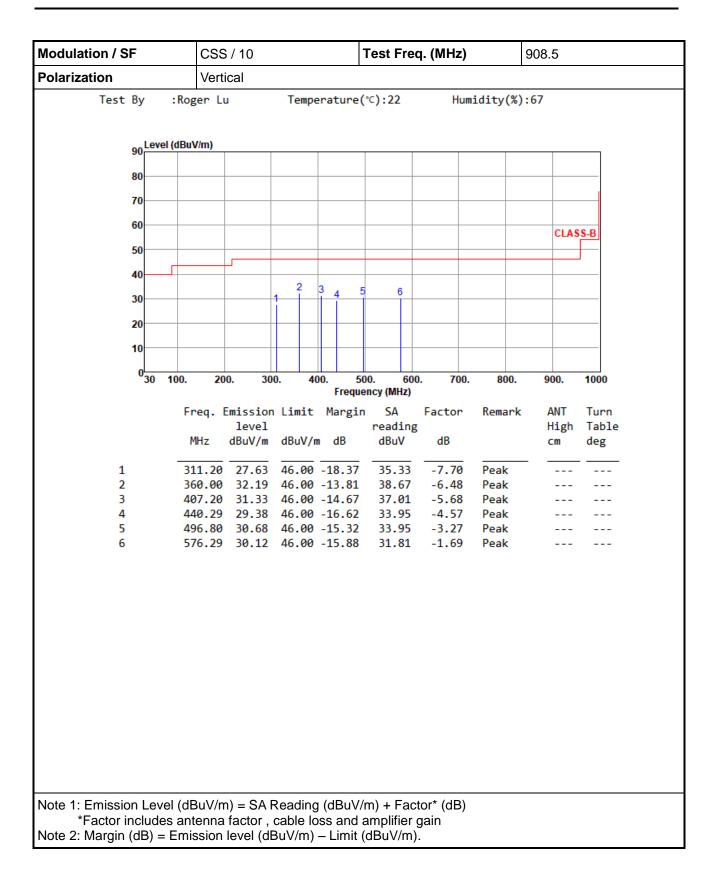

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

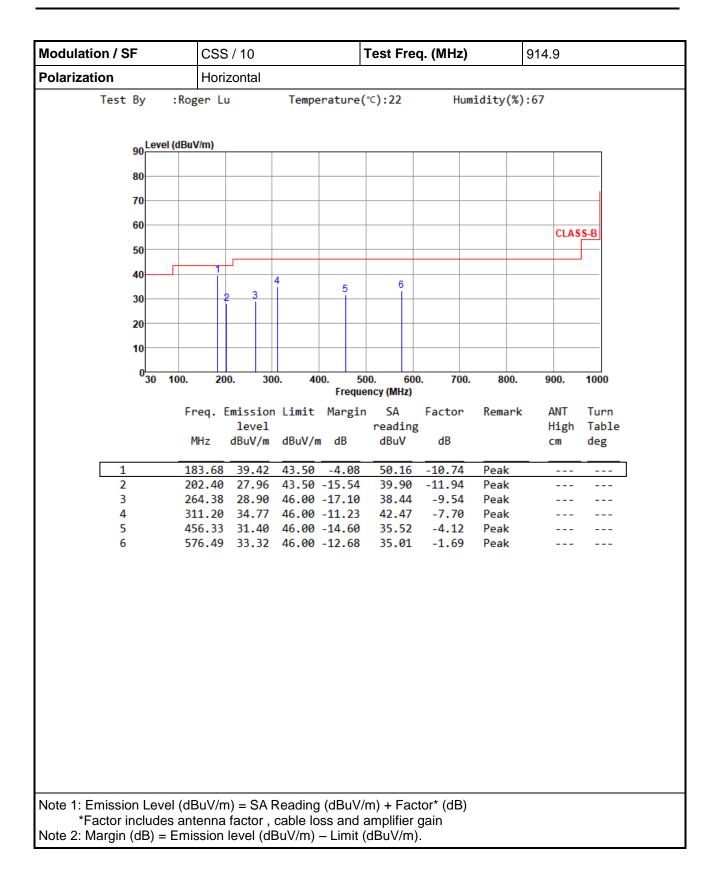
3.1.3 Test Setup

