

TEST REPORT

	me : WIFI Module ber : WF-M6822-UWP1 : 2AQ5R-WF-M6822-UWP1
Prepared for	 Shenzhen KTC Commercial Display Technology CO.,LTD. No.4023, Northern Wuhe Road, Bantian Street, Longgang
Address	District, Shenzhen City, Guangdong Province,P.R. China
Prepared by Address	 EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Tel: (0755) 26954280 Fax: (0755) 26954282
Report Number	: ES210402016W03
Date of Test	: April 2, 2021 to May 14, 2021

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Date of Report : May 28, 2021

TABLE OF CONTENTS

2. EUT DESCRIPTION	4
3. SUMMARY OF TEST RESULT	6
4. TEST METHODOLOGY	7
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES	7
5. FACILITIES AND ACCREDITATIONS	11
5.1 FACILITIES 5.2 EQUIPMENT 5.3 LABORATORY ACCREDITATIONS AND LISTINGS	11 11
6. SETUP OF EQUIPMENT UNDER TEST	
6.1 SETUP CONFIGURATION OF EUT 6.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL: 6.3 SUPPORT EQUIPMENT	12
7. DYNAMIC FREQUENCY SELECTION REQUIREMENTS	14
 7.1 APPLICABLE STANDARD 7.2 CONFORMANCE LIMIT 7.3 TEST CONFIGURATION	14 14 15 16 17
8. TEST RESULT	18
8.1 DETAILED TEST RESULTS 8.2 RADAR WAVEFORM 8.3 IN-SERVICE MONITORING	19

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

1. TEST RESULT CERTIFICATION

Applicant:	Shenzhen KTC Commercial Display Technology CO.,LTD. No.4023, Northern Wuhe Road, Bantian Street, Longgang District, Shenzhen City, Guangdong Province,P.R. China
Manufacturer:	Shenzhen KTC Commercial Display Technology CO.,LTD. No.4023, Northern Wuhe Road, Bantian Street, Longgang District, Shenzhen City, Guangdong Province,P.R. China
Product Description:	WIFI Module
Model Number:	WF-M6822-UWP1
Trade Mark:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 06-96 FCC 47 CFR Part 15, Subpart E	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD.. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	April 2, 2021 to May 14, 2021
Prepared by :	Mill Chen
	Mill Chen /Editor
Reviewer :	Sevencomo II So
	Sewen Guo /Supervisor
Approve & Authorized Signer :	* FSTING
	Lisa Wang/Manager

2. EUT DESCRIPTION

Characteristics	Description						
Device style	5G WIFI (Slave equipment without radar detection function)						
Model Number	WF-M6822-	WF-M6822-UWP1					
Sample	2#	2#					
IEEE 802.11 WLAN Mode Supported	 ≈ 802.11n(2 ≈ 802.11n(2 ≈ 802.11n(4 ≈ 802.11ac(≈ 802.11ac(№ 802.11a(20MHz channel bandwidth) № 802.11n(20MHz channel bandwidth) № 802.11n(40MHz channel bandwidth) № 802.11ac(20MHz channel bandwidth) № 802.11ac(40MHz channel bandwidth) № 802.11ac(80MHz channel bandwidth) № 802.11ac(80MHz channel bandwidth) 					
Data Rate	802.11n(HT2 802.11n(HT4 802.11ac(HT	,12,18,24,36,48,54Mbps; 20)/ac(HT20): MCS0-MCS15; 40): MCS0-MCS15; F40):MCS0-MCS15; HT80):MCS0-MCS15;					
Modulation		th BPSK/QPSK/16QAM/64QAM th BPSK/QPSK/16QAM/64QAM					
	WIFI 5G Band	Mode	Frequency Range(MHz)	Number of channels			
		802.11a/n(HT20)/ac(VHT20)	5180-5240	4			
	UNII Band I	802.11n(HT40)/ac(VHT40)	5190-5230	2			
	Dana	802.11 ac(VHT80)	5210	1			
		802.11a/n(HT20)/ac(VHT20)	5260-5320	4			
	UNII Bond II A	802.11n(HT40)/ac(VHT40)	5270-5310	2			
Operating Frequency	Band II-A	802.11 ac(VHT80)	5290	1			
Rang		802.11a/n(HT20)/ac(VHT20)	5500-5700	11			
	UNII	802.11n(HT40)/ac(VHT40)	5510-5670	5			
	Band II-C	802.11 ac(VHT80)	5530-5610	2			
		802.11a/n(HT20)/ac(VHT20)	5745-5825	5			
	UNII Band III	802.11n(HT40)/ac(VHT40)	5755-5795	2			
		802.11 ac(VHT80)	5775	1			
	For DFS frequency band: UNII Band II-A. UNII Band II-C						
Antenna Type	PCB Antenna Two antenna for WIFI						
Smart system							
Antenna Gain	Antenna 1: 3.4 dBi Antenna 2: 3.4 dBi						
Direction Gain	6.40						