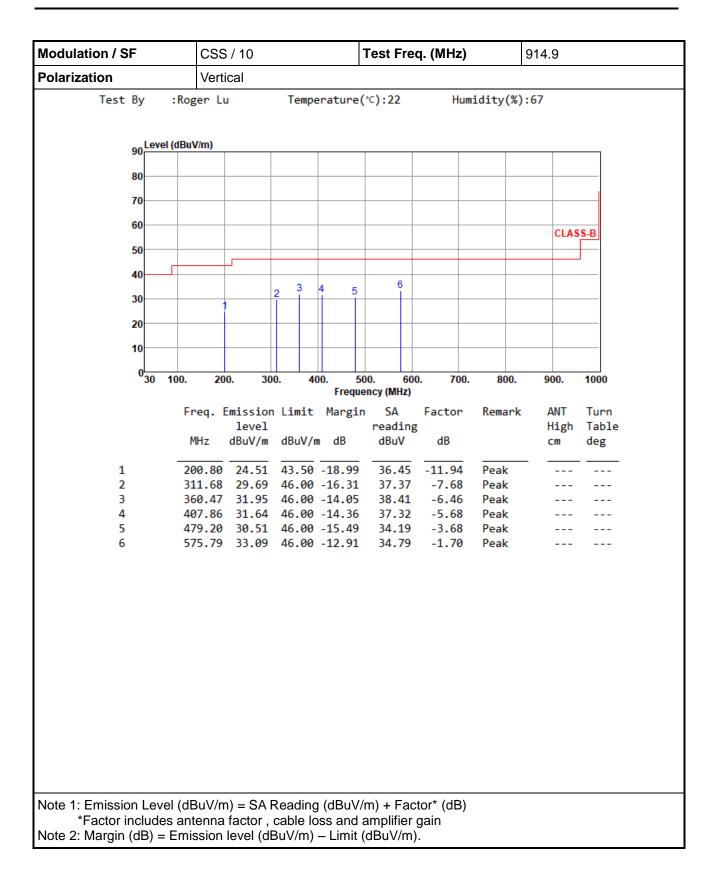


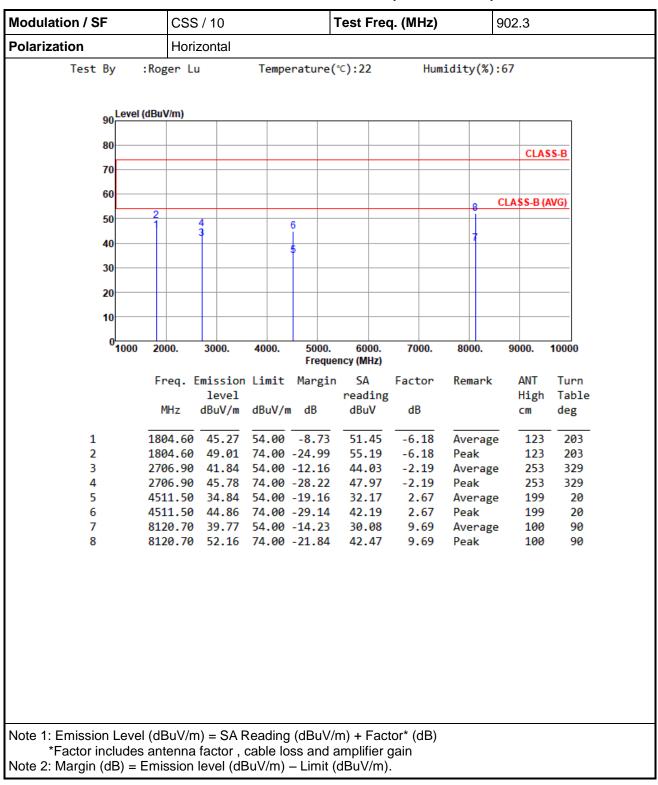


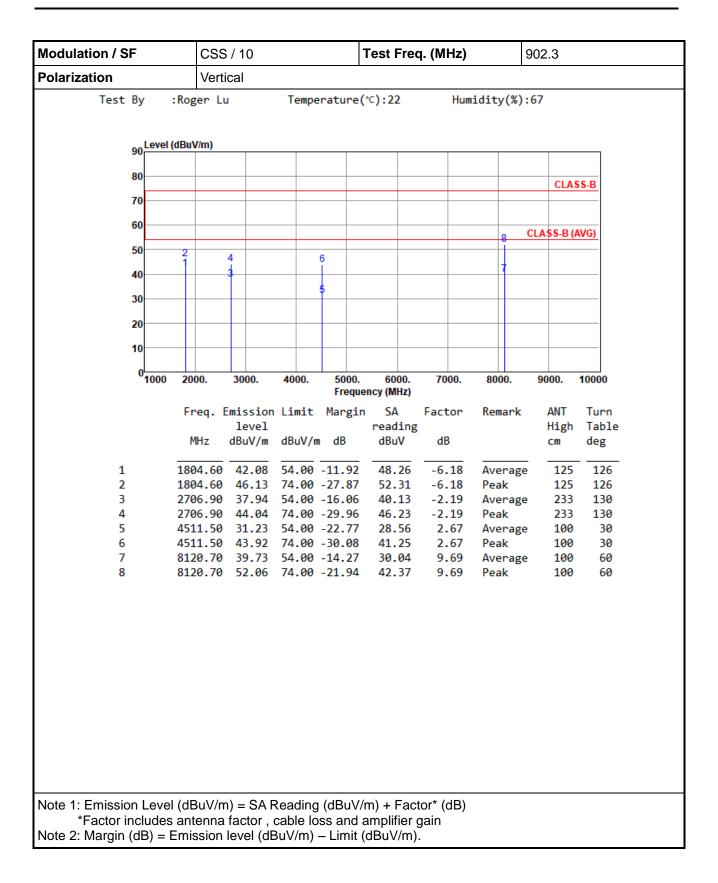
3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

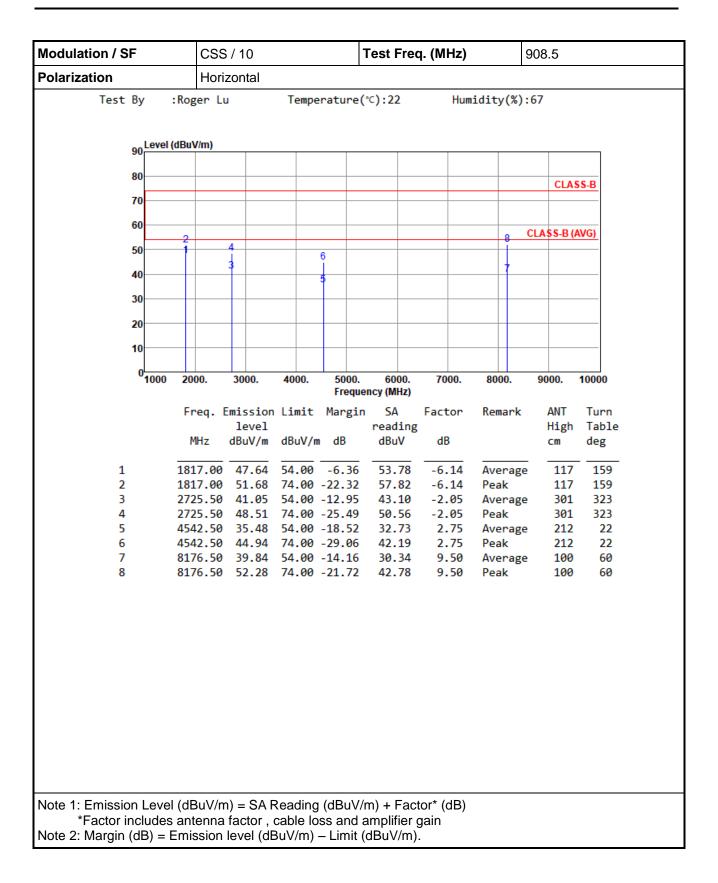




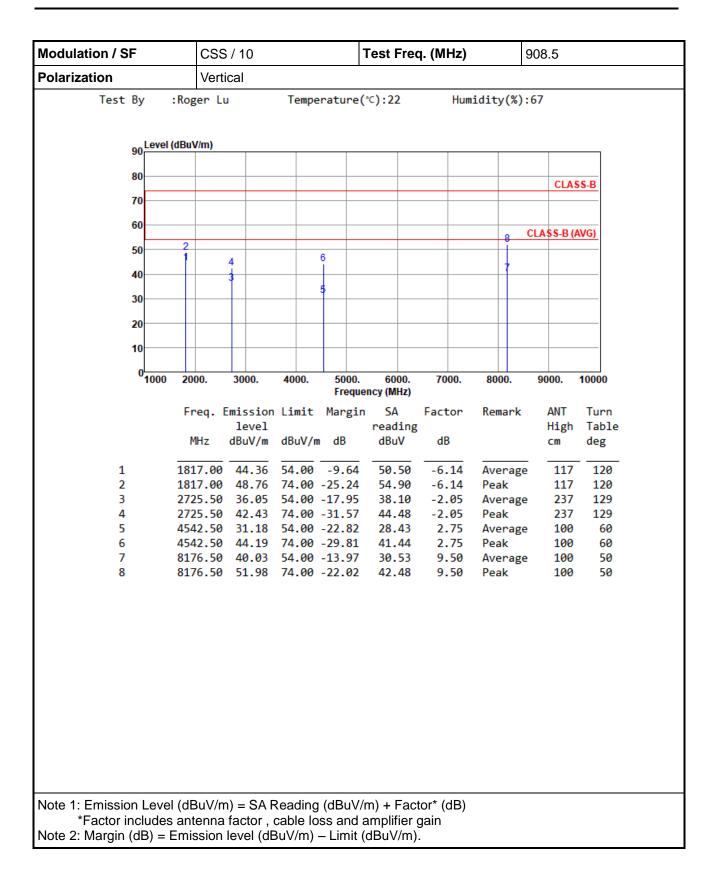


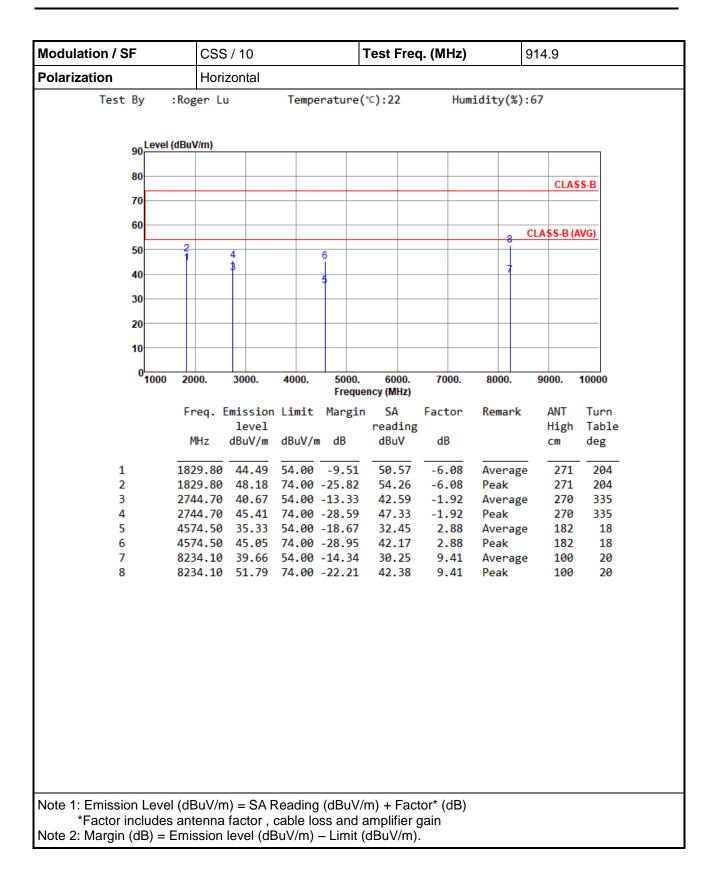


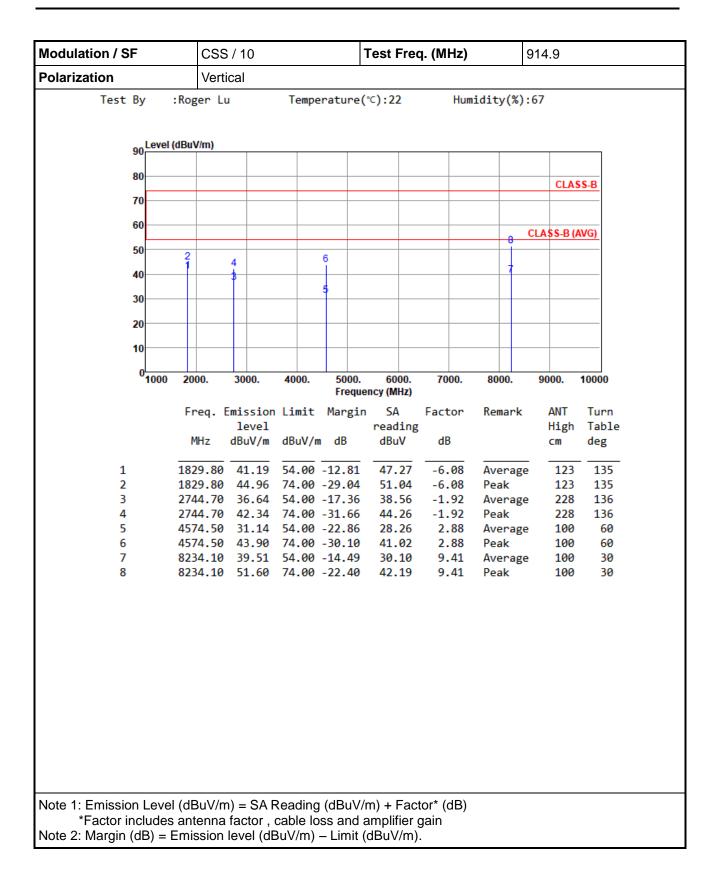