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Power supply	DC 5V
Date of Received	April 2, 2021
Temperature Range	-10°C ~ +70°C

Note: for more details, please refer to the User's manual of the EUT.

3. SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark		
15.407 (h) (i) (j)	Dynamic Frequency Selection	PASS			
NOTE1: N/A (Not Applicable)					

NOTE2: According to FCC OET KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

NOTE3: the EUT has two modules, only one module was tested in this report.for the other module, please refer to its test report(210109012RFC-4)

4. TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 06-96

FCC 47 CFR Part 15, Subpart E

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

4.2 MEASUREMENT EQUIPMENT USED

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 17, 2020	1 Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J1010000070	May 17, 2020	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	659	Sep 22, 2019	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	May 17, 2020	2 Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK2019051801	May 17, 2020	1 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	July 14, 2019	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 17, 2020	1 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1198	May 17, 2020	2 Year
Bilog Antenna	Schwarzbeck	VULB9163	660	July 16, 2019	2 Year
Cable	H+B	NmSm-05-C15052	N/A	May 17, 2020	1 Year
Cable	H+B	NmSm-2-C15201	N/A	May 17, 2020	1 Year
Cable	H+B	NmNm-7-C15702	N/A	May 17, 2020	1 Year
Cable	H+B	SAC-40G-1	414	May 17, 2020	1 Year
Cable	H+B	SUCOFLEX104	MY14871/4	May 17, 2020	
Cable	H+B	BLU18A-NmSm-650 0	D8501	May 17, 2020	1 Year
Band reject Filter(50dB)	WI/DE	WRCGV-2400(2400- 2485MHz)	2	May 17, 2020	1 Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Vector Signal Generater	Agilent	N5182B	My53050553	May 17, 2020	1 Year
Analog Signal Generator	Agilent	N5171B	My53050878	May 17, 2020	1 Year
Signal Analyzer	Agilent	N9010A	My53470879	May 17, 2020	1 Year
Power Analyzer	Agilent	PS-X10-200	N/A	May 17, 2020	1 Year
Wideband Radio Communication Tester	R&S	CMW500	1201.0002K50- 140822zk	May 17, 2020	1 Year
Test Accessories	Agilent	PS-X10-100	N/A	May 17, 2020	1 Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	May 17, 2020	1 Year
Blocking Box	Agilent	AD211	N/A	May 17, 2020	1 Year

Remark: Each piece of equipment is scheduled for calibration once a year.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ES210402016W03

Ver.1.0

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (⊠ 802.11a: 6 Mbps; ⊠ 802.11n (HT20): MCS0; ⊠ 802.11n (HT20): MCS7; ⊠ 802.11n (HT40): MCS0; ⊠ 802.11a (HT40): MCS7; ⊠ 802.11ac (HT20): MCS0; ⊠ 802.11ac (HT20): MCS7; ⊠ 802.11ac (HT40): MCS7; ⊠ 802.11ac (HT40): MCS7; ⊠ 802.11ac (HT80): MCS0; ⊠ 802.11ac (HT80): MCS7 were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

\boxtimes \boxtimes Wifi 5G with U-NII -2A

Frequency and Channel list for 802.11a/n (HT20)/802.11ac (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300		
56	5280	64	5320		

Frequency and Channel list for 802.11n (HT40)/ 802.11ac (HT40):

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	54	5270				
	62	5310				

Frequency and Channel list for 802.11ac (HT80):

1		–	· · · · · ·	– – – – – – – – – – – – – – – – – – –		F	1
	Channel	Frequency	Channel	Frequency	Channel	Frequency	
	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	
	58	5290		/			Í
	00	0200					1

Test Frequency and Channel for 802.11a/n (HT20)/802.11ac (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	56	5280	64	5320

Test Frequency and channel for 802.11n (HT40)/ 802.11ac (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	N/A	N/A	62	5310

Test Frequency and channel for 802.11ac (HT80):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
58	5290				