3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)





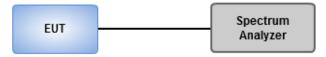


3.2 Unwanted Emissions into Non-Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.2.2 Test Procedures

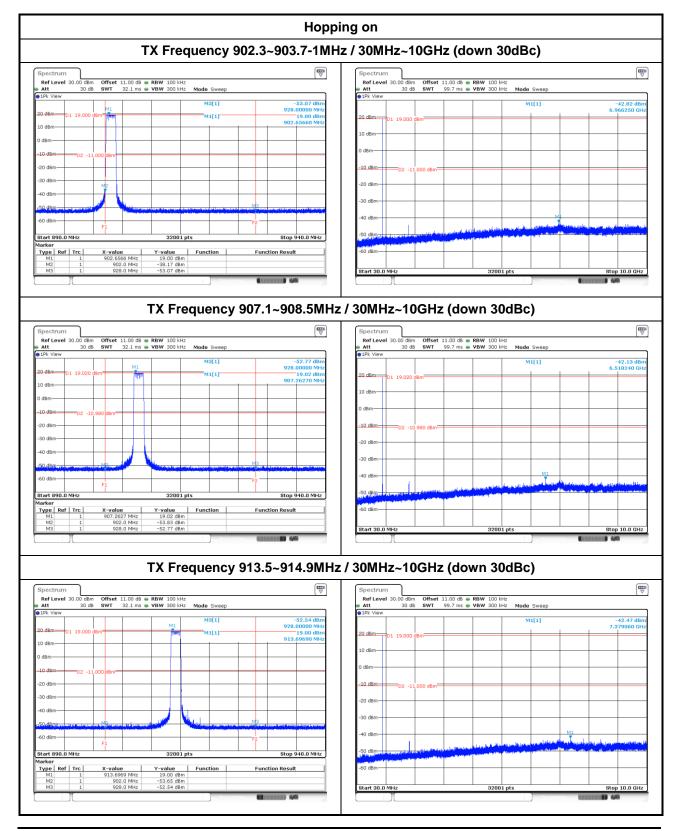

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

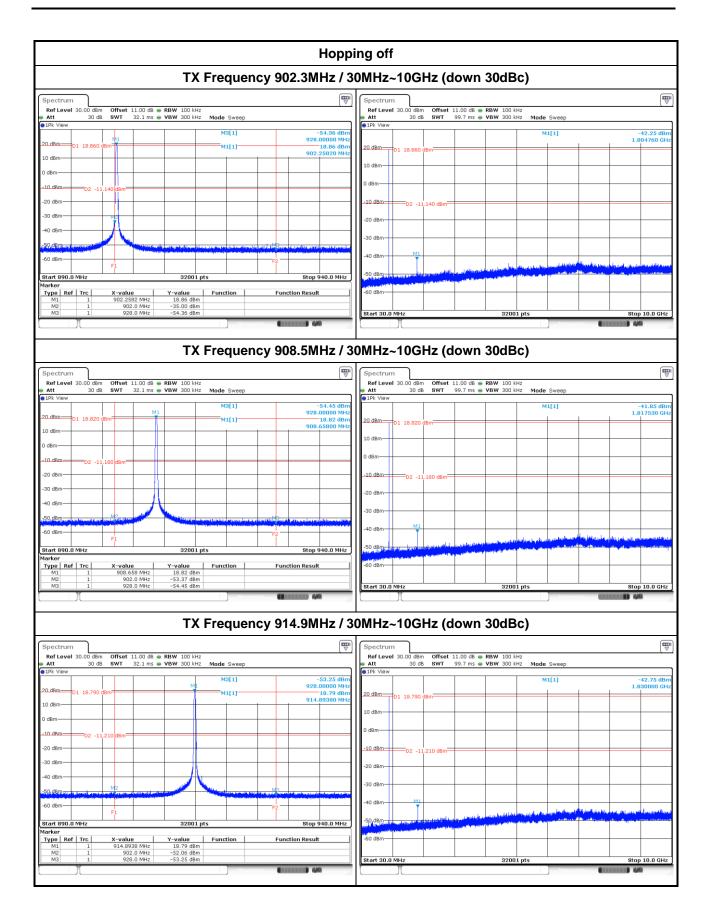
Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.2.3 Test Setup



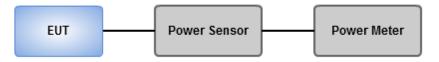
22°C / 65%


Ambient Condition

Tested By

Brad Wu

3.3 Conducted Output Power


3.3.1 Limit of Conducted Output Power

- 1 Watt, systems employing at least 50 hopping channels;
- 0.25 Watt, for systems employing less than 50 hopping channels, but at least 25 hopping channels,

3.3.2 Test Procedures

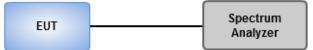
- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

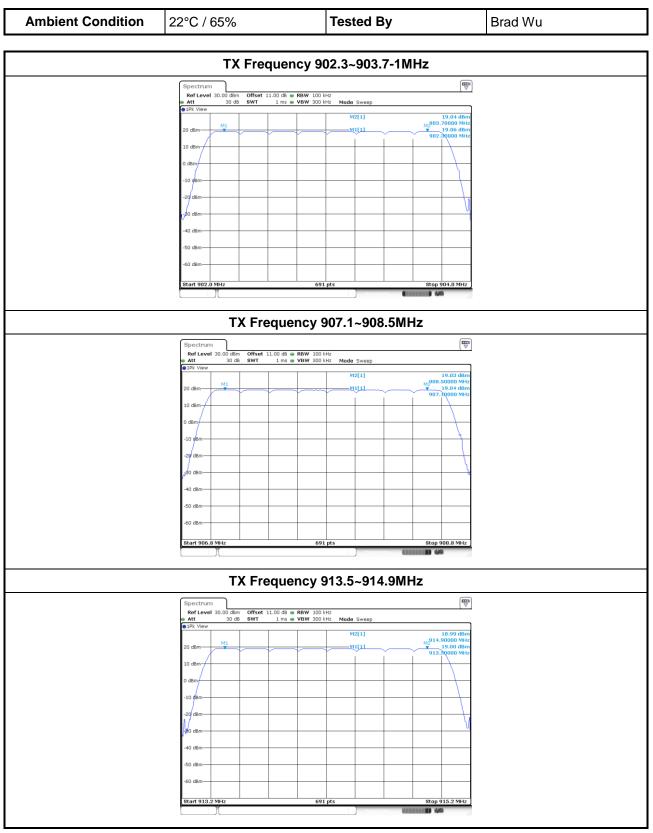
3.3.4 Test Result of Conducted Output Power

Ambient Condition	on 22°C / 65%	Tested By	/ Bra	Brad Wu	
Modulation / SF	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (W)	
Lora / 10	902.3	81.10	19.09	1	
Lora / 10	908.5	80.72	19.07	1	
Lora / 10	914.9	80.17	19.04	1	

3.4 Number of Hopping Frequency


3.4.1 Limit of Number of Hopping Frequency

	Number of Hopping Frequencies Limit for Frequency Hopping Systems						
\square	902-928 MHz Band:						
	□ N ≥ 50, 20 dB bandwidth of the hopping channel is less than 250 kHz						
	□ N ≥ 25, 20 dB bandwidth of the hopping channel is 250 kHz or greater						
	Hybrid mode, No minimum number of hopping channels associated with hybrid system.						
N : N	N: Number of Hopping Frequencies						


3.4.2 Test Procedures

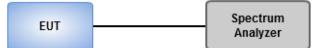
- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.4.3 Test Setup

3.4.4 Test Result of Number of Hopping Frequency

3.5 20dB and Occupied Bandwidth

3.5.1 Test Procedures


20dB Bandwidth

- 1. Set RBW=3kHz, VBW=10kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- 2 Allow trace to stabilize.
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=3kHz, VBW=10kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

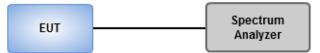
3.5.2 Test Setup

Ambient Condition	22°C / 65%	Tested By	Brad Wu	
Modulation / SF	Freq. (MHz)	20dB Bandwidth (kHz)	Occupied Bandwidth (kHz)	
Lora / 10	902.3	138.06	125.50	
Lora / 10	908.5	138.49	125.90	
Lora / 10	914.9	138.06	125.80	

3.5.3 Test result of 20dB and Occupied Bandwidth

	Wors	t Plot
20dB Bai	ndwidth	Occupied Bandwidth
Spectrum Ref Level 30:00 dBm Offset 11:00 dB @ RBW 3 kHz Att 30 dB SWT 3.3 ms @ VBW 10 kHz ● IPk View		Spectrum Image: Constraint of the second seco
20.dBm 01 18.740 dBm 17	Occ Bw 125.904466252 kHz M1[1] 2 908.436610 MHz	20 dBm 1908.5408500 MHz 10 dBm 1900.5408500 MHz 10 dBm 1908.5408500 M
0.dBm 02 -1.260 dBm 44		-10 d8m
-30 dBm		-50 dBm
-50 dBm	F2	CF 908.5 MHz 3000 pts Span 300.0 kHz Marker Type Ref Trc X-value Function Function Result M1 1 908.54885 MHz 18.45 dBm Function Function
F1 CF 908.5 MHz 691 p	ots Span 300.0 kHz	m1 1 900-34953 MHz 18-93 GBm Occ Bw 125.9 kHz T1 1 900-4235 MHz 12.96 dBm Occ Bw 125.9 kHz T2 1 900-56825 MHz 13.23 dBm Occ Bw 125.9 kHz

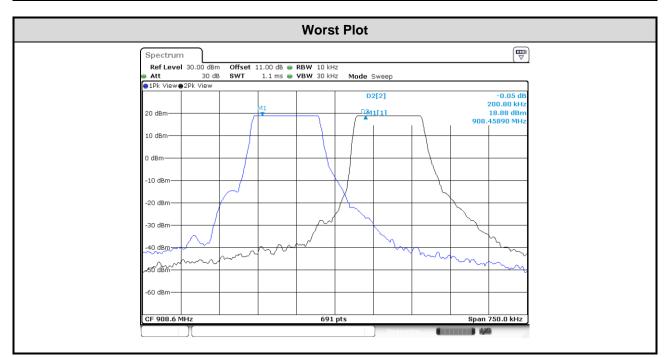
3.6 Channel Separation


3.6.1 Limit of Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.6.2 Test Procedures

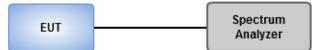
- 1. Set RBW=10kHz, VBW=30kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- 2 Allow trace to stabilize.
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit


3.6.3 Test Setup

Ambient Condition	on 22°C / 65%	Tested By	/ Brac	l Wu
Modulation / SF	Freq. (MHz)	Adjacent Channel Separation (kHz)	20dB Bandwidth (kHz)	Pass/Fail
Lora / 10	902.3	200.80	138.06	Pass
Lora / 10	908.5	200.80	138.49	Pass
Lora / 10	914.9	200.80	138.06	Pass

3.6.4 Test result of Channel Separation

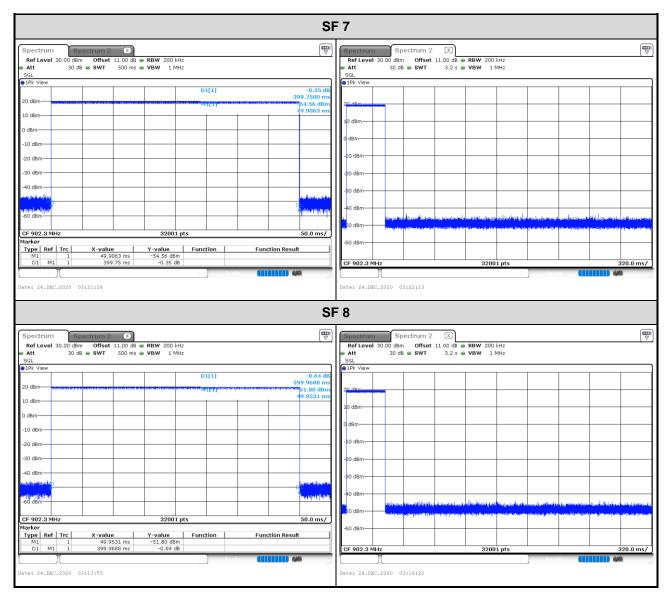
3.7 Number of Dwell Time

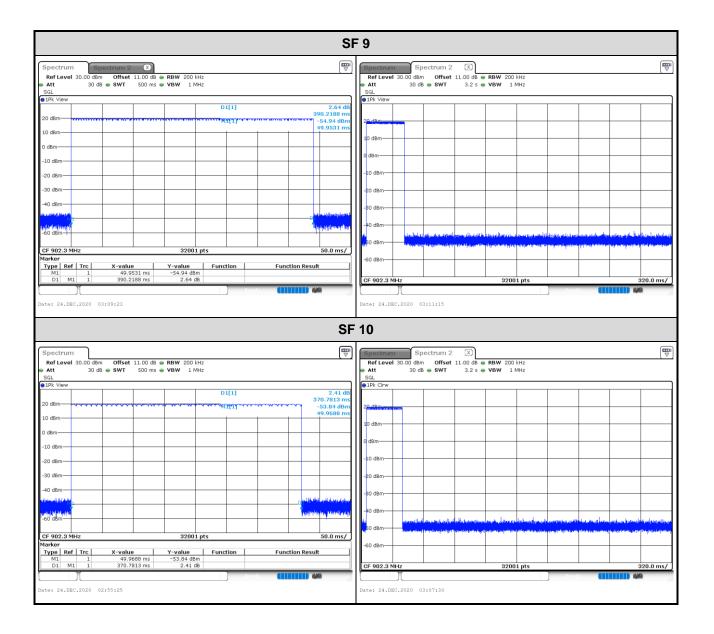

3.7.1 Limit of Dwell time

	Time of Occupancy (Dwell Time) Limit for Frequency Hopping Systems						
\boxtimes	902-928 MHz Band:						
		\leq 0.4 second within a 20 second period, 20 dB bandwidth of the hopping channel is less than 250 kHz					
		\leq 0.4 second within a 10 second period, 20 dB bandwidth of the hopping channel is 250 kHz or greater					
	\square	Hybrid mode ,an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4					

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time=6.4s / 500ms, Detector=Peak, Span=0Hz, Trace max hold.
- 2. Measure and record the burst on time.

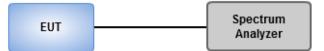

3.7.3 Test Setup



3.7.4 Test Result of Dwell Time

Ambient Condition		22°C / 6	5%	Tested By		Brad Wu	
Modulation / SF Fre		(MHz)	Length of Transmission Time (sec)	Number of Transmission in a 3.2 s (8 Hopping channels *0.4s)	Res	sult (s)	Limit (s)
Lora / 7	902.3		0.399750	1	0.3	99750	0.4
Lora / 8	902.3		0.399969	1	0.3	99969	0.4
Lora / 9	902.3 902.3		0.390219	1	0.3	90219	0.4
Lora / 10			0.370781	1	0.3	70781	0.4

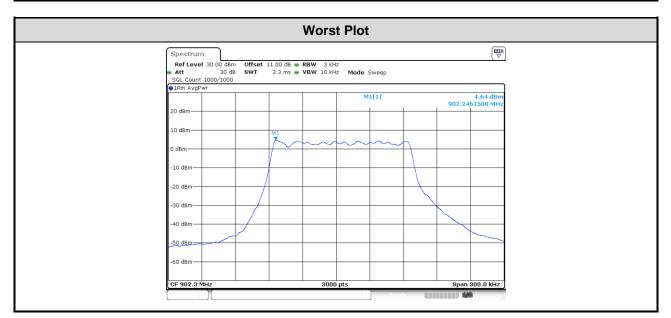
3.8 Power Spectral Density


3.8.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band. This item is for Hybrid mode.

3.8.2 Test Procedures

- 1. Set the RBW = 3kHz, VBW = 10 kHz.
- 2. Detector = RMS, Sweep time = auto couple.
- 3. Employ trace averaging (RMS) mode over a minimum of 100 traces
- 4. Use the peak marker function to determine the maximum amplitude level.


3.8.3 Test Setup

Ambient Condition	22°C / 65%	Tested By	Brad Wu
Modulation / SF	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
Lora / 10	902.3	4.64	8.00
Lora / 10	908.5	4.45	8.00
Lora / 10	914.9	4.31	8.00

3.8.4 Test Result of Power Spectral Density

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—