⊠ Wifi 5G with U-NII -2C Frequency and Channel list for 802.11a/n (HT20)/802.11ac (HT20):

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	100	5500	116	5580	132	5660
	104	5520	120	5600	136	5680
	108	5540	124	5620	140	5700
	112	5560	128	5640		

Frequency and Channel list for 802.11n (HT40)/ 802.11ac (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670
110	5550	126	5630		

Frequency and Channel list for 802.11ac (HT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	122	5610		

Test Frequency and Channel for 802.11a/n (HT20)/802.11ac (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	116	5580	140	5700

Test Frequency and channel for 802.11n (HT40)/ 802.11ac (HT40):

Lowest Frequency		Middle F	requency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510			134	5670

Test Frequency and channel for 802.11ac (HT80):

Lowest Frequency		Middle F	Frequency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530				

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

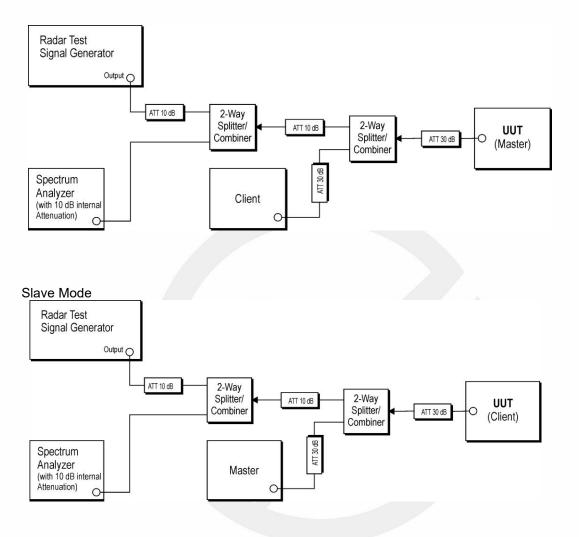
Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description EMC Lab.	 Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017) Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943 Accredited by A2LA The Certificate Number is 4321.01. Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm	 EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen,
Site Location	Guangdong, China


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

Master Modes

6.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured on the spectrum analyzer. Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

6.3 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note				
1. Wireless Access Point		Cisco	AIR-CAP3702E-A-K9	FTX182276QD	FCC ID: LDK102087 IC:2461B-102087				
Note:	Note: Software for transferring data between master and slave devices is TFGEN-1.00								

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. DYNAMIC FREQUENCY SELECTION REQUIREMENTS

7.1 APPLICABLE STANDARD

According to 15.407

7.2 CONFORMANCE LIMIT

The dynamic frequency selection requirement

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
	power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

The following table lists the DFS The detection threshold values

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power	-64 dBm
spectral density requirement	
Note 1: This is the level at the input of the receiver assur	ning a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission

waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

7.3 TEST CONFIGURATION

Conducted measurements shall be used for DFS test

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.4 TEST PARAMETERS OF DFS TEST SIGNAL

The following table lists the parameters of radar test signals Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \begin{pmatrix} \frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Radar Types 1-			80%	120

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Frequency Hopping Radar Test Waveform

Rac Ty	dar pe	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	6	1	333	9	0.333	300	70%	30

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

7.5 TRANSMITTER OUTPUT POWER

25°C

Humidity:

55 % RH

	Max F	Power
Band	Conducted Outpot Power	E.I.R.P
5250MHz-5350MHz	15.34dBm(34.20mW)	21.74dBm(149.28mW)
5470MHz-5725MHz	16.39dBm(43.55mW)	22.79dBm(190.11mW)

7.6 OPERATION MODES AND REQUIREMENT TEST ITEMS

The manufacture shall state whether the EUT is capable of operating as a Master or a Slave modes, if the EUT is capable of operating in more than one operational mode then every operating mode shall be assessed separately.

Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode								
Requirement	Master	Client Without Radar Detection	Client With Radar Detection						
Non-Occupancy Period	Yes	Not required	Yes						
DFS Detection Threshold	Yes	Not required	Yes						
Channel Availability Check Time	Yes	Not required	Not required						
Uniform Spreading	Yes	Not required	Not required						
U-NII Detection Bandwidth	Yes	Not required	Yes						

Applicability of DFS requirements during normal operation

Requirement	Operational Mode									
	Master	Client Without Radar Detection	Client With Radar Detection							
DFS Detection Threshold	Yes	Not required	Yes							
Channel Closing Transmission Time	Yes	Yes	Yes							
Channel Move Time	Yes	Yes	Yes							
U-NII Detection Bandwidth	Yes	Not required	Yes							

7.7 TEST PROCEDURE

According to KDB 905462 D02v02 Section 7.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

8. TEST RESULT

8.1 DETAILED TEST RESULTS

Clause	MODES	Test Parameter	Remark	Verdict
15.407		DFS Detection Threshold	N/A	N/A
15.407		Channel Availability Check Time	N/A	N/A
15.407		Channel Move Time	N/A	N/A
15.407	🗌 Master	Channel Closing Transmission Time	N/A	N/A
15.407		Non-Occupancy Period	N/A	N/A
15.407		Uniform Spreading	N/A	N/A
15.407		U-NII Detection Bandwidth	N/A	N/A
15.407		Radar Detection Threshold	N/A	N/A
15.407		Channel Move Time	Applicable	PASS
15.407	🖂 Slave	Channel Closing Transmission Time	Applicable	PASS
15.407		Non-Occupancy Period	N/A	N/A
15.407		U-NII Detection Bandwidth	N/A	N/A

8.2 RADAR WAVEFORM

Calibration:

Maximum Transmit Power is 200 mW to 1 W in this report, so detection threshold level is -64dBm.

The 801.11a/n/ac have been tested, and the worst result have been recorded in the below page.

	Rad	dar Waveform			
Master Mode		Slav	/e Mode		
Description Analyzer - Swept SA					
LXI RL RF 50 Ω AC	SENS	E:INT	ALIGN AUTO 02:18:56	MMay 22 2021	
Marker 1 26.3000 ms	Trig Delay				Search
	:Fast ↔ Trig:Video n:High #Atten:0d		[PE WWWWWW ET N N N N N N	
	n.riigii ", titorii e e		Milered C	6 20 mg	extPeak
			WIKI 1 4	8.30 ms [™] .32 dBm	
10 dB/div Ref -20.00 dBm			-02	SZ UBIII	
-30.0				Next	Pk Right
-30.0					
-40.0					
				Nex	t Pk Left
-50.0		21			
-60.0		- ♦ '			
		TELE		Mar	ker Delta
-70.0				TRIG LVL	
-80.0 della statu en a na sua su basta substatu en la lla da				a de la della de la della d	Mkr→CF
-90.0					
				1.000 C	
				Mkr	→RefLvl
	For sevel with the				
-110 na di Udina badan di Udina di U	The state of the state of the	الأبر التبابرا أتراقا	and the design of the		
in a shi a bi shi tiya shi a sa bi a bi ka ka ka			a da la da da di di di di da		More
		ا کلا ای کا لا	2 1 / 2 2 1 13 () U L I X	المراكر المراجع	1 of 2
Center 5.290000000 GHz				Span 0 Hz	1012
Res BW 1.0 MHz	#VBW 3.0 MHz		Sweep 50.00 ms	(1001 pts)	
MSG			STATUS		

RL		50 Ω AC					NSE:INT				ALIGN A		02:19:2	0 PM May 23,	,2021	Marker
arker 1	Δ 1.400	00 ms	PNO: IFGain	Fast ↔ :High	_ Tri	ig Dela ig: Vid tten: (0 ms	Av	g Type	: Log-F	wr	1	RACE 1 2 3 TYPE WWW DET NNN	456 WWW NNN	Select Marke
dB/div	Ref -20	.00 dBm										Δ	Mkr1	1.400 -0.56		
.0																Norn
.0		63														De
ō —				i ar ar			X2	<mark>●1∆:</mark>	2							Fixe
0		adaa ka k			n a latar			11111			iner ann			olininini jud		(
0 0 1.1 A	Lither i	a à car		.	d. b	al 1	na à.	ارا ار	l	bi	L	1.1	J.J. J.	J. m		Propertie
nter 5.	29000000	00 GHz												Span () Hz	Мс 1 с
s BW ′	1.0 MHz			#VBV	V 3.0	MHz	4					p 50 TATUS	0.00 m	s (1001	pts)	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.3 IN-SERVICE MONITORING

	Rad	lar test signal f	type 0		
Trial ID	Pulse Width(us)	PRI(us)	Number of Pulses	Waveform Length(us)	Detection(Y/N)
0	1.0	1428.0	18	25704.0	Y
1	1.0	1428.0	18	25704.0	Y
2	1.0	1428.0	18	25704.0	Y
3	1.0	1428.0	18	25704.0	Y
4	1.0	1428.0	18	25704.0	Y
5	1.0	1428.0	18	25704.0	Y
6	1.0	1428.0	18	25704.0	Y
7	1.0	1428.0	18	25704.0	Y
8	1.0	1428.0	18	25704.0	Y
9	1.0	1428.0	18	25704.0	Y
10	1.0	1428.0	18	25704.0	Y
11	1.0	1428.0	18	25704.0	Y
12	1.0	1428.0	18	25704.0	Y
13	1.0	1428.0	18	25704.0	Y
14	1.0	1428.0	18	25704.0	N
15	1.0	1428.0	18	25704.0	N
16	1.0	1428.0	18	25704.0	Y
17	1.0	1428.0	18	25704.0	Y
18	1.0	1428.0	18	25704.0	Ň
19	1.0	1428.0	18	25704.0	Y
20	1.0	1428.0	18	25704.0	Y
21	1.0	1428.0	18	25704.0	Y
22	1.0	1428.0	18	25704.0	Y
23	1.0	1428.0	18	25704.0	Y
24	1.0	1428.0	18	25704.0	Ý
25	1.0	1428.0	18	25704.0	Y
26	1.0	1428.0	18	25704.0	Ý
27	1.0	1428.0	18	25704.0	Ý
28	1.0	1428.0	18	25704.0	Ý
29	1.0	1428.0	18	25704.0	Y
	1	Detection Rat			90%

UNII Band II-C

	Rad	ar test singal t	vpe 0		
	Pulse		Number of	Waveform	Detection(Y/N)
D	Width(us)	PRI(us)	Pulses	Length(us)	
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	N
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	N
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	N
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
	1.0	1428.0	18	25704.0	Y
29 1.0 1428.0 18 25704.0 Detection Rate					

		In-Service	Monitoring			
Channel Move Time and Channel Closing Transmission Time			Master Mode		Slave Mode	
	on Frequence		5530MHz			
Agilent Spectrum Analyzer - Swept SA		•				
RL RF 50 Ω AC arker 1 Δ 1.80000 ks		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	06:18:55 PM May 21, TRACE 1 2 3		
	PNO: Fast ++ IFGain:High	→ Trig: Free Run #Atten: 0 dB	,		www.	
) dB/div Ref -20.00 dBm			l	∆Mkr1 1.800 -50.33	ks 1	
					Norm	
D.0						
				12	2 Del	
	and the second state of the		an anti- di da destrato inderitati e di la companya da d			
0.0						
00					Fixed	
88					TIACO	
10						
enter 5.290000000 GHz	#1/B14	(20 MHz)	Swoon	Span 0		
enter 5.290000000 GHz es BW 1.0 MHz	#VBW	/ 3.0 MHz		2.000 ks (8001	ots) <mark>o</mark>	
enter 5.290000000 GHz es BW 1.0 MHz	#VBW	Y FL	Sweep 2		ots) <mark>o</mark>	
enter 5.290000000 GHz es BW 1.0 MHz R MODE TRC SCL Χ 1 Δ2 1 t (Δ) 2 F 1 t				2.000 ks (8001	ots) O	
senter 5.290000000 GHz es BW 1.0 MHz KR MODE TRC SCL Δ2 1 Δ2 1 5 3 4	1.800 ks (Δ)	Y FL -50.33 dB		2.000 ks (8001	ots) O	
enter 5.290000000 GHz es BW 1.0 MHz R MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 5 5 6 6	1.800 ks (Δ)	Y FL -50.33 dB		2.000 ks (8001	ots) O	
enter 5.29000000 GHz es BW 1.0 MHz	1.800 ks (Δ)	Y FL -50.33 dB		2.000 ks (8001	Properties	
enter 5.29000000 GHz es BW 1.0 MHz (R MODE TRC SCL × 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 4 5 5 4 5 6 5 7 4 7 8 4 7 8 4 7 9 5 6 7 1 4 7 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	1.800 ks (Δ)	Y FL -50.33 dB		2.000 ks (8001	Properties	
enter 5.290000000 GHz es BW 1.0 MHz (R MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 5 5 6 6 7 7 8 8 9 9 6 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.800 ks (Δ)	Y FU -50.33 dB -27.13 dBm		2.000 ks (8001	Properties	
1 Δ2 1 t (Δ)	1.800 ks (Δ)	Y FL -50.33 dB		2.000 ks (8001) FUNCTION VALUE	Properties	

*** End of Report ***

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